
FastPath: A Hybrid Approach
for Efficient Hardware Security Verification

Lucas Deutschmann∗
RPTU Kaiserslautern-Landau

Kaiserslautern, Germany
lucas.deutschmann@rptu.de

Andres Meza∗
UC San Diego

San Diego, USA
anmeza@ucsd.edu

Dominik Stoffel
RPTU Kaiserslautern-Landau

Kaiserslautern, Germany
dominik.stoffel@rptu.de

Wolfgang Kunz
RPTU Kaiserslautern-Landau

Kaiserslautern, Germany
wolfgang.kunz@rptu.de

Ryan Kastner
UC San Diego

San Diego, USA
kastner@ucsd.edu

Abstract—Many verification methods have been proposed to detect
microarchitectural information leakage in response to the surge of
security breaches in hardware designs. These sophisticated efforts have
gone a long way toward preventing attackers from breaking the system’s
confidentiality. However, each approach has its own set of weaknesses: it
may not be scalable enough, exhaustive enough, flexible enough to meet
changing requirements or fit well into existing verification flows.

We propose FastPath, a hybrid verification methodology that combines
the efficiency of simulation with the exhaustive nature of formal verifica-
tion. FastPath employs a structural analysis framework to automate the
method further. Our experimental results compare FastPath to a state-
of-the-art formal approach, showing a significant reduction in manual
effort while achieving the same level of exhaustive confidence. We also
discovered and contributed a fix for a previously unknown leak of
internal operands in cv32e40s, a RISC-V processor intended for security
applications.

Index Terms—Hardware Security, Information Flow Tracking, Simu-
lation, Formal Verification, Data-Oblivious Computing.

I. INTRODUCTION

A seemingly endless flood of timing side channel attacks [1], [2],
[3], [4], [5] severely disrupted the view of hardware as a root of
trust. This necessitates rethinking architectures and fortifying them
to meet ever-changing security requirements. In response, software
and hardware communities are actively proposing novel mitigation
techniques [6], [7], [8], [9], [10], [11] to address these requirements.

Most countermeasures against microarchitectural timing side chan-
nels demand that specific basic hardware operations are data-
oblivious. Data-obliviousness requires these hardware primitives to
process data without any measurable data-dependent side effects, e.g.,
the operation’s timing must be independent of its inputs. A prominent
software paradigm, called Constant-Time Programming [12], [8],
[13], assumes that simple instructions, such as an addition, do not
leak data via timing side channels. More complex instructions, such
as a division or floating point operations, are assumed to be data-
dependent and replaced with data-oblivious primitives [14]. Making
matters worse, whether an instruction is data-oblivious or not depends
on the underlying microarchitecture. Intel [15], ARM [16] and
RISC-V [17] have therefore added ways to refine the instruction set
architecture (ISA) with information about the data-obliviousness of
individual instructions.

However, recent insights [18], [5] have shown that, despite these
precautions, sophisticated optimizations in modern processors can
invalidate these assumptions. Chen et al. [5] exploit an optimization
feature of recent Apple devices, called data memory-dependent
prefetcher, to attack constant-time cryptographic routines by tricking
the prefetcher into misinterpreting secret data as addresses. This

*Both authors contributed equally to this research.
This work has been supported in part by funding from the Agentur für

Innovation in der Cybersicherheit GmbH (Cyberagentur), in part by BMBF
ZuSE (Scale4Edge), 16ME0122K-16ME0140+16ME0465, and in part by
Intel Corp. (Scalable Assurance).

attack demonstrates that it is insufficient to simply assume a certain
behavior of the hardware layer. Instead, it is necessary to provide
exhaustive security guarantees upon which software countermeasures
can be built.

As part of the effort to restore trust in hardware, we propose
FastPath, a hybrid security verification approach. The method exhaus-
tively verifies non-interference [19], [20] properties, e.g., the property
that confidential information does not leak into publicly visible states
of the system. In this paper, we specifically verify that hardware
operates in a data-oblivious manner. However, FastPath is not limited
to this threat model.

The key observation behind FastPath is that recent formal meth-
ods [21], [22] achieve high scalability through a semantic partitioning
of the computational problem. Rather than partitioning the design
structurally into paths to be checked formally, these methods logically
decompose the global proof problem. While the new techniques
scale even to complex out-of-order processors, deriving this logical
partitioning can require a considerable amount of manual refinement.

With FastPath, we identify and leverage a unique synergy between
these formal methods and simulation-based security verification: sim-
ulating a design with Information Flow Tracking (IFT) [23] efficiently
derives the bulk of the problem partitioning required by the formal
methods, eliminating most manual effort. Formal verification, on the
other hand, complements the weakness of simulation in finding subtle
leaks in corner-case scenarios. To round out our hybrid approach,
FastPath employs static structural analysis to detect when simulation
and formal are not necessary and to generate property templates when
they are needed. This novel way of combining these methods creates
a highly automated and scalable, yet exhaustive verification approach.

In summary, this paper makes the following contributions:
• We propose FastPath, a hybrid verification approach for hard-

ware security that leverages the complementary nature of sim-
ulation and formal methods (Sec. IV). Instead of combining
the two approaches in a straightforward way by applying a
formal analysis to certain paths not covered during simulation,
our method uses a global property formulation and a seamless
communication of intermediate results between the different
methods.

• We integrate a structural analysis and IFT framework called
HyperFlow Graph (HFG) [24] (Sec. III-A) into FastPath. The
structural information can be used to exclude trivial cases
where no syntactic information flow paths exist and to generate
templates for the formal properties.

• We apply FastPath to a variety of accelerator and processor de-
signs (Sec. V) and compare the manual effort with a formal-only
approach [22]. Our case studies show a 36% to 100% reduction
in manual refinement. In an experiment with the cv32e40s [25]
processor, FastPath was able to detect a previously unknown
leak of internal operands.



II. THREAT MODEL

FastPath verifies non-interference properties [19], [20]. Non-
interference divides the system into high-security and low-security
domains and can be used to model a variety of different threat models.
Confidentiality, for example, requires that information never leak
from high to low. For the purposes of this paper, we adopt the threat
model and definitions from [22]. In particular, we consider a hardware
system that processes confidential input data. The attacker exploits
violations of data-obliviousness in the hardware and observes any
data-dependent side-effect, i.e., any deviation in the control behavior
caused by the values of the operands being processed. This is usually
reflected in a difference in timing, resulting in different values at
the control related output of the system. Note that our method is
not limited to this threat model and can be extended to other attack
scenarios.

Our threat model is described more precisely as follows: We model
a hardware system as a standard Mealy-type Finite-State Machine
(FSM) M = (I,O, S, S0, δ, λ), where we denote sets of input
symbols I , output symbols O, states S, and initial states S0 ⊆ S.
The state transition function is given by δ : S × I 7→ S and the
output function is given by λ : S × I 7→ O. In addition, we denote
the set of Register-Transfer Level (RTL) input signals by X , output
signals by Y , and state signals by Z. We partition the set of input
signals X (output signals Y ) into disjoint sets of control inputs XC

(control outputs YC ) and data inputs XD (data outputs YD). In this
threat model, as described in previous works [26], [22], [27], [28], the
system processes the high-security data inputs XD , while the attacker
is able to observe the low-security control outputs YC . If a data-
dependent control behavior is observed, such as a different timing of
a handshake signal (e.g., valid), an attacker can infer information
about the data being processed. This breaks confidentiality and can,
for example, severely weaken encryption techniques. This security
threat is eliminated if the design is proven to be data-oblivious.

Definition 1 (Data-Obliviousness). A hardware module is called
data-oblivious if, under a set of system-level constraints, the sequence
of values at its control outputs YC is uniquely determined by the
sequence of values at its control inputs XC . In other words, its control
inputs XD have no influence on its control outputs YC .

Data-obliviousness of hardware designs is the verification target
pursued throughout this paper.

III. BACKGROUND

A. HyperFlow Graph

A HyperFlow Graph (HFG) [24], [29] is a graph-based intermedi-
ate representation which models how information flows in a hardware
design. Derived automatically from a static analysis of RTL code, an
HFG G(N,E) contains a set of nodes N and a set of directed, labeled
edges E. An HFG node nx ∈ N represents a unique hierarchical
design signal sig_x. An HFG edge e(ui, ns, nd, C) ∈ E represents
a flow scenario in which information flows, explicitly or implicitly,
from a source signal sig_s to a destination signal sig_d. Each
edge can be precisely mapped to an originating RTL code construct.
If the originating code construct has no guarding conditions (C = ∅),
then the flow is always “active”. Otherwise, the flow is only active if
all guarding conditions c ∈ C are simultaneously satisfied. Note that
multiple edges are allowed between two nodes so each edge also has
a unique identifier ui.

HFGs enable a variety of queries that produce security-relevant
information. In this work, we primarily utilize the HFG path query

q(ns, nd) which returns a set of HFG paths P where each path
p ∈ P comprises a finite sequence of HFG edges p = (e1, . . . , ek)
that could potentially enable information flow from the source signal
sig_s to the destination signal sig_d. Emphasis is placed on the
potential nature of the returned HFG paths due to the possibility for
false positives. By design, the static analysis employed in the HFG
construction process is intended to enable speed and scalability, but
this comes at the price of producing an over-approximation of the
information flow in the system. This means that the HFG path query
can produce false positives but it will never produce false negatives.
In other words, if there are no HFG paths (P = ∅) connecting the
source signal sig_s to the destination signal sig_d, then it is
guaranteed that the source signal sig_s cannot influence or leak
information to the destination signal sig_d. However, if there are
any HFG paths (P ̸= ∅), then each path p ∈ P has the potential to
be an unrealizable sequence of design states (a false positive) and no
guarantees on signal influence can be made without further analysis.
As discussed in Sec. IV, our hybrid verification strategy employs
simulation-based IFT and formal verification to address this issue.

B. Information Flow Tracking

Hardware Information Flow Tracking (IFT) [23] is a powerful
verification strategy that allows designers to reason about information
movement through a hardware design. Hardware IFT properties can
be used to verify trace and hyperproperties related to confidentiality,
integrity, and availability. These properties can specify where, when,
and how information should or should not flow from source signals
to destination signals, with relatively few operators and expres-
sions. IFT properties can be written as assertions using the no-flow
operator (=/=>) as follows: {src_sigs} =/=> {dst_sigs}.
Hardware IFT tools determine whether the hardware adheres to the
properties.

In simulation-based IFT, a given design is instrumented with
additional logic (i.e., an IFT circuit) that tracks information flow by
calculating and updating security labels (e.g., HIGH and LOW). An
IFT-enhanced simulation produces a simulation trace with functional
values and security labels for all signals. All design signals are
initially labeled LOW, except for the source signals from which
information is being tracked, which are labeled HIGH. Throughout
the simulation, the IFT circuit updates signal label values considering
the functional values from the simulation testbench and security
labels. Any signal that starts with a LOW label and eventually reaches
a HIGH label has received information from a source signal, i.e., the
source signal is affecting it.

The ability to determine signal influence from merely tainting a
source signal as HIGH is extremely valuable when dealing with large,
complex designs. However, IFT-enhanced simulations are completely
dependent on the underlying testbench to produce a property-relevant
information flow. As a result, IFT properties that could be falsified
may not be falsified due to an insufficient testbench. FastPath over-
comes issues related to exhaustiveness via its formal verification
step (Sec. IV).

C. Unique Program Execution Checking

Unique Program Execution Checking (UPEC) [21] is a formal
verification methodology to exhaustively detect the propagation of
confidential (or malicious) information at the RTL. The approach was
originally created to detect transient execution side channel (TES)
attacks, but has since been extended to cover a variety of different
threat models. According to our threat model (see Sec. II), we focus
on UPEC for data-independent timing (UPEC-DIT) [22].



UPEC is based on a technique called Interval Property Checking
(IPC) [30] and uses a 2-safety computational model, i.e., the design
under verification (DUV) is instantiated twice. At the start of the
proof, each signal is initialized with the same value as its counterpart
in the other instance. The only discrepancy between both instances
is the information to be tracked, usually a proprietary secret that
should not be revealed to the attacker. Any malicious information flow
is detected by following the propagation of this difference through
the system. In addition, IPC allows the equal initial state to be
symbolic, and thus implicitly models every possible history of the
system. Therefore, UPEC can “fast-forward” to the point where the
propagation occurs, allowing scalability to complex systems.

UPEC-DIT is a variant of UPEC that can exhaustively verify the
data-obliviousness of hardware systems according to Def. 1. In its
computational model, the control inputs XC are constrained to be
equal between the two instances, while the data inputs XD remain
unconstrained. Also, both instances start from the same symbolic
state. UPEC-DIT then verifies that for any arbitrarily long sequence
of inputs, the control outputs YC of the two instances never diverge,
certifying that the control behavior is independent of the processed
data. The approach achieves scalability by an iterative partitioning of
the internal state-holding signals based on counterexamples. Every
signal declared as data is allowed to assume different values in the
following iteration of the algorithm, thus implicitly modeling any
previous propagation path. This process is repeated until a malicious
propagation is found, or until a fixed point is reached where no new
propagation occurs.

The exhaustive nature of UPEC allows to provide formal security
guarantees, and thus achieve a much higher level of confidence
compared to simulation-based approaches. However, the iterative
manual inspection of counterexamples can be tedious and requires
a certain level of design and verification expertise. In FastPath, we
offload a majority of the manual work to fully-automated structural
analysis and IFT-based simulation. We then leverage the intermediate
simulation results to perform a UPEC-based proof, achieving the
same level of exhaustiveness as the original approach combined with
an improved scalability.

IV. METHODOLOGY

Fig. 1 gives an overview of FastPath. FastPath has three main steps:
structural analysis based on the HFG [24], efficient bug hunting with
IFT-enhanced simulation [23], and exhaustive formal verification
based on UPEC-DIT [22]. We start with the RTL description of the
DUV and a security specification that defines what data is considered
confidential. This paper focuses on data-dependent side effects (as
described in Sec. II), but the proposed methodology can also be
extended to other threat models. We assume an attacker is able to
measure the timing of a system by observing control-related outputs,
e.g., by monitoring the signals of a bus.

Our goal is to exhaustively verify (with as little manual inspection
as possible) that sensitive data inputs (XD) do not affect the control
behavior of the system (YC ). In addition, by inspecting violations of
data-obliviousness, FastPath systematically derives a set of software
constraints under which the hardware is guaranteed to operate in a
data-oblivious manner. The verified hardware, in combination with
these derived restrictions for the software, forms a root of trust for
the higher levels of the system stack.

A. Structural Analysis

The first step is to create an HFG of the design. Because this
process considers only structural information, it is easily scalable to

complex systems. The HFG serves two primary purposes. First, it
is a starting point for the other two approaches, providing structural
information that can be used to generate property templates or speed
up proofs with optimizations such as cone-of-influence reduction.
Second, we can leverage it to skip the proof procedure in trivial
cases. There can be no information flow if there is no structural
connection between sensitive data inputs XD and publicly visible
control outputs YC . This may be the case if the design is largely
data-oriented and does not implement complex control behavior (cf.
Sec. V). In particular, FastPath terminates early if

∀nx ∈ XD, ∀ny ∈ YC : q(nx, ny) = ∅

where q(nx, ny) is an HFG path query (cf. Sec. III-A).
In many cases, however, structural connections exist, but the design

still operates data-independently in the given application scenario.
For example, data-dependent instructions are explicitly avoided in
constant-time programming. Even though they are never used, the
functionality of these instructions is still implemented, creating a
structural path through which information could flow. Another ex-
ample of such an application scenario is the limited functionality of
an unprivileged user. Structural analysis alone is not sophisticated
enough to account for such usage restrictions. Therefore, we need to
be able to verify a system’s data-obliviousness under a given set of
software constraints.

B. IFT-Enhanced Simulation

In the next step, an IFT-enhanced simulation of the design is
performed. This can be done using any existing testbench or random
simulation approach. We seek to verify the following IFT property:

XD =/=> YC

At the start of the simulation, all sensitive data inputs XD are
tainted (labels are set to HIGH), and the labels of the remaining
signals are set to LOW. If any control output yc ∈ YC has its labels
transition from LOW to HIGH, this constitutes a counterexample and
indicates that it is influenced by the sensitive data.

In the case of a counterexample, the verification engineer must
investigate the root cause. The counterexample may represent a
scenario that contradicts the given application scenario. In this case,
the setup must be adjusted, usually by introducing constraints on
the simulation or restricting the flow policy, and the simulation is
restarted. However, if an actual security problem is found, the leakage
must be fixed in the RTL design, and the methodology starts over.

The main advantage of running an IFT-enhanced simulation is
the ease of setup and the efficiency of debugging. Given a stimulus
source and an interface partitioning (cf. Sec. II), no manual effort
is required to run the simulation. In addition, each counterexample
shows a complete propagation path from data input to control output,
starting from reset. This avoids false alarms and makes root cause
analysis easier than in a formal approach where the counterexamples
may start from an arbitrary run-time state. However, if a signal does
not become tainted during simulation, this does not mean that no
information can flow into that signal. It only indicates that there is no
information flow for the scenarios exercised by the testbench. Subtle
corner-case scenarios can easily be missed, which often happens in
the presence of unknown vulnerabilities. Therefore, FastPath uses
formal verification to ensure that data cannot propagate further than
what was found by simulation.

Definition 2 (Untainted State Signals). For a given design with an
input partitioning X = XD ∪XC and a given testbench, we define



Structural Analysis
HyperFlow Graph

Inf.-Flow Tracking
Radix

Formal Verification
UPEC-DIT

RTL DUV

Security Spec.

Design secure

Generate templates

Investigate counterexample (CEX)
Security violation: Fix design

No structural connection

Spurious CEX:
Add constraint

No
CEX

Legal flow:
Refine property

No
CEX

CEX CEX

Z'

Fig. 1. The FastPath Verification Flow determines if the RTL design adheres to the security specification. FastPath uses a three-step process to efficiently
compute counterexamples and update the specification with new constraints and property refinements. The output is a security violation that must be fixed in
the design, or a guarantee that the design is secure.

the subset of all state-holding signals Z that have not been influenced
by XD during simulation as the set of untainted state signals Z′ ⊆ Z.

Def. 2 describes the set of signals Z′ whose labels remained LOW
during simulation. The goal of the subsequent formal step is to verify
that Z′ constitutes a semantic partitioning of the computational prob-
lem. In particular, FastPath formally verifies by inductive reasoning
that no sequence of inputs to the design exists for which a state
variable z′ ∈ Z′ becomes tainted. Hence, no taint can reach any
output yc ∈ YC , which means that XD never influences the attacker-
observable control outputs YC .

Finally, we emphasize that FastPath does not require sophisticated
testbenches to achieve significant efficiency improvements. Because
the formal step catches any remaining leaks, the verification engineer
does not have to worry about missing corner cases during simulation.
In addition, refinements to the IFT flow policy can be applied without
worrying about over-constraining the policy.

C. Unique Program Execution Checking (UPEC)

In the final step, we apply an inductive UPEC-DIT [22] property
to achieve exhaustive coverage. In the original UPEC-DIT approach,
the verification engineer is required to manually inspect every prop-
agation originating from the data inputs XD . This process can be
tedious, especially for large data-driven designs, as most propagation
alerts are legal, but still require the verification engineer to manually
remove the newly reached signal from consideration. In this work,
however, we already possess knowledge about possible propagation
paths. We use it to skip most of the manual steps of the UPEC-DIT
procedure by jumping directly to the, potentially final, inductive step.

1 UPEC-DIT(Z′, YC):
2 assume:
3 at t: two_safety_eq(Z′)
4 during [t, t+1]: software_constraints()
5 prove:
6 at t+1: two_safety_eq(Z′)
7 during [t, t+1]: two_safety_eq(YC)

Listing 1. Generalized UPEC-DIT interval property

At the end of the IFT-simulation, the set of all untainted state
signals Z′ is returned to the HFG analysis. Using the structural infor-
mation, the HFG stage then generates both the 2-safety computational

model (see Sec. III-C) and the verification framework. The key formal
property is shown in Lst. 1. It employs the following macros:

• two safety eq(A) specifies that all signals of the given set A are
equal between the two instances of the computational model. We
use this macro in both the assumption and commitment parts
of the property to verify that, when considering all previous
propagation paths, no further information flow is possible.

• software constraints() specifies the given usage constraints un-
der which the system operates data-obliviously. These are in-
herited from the simulation, but may need to be extended if
new violations are found using the formal property (see below).
However, this did not happen in our experiments.

In case the property check fails, the verification engineer must
examine the returned counterexample and identify the root cause. If
the counterexample shows a security vulnerability, the design must
be fixed and FastPath starts over. If the counterexample shows a
scenario which violates data-obliviousness, but can be prevented with
a software constraint, we update software constraints(). After adding
such a new software constraint, we backtrack to the simulation step
(Sec. IV-B), since a new constraint may increase the set of untainted
state signals Z′. If a spurious counterexample is found (i.e., an un-
reachable scenario caused by the symbolic initial state), we refine the
property with an invariant (see [22]). Finally, if the counterexample
shows a legal data propagation (that was missed by IFT-simulation),
we refine the property by removing the corresponding signal from Z′.
After refining the property, we simply repeat the formal property
check.

If the property is verified successfully, it means that the resulting
Z′ is a partitioning of the problem and will never be affected by the
data inputs XD under the derived constraints. This results in a fixed
point where no control output YC is ever influenced by confidential
data XD , and our system is thus data-oblivious according to Def. 1.

V. EXPERIMENTS

We conducted experiments on a diverse set of designs, including
various accelerators and processors. Table I gives an overview of
our experiments. All experiments are available in our GitHub repos-
itory [31]. We used Cycuity’s Radix-S tool [32] for IFT simulation
and Siemens EDA’s OneSpin 360 tool [33] for formal verification.

For each experiment, we show:
• The result of the analysis. In particular, we report whether

the design operates data-obliviously either always (True), only



Design Data-Oblivious Method State Size Data Prop. Found Manual Inspections
Signals Bits IFT + UPEC Original [22] FastPath Reduction (%)

SHA512 True HFG 37 2162 – – 33 0 100.0
AES (opencores) True HFG 24 554 – – 19 0 100.0
AES (secworks) True HFG 26 2470 – – 11 0 100.0
CVA6-DIV Constrained UPEC 15 217 10 10 12 3 75.0
FWRISCV-MDS Constrained UPEC 13 331 5 8 9 4 55.5
ZipCPU-DIV False IFT 14 142 14 – 9 1 88.8
cv32e40s Constrained UPEC 471 5624 16 17 30 19 36.6
BOOM Constrained UPEC 5340 41948 163 177 185 24 87.0

TABLE I
CASE STUDIES

under certain, reasonable software constraints (Constrained), or
not at all (False). FastPath systematically finds such constraints
under which the hardware operates data-obliviously. In our
experiments, we also performed a more fine-grained analysis that
considers a propagation path for each combination (xD, yC) ∈
XD×YC of a data input xD and a control output yC . For some
of the designs, we present these results in more detail in the text
below, highlighting interesting findings.

• The step in the FastPath methodology at which the experiment
becomes complete, whether by simple structural proof using
the HFG (Sec. IV-A), by finding a security issue using IFT
simulation (Sec. IV-B), or by exhaustive formal verification
using UPEC-DIT (Sec. IV-C).

• The number of state-holding word-level signals and the total
number of bits consumed by these signals.

• The number of signals influenced by the data inputs. In particu-
lar, we present how many propagations were found by IFT alone
and how many were found after employing formal verification,
i.e., UPEC-DIT. If the method terminates earlier, e.g., due to a
structural proof by the HFG, this step is not required.

• Finally, we measure the amount of manual signal inspection
required. We count the number of divergent signals, i.e., signals
with different values in the two instances of the 2-safety UPEC
model, that are found in counterexamples during the execution
of FastPath and require manual inspection. Counterexamples that
cause the IFT flow policy to be updated or a constraint or an
invariant [21] to be created are also counted. We compare this
value to the manual effort of the formal-only approach presented
in [22].

A. Cryptographic Accelerators

We analyzed three different crypto-accelerators, one implementing
the Secure Hash Algorithm (SHA) [34] and the other two imple-
menting the Advanced Encryption Standard (AES) [35], [36]. We
investigated whether any plaintext or key input could affect the
control behavior of the system.

Our proposed methodology was able to prove the data oblivious-
ness of all designs through a simple structural analysis using the
HFG. The HFG showed that there is no path, implicit or explicit,
starting from any of the data inputs XD to any of the control outputs
YC . While the absence of such a path is not trivially guaranteed, it
can be expected because the round-based nature of the underlying
algorithms makes a data dependency very unlikely.

The ability to perform structural analysis trivializes these proofs
by eliminating the need for simulation or formal verification. As a
result, no manual effort is required beyond the initial annotation
of the interface. In contrast, the original UPEC-DIT method [22],

for the SHA accelerator, requires a manual inspection of 33 signals
influenced by XD before reaching a fixed point.

B. Division Modules

We verified three division modules taken from processor designs.
A structural path between XD and YC exists for all designs, which
means that structural analysis alone is not sufficient to verify data-
obliviousness.

For the division unit of the ZipCPU [37] project, IFT simulation
detected several data dependencies, such as an early termination for
a divisor of zero. Since there is no reasonable software constraint
under which the design operates data-obliviously, there is no need to
proceed to the formal analysis.

The Featherweight RISC-V [38] processor employs a single module
for multi-cycle multiplication, division and shifting. Using a random
pattern testbench, IFT simulation was able to confirm the findings
of [22] that the timing of shift operations is dependent on the shift
amount. We introduced a constraint to exclude shifting, rerun the
simulation and generated formal properties based on the untainted
signals Z′. In the formal step, UPEC was able to detect three
additional data propagations that were missed due to the simplicity
of the testbench. After refining the formal property, FastPath verified
that the design can operate data-obliviously if the software satisfies
the constraint derived by our method (no shifting).

We also verified a hardened version of the CVA6 division unit
taken from [39]. It implements security labels that indicate whether
operands are public or confidential. Division timing is dynamically
optimized to depend only on public information, but to perform better
than worst-case latency. We taint the operands according to their
labels, i.e., whenever they are confidential. In this experiment, the
IFT simulation reported a false counterexample due to an overly
conservative flow policy. In FastPath, however, we do not have to
worry about restricting the IFT policy, since the formal step catches
any missing propagation paths. In addition, two invariants were
required to verify the security mechanism of this design.

C. In-Order Processor

We applied FastPath to cv32e40s [25], a RISC-V processor in-
tended for security applications. It implements a variety of security
mechanisms, including a data-independent timing (data ind timing)
mode that ensures that normally variable-time instructions execute
with a fixed latency. Some special cases, such as misaligned memory
accesses, are excluded. Our results confirm the expectation that CSR
accesses, jumps and branches can still influence the control behavior
of the system even when in data ind timting mode. Load and store
instructions that access more than a single byte can cause misalign-
ment and thus affect control. In contrast, as intended, the latency



of division instructions becomes constant when the data ind timing
mode is active.

However, FastPath was able to identify another, previously un-
known, leakage affecting the operands of all instruction types. The
method detected that the operands residing in the pipeline buffer of
the ID-EX stage are always visible on the primary interface to the
data memory, regardless of whether a memory access is taking place.
Even if the corresponding validity signal is deasserted, the core still
interprets the operands as address and data and passes them on to the
outputs. Any IP, faulty or malicious, that does not comply with the
protocol, can easily obtain information about internal computations,
rendering security mechanisms such as data ind timing obsolete. We
reported the vulnerability and worked with the processor development
team to contribute a fix.

We used a fairly rudimentary testbench in our experiment, yet
the IFT simulation was able to find almost all data propagations.
The only missed state signal was inside the multiplier and is only
tainted during MULH instructions. The formal step of FastPath
showed a counterexample for this signal. In this experiment, most
manual inspections involved deriving constraints for non-oblivious
instructions, or writing invariants.

D. Out-of-Order Processor

Finally, to demonstrate its efficiency and scalability, we apply
FastPath to the Berkeley Out-of-Order Machine (BOOM) [40] and
compare the manual effort with the results of [22]. We confirm their
findings regarding the data-obliviousness of certain instructions.

BOOM implements a sophisticated floating point (FP) pipeline,
resulting in a large number of signals in the data path. Using a simple
testbench, FastPath identifies the vast majority of these signals, as
well as non-oblivious instructions, via IFT simulation. This reduces
the manual effort of the formal step to corner cases, such as special
cases for FP computations, and greatly reduces the overall manual
effort for verifying the most complex design in our benchmark suite.

E. Discussion - Runtime and Manual Effort

IFT-simulation and formal property checking produce counterex-
amples that provide violations of the specified and desired security
behavior as described in the security properties. These counterexam-
ples require a manual analysis, during which the verification engineer
must determine whether the counterexample describes a scenario that
violates the intended design behavior. In other words, the verification
engineer must determine if the security properties correctly describe
the threat model. Property specification is challenging, and analyzing
the counterexamples often provides cases where the properties must
be refined. This analysis may take a considerable amount of time,
depending on the verification engineer’s design knowledge, the de-
sign’s complexity, and the complexity of the counterexample at hand.
For this reason, we use the number of signals that must be inspected
manually as a metric for the verification effort. The manual inspection
time is hard to quantify but can take weeks to months [21] for the
designs considered in this work. As shown in Table I, compared to
previous work, FastPath is able to significantly reduce the time spent
manually examining counterexamples and thus the overall verification
effort.

We observe a reduction of manual effort between 36% and 100%.
The smallest reduction is obtained for the cv32e40s processor. This
can be explained by the fact that this processor contains a relatively
small data path but a complex control structure interweaved with
several security features. This results in a comparably large number
of counterexamples that lead to invariants or restrictions needed for

security-aware software development. Remarkably, for BOOM, by far
the largest and most labor-intensive design examined in this work, an
86% reduction of manual effort was achieved. In contrast to cv32e40s,
BOOM employs a much larger and more sophisticated data path. In
spite of its complex control for instruction scheduling, our hybrid
approach is particularly effective because it clearly separates control
from data path. Overall, our experiments demonstrate the immense
promise of FastPath for increasing productivity in complex design
projects.

Tool runtime is an important aspect when assessing the scalability
of a verification approach. For FastPath, however, these runtimes were
negligible. Running a single IFT-simulation, including the extraction
of all tainted signals from the simulation trace, took 1–2 minutes.
In the formal step, the initial design elaboration in the formal model
checker took around 5 minutes for the most complex experiment.
Afterward, a single check of the formal property (Lst. 1) finished in
less than 10 seconds by merit of the symbolic initial state. Hence, tool
runtime contributes only a small fraction to FastPath’s verification
time.

VI. RELATED WORK

FastPath combines simulation and formal verification in the context
of hardware security. Previous work exploring synergies between the
two techniques, such as [41], has mostly attempted to improve sim-
ulation efficiency and coverage with formal methods. Consequently,
such approaches inherit the limitation of simulation techniques and
cannot provide formal guarantees. But there are also efforts in the
other direction, i.e., the use of random simulation to improve formal
approaches, such as in [42]. However, none of these methods address
hardware security issues.

Significant efforts [43], [26], [22], [44], [27], [28], [45] have been
made to detect leakage of confidential operands through timing or
other microarchitectural side effects. Clepsydra [43] instruments an
RTL design with IFT logic to discover timing flows through either
simulation or formal verification. UPEC-DIT [22] relies on standard
SystemVerilog Assertions (SVA) properties to detect data-dependent
side-effects in the microarchitecture. While the symbolic initial state
of the approach allows for a very high scalability, its main drawback
lies in the considerable manual refinement effort (cf. Sec. V). More
recent formal methods take a different approach [27], [28], [45], but
have not been shown to scale to complex systems. We believe that
also these methods could benefit from a hybrid approach along the
lines proposed in this paper.

VII. CONCLUSION

FastPath is a hybrid verification methodology that leverages the
complementary strengths of structural analysis, IFT-simulation, and
formal verification to produce exhaustive security guarantees for data-
oblivious architectures. FastPath uses a global formulation that auto-
matically transfers intermediate results between the three verification
techniques. The key benefit of FastPath is a drastic reduction of
manual effort, achieved by combining the efficiency of simulation
with the exhaustiveness of formal methods. In our case studies on
functional units, FastPath was able to verify (or disprove) data-
obliviousness with little to no manual interaction. Furthermore,
especially for complex systems with intensive data paths like BOOM,
FastPath offers unique scalability both in terms of runtime and manual
effort. Thus, FastPath provides a tremendous reduction in security
verification effort since the manual inspection dominates the overall
verification time. Our future work aims at exploring the synergies of
the proposed method for different threat models.



REFERENCES

[1] Y. Yarom, D. Genkin, and N. Heninger, “CacheBleed: a timing attack on
OpenSSL constant-time RSA,” Journal of Cryptographic Engineering,
vol. 7, pp. 99–112, 2017.

[2] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre
attacks: Exploiting speculative execution,” in 40th IEEE Symposium on
Security and Privacy (S&P’19), 2019.

[3] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in 27th USENIX
Security Symposium (USENIX Security 18), 2018.

[4] J. R. S. Vicarte, M. Flanders, R. Paccagnella, G. Garrett-Grossman,
A. Morrison, C. W. Fletcher, and D. Kohlbrenner, “Augury: Using
data memory-dependent prefetchers to leak data at rest,” in 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, 2022, pp. 1491–1505.

[5] B. Chen, Y. Wang, P. Shome, C. W. Fletcher, D. Kohlbrenner,
R. Paccagnella, and D. Genkin, “GoFetch: Breaking constant-time cryp-
tographic implementations using data memory-dependent prefetchers,”
in USENIX Security Symposium, 2024, pp. 1–21.

[6] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W. Fletcher,
“Speculative taint tracking (STT): A comprehensive protection for
speculatively accessed data,” in 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2019, pp. 954–968.

[7] J. Yu, L. Hsiung, M. El Hajj, and C. W. Fletcher, “Data oblivious ISA
extensions for side channel-resistant and high performance computing.”
in 26th Network and Distributed System Security Symposium, 2019.

[8] S. Cauligi, C. Disselkoen, K. v. Gleissenthall, D. Tullsen, D. Stefan,
T. Rezk, and G. Barthe, “Constant-time foundations for the new spectre
era,” in 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, New York, NY, USA, 2020, p. 913–926.

[9] M. Schwarz, M. Lipp, C. Canella, R. Schilling, F. Kargl, and D. Gruß,
“ConTExT: A generic approach for mitigating spectre,” in Network and
Distributed System Security Symposium 2020, Feb. 2020.

[10] K. Loughlin, I. Neal, J. Ma, E. Tsai, O. Weisse, S. Narayanasamy,
and B. Kasikci, “DOLMA: Securing speculation with the principle
of transient Non-Observability,” in 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, 2021, pp. 1397–1414.

[11] T. Jauch, A. Wezel, M. R. Fadiheh, P. Schmitz, S. Ray, J. M. Fung,
C. W. Fletcher, D. Stoffel, and W. Kunz, “Secure-by-construction design
methodology for CPUs: Implementing secure speculation on the RTL,”
in 2023 IEEE/ACM International Conference on Computer Aided Design
(ICCAD), 2023, pp. 1–9.

[12] B. Coppens, I. Verbauwhede, K. De Bosschere, and B. De Sutter,
“Practical mitigations for timing-based side-channel attacks on modern
x86 processors,” in 30th IEEE Symposium on Security and Privacy.
IEEE, 2009, pp. 45–60.

[13] “A beginner’s guide to constant-time cryptography,” https://www.
chosenplaintext.ca/articles/beginners-guide-constant-time-cryptography.
html, accessed: 2024-09-27.

[14] M. Andrysco, A. Nötzli, F. Brown, R. Jhala, and D. Stefan, “Towards
verified, constant-time floating point operations,” in 2018 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’18,
New York, NY, USA, 2018, p. 1369–1382.

[15] “Data operand independent timing ISA guidance,”
https://www.intel.com/content/www/us/en/developer/
articles/technical/software-security-guidance/best-practices/
data-operand-independent-timing-isa-guidance.html, acc.: 2024-08-14.

[16] “Arm Armv8-A architecture registers,” https://developer.
arm.com/documentation/ddi0595/2021-06/AArch64-Registers/
DIT--Data-Independent-Timing, accessed: 2024-08-14.

[17] “RISC-V cryptography extension,” https://github.com/riscv/riscv-crypto,
accessed: 2024-09-25.

[18] J. R. S. Vicarte, P. Shome, N. Nayak, C. Trippel, A. Morrison,
D. Kohlbrenner, and C. W. Fletcher, “Opening Pandora’s box: A sys-
tematic study of new ways microarchitecture can leak private data,”
in ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), 2021.

[19] J. A. Goguen and J. Meseguer, “Security policies and security models,”
in IEEE Symposium on Security and Privacy (SP), 1982, pp. 11–20.

[20] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” Journal of
Computer Security, vol. 18, no. 6, pp. 1157–1210, 2010.

[21] M. R. Fadiheh, A. Wezel, J. Müller, J. Bormann, S. Ray, J. M. Fung,
S. Mitra, D. Stoffel, and W. Kunz, “An exhaustive approach to detecting
transient execution side channels in RTL designs of processors,” IEEE
Transactions on Computers, vol. 72, no. 1, pp. 222–235, 2023.

[22] L. Deutschmann, J. Müller, M. R. Fadiheh, D. Stoffel, and W. Kunz, “A
scalable formal verification methodology for data-oblivious hardware,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 43, no. 9, pp. 2551–2564, 2024.

[23] W. Hu, A. Ardeshiricham, and R. Kastner, “Hardware information flow
tracking,” ACM Comp. Surveys (CSUR), vol. 54, no. 4, pp. 1–39, 2021.

[24] A. Meza and R. Kastner, “Information flow coverage metrics for
hardware security verification,” 2023. [Online]. Available: https:
//arxiv.org/abs/2304.08263

[25] “OpenHW Group CORE-V CV32E40S RISC-V IP,” https://github.com/
openhwgroup/cv32e40s, updated: 2024-10-31, accessed: 2024-11-11.

[26] K. v. Gleissenthall, R. G. Kıcı, D. Stefan, and R. Jhala, “Solver-aided
constant-time hardware verification,” in 2021 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’21, New York,
NY, USA, 2021, p. 429–444.

[27] S. Dinesh, M. Parthasarathy, and C. W. Fletcher, “ConjunCT: Learning
inductive invariants to prove unbounded instruction safety against mi-
croarchitectural timing attacks,” in 2024 IEEE Symposium on Security
and Privacy (SP). IEEE, 2024, pp. 3735–3753.

[28] K. Ceesay-Seitz, F. Solt, and K. Razavi, “µCFI: Formal verification
of microarchitectural control-flow integrity,” in 2024 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’24,
New York, NY, USA, 2024.

[29] K. Ryan, M. Gregoire, and C. Sturton, “Seif: Augmented symbolic exe-
cution for information flow in hardware designs,” in 12th Int. Workshop
on Hardware and Architectural Support for Security and Privacy, ser.
HASP ’23. New York, NY, USA: ACM, 2023, p. 1–9.

[30] J. Urdahl, D. Stoffel, and W. Kunz, “Path predicate abstraction for sound
system-level models of RT-level circuit designs,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 33,
no. 2, pp. 291–304, 2014.

[31] “FastPath repository,” https://github.com/anmeza/dac 2025 fastpath.
[32] “Cycuity Radix,” https://cycuity.com/.
[33] “Siemens EDA OneSpin 360,” https://eda.sw.siemens.com/.
[34] “SHA cores,” https://opencores.org/projects/sha core, updated: 2018-03-

06, accessed: 2024-09-26.
[35] “AES IP core,” https://opencores.org/projects/aes core, updated: 2018-

06-10, accessed: 2024-09-26.
[36] “secworks aes,” https://github.com/secworks/aes, updated: 2023-02-08,

accessed: 2024-09-26.
[37] “The Zip CPU,” https://github.com/ZipCPU/zipcpu, updated: 2024-08-

26, accessed: 2024-10-25.
[38] “FWRISC,” https://github.com/Featherweight-IP/fwrisc, updated: 2022-

01-17, accessed: 2024-10-25.
[39] L. Deutschmann, Y. Kazhalawi, J. Seckinger, A. L. Duque Antón,

J. Müller, M. R. Fadiheh, D. Stoffel, and W. Kunz, “Data-oblivious and
performant: On designing security-conscious hardware,” in 2024 IEEE
25th Latin American Test Symposium (LATS), 2024, pp. 1–6.

[40] J. Zhao, B. Korpan, A. Gonzalez, and K. Asanovic, “SonicBOOM: The
3rd generation berkeley out-of-order machine,” in Fourth Workshop on
Computer Architecture Research with RISC-V, May 2020.

[41] P.-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano, V. Bertacco,
J. Taylor, and J. Long, “Smart simulation using collaborative formal
and simulation engines,” in IEEE/ACM International Conference on
Computer Aided Design (ICCAD), 2000, pp. 120–126.

[42] F. Krohm, A. Kuehlmann, and A. Mets, “The use of random simulation
in formal verification,” in International Conference on Computer Design.
IEEE, 1996, pp. 371–376.

[43] A. Ardeshiricham, W. Hu, and R. Kastner, “Clepsydra: Modeling timing
flows in hardware designs,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 2017, pp. 147–154.

[44] Z. Wang, G. Mohr, K. von Gleissenthall, J. Reineke, and M. Guarnieri,
“Specification and verification of side-channel security for open-source
processors via leakage contracts,” in 2023 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’23, New York, NY,
USA, 2023, p. 2128–2142.

[45] Y. Hsiao, N. Nikoleris, A. Khyzha, D. P. Mulligan, G. Petri, C. W.
Fletcher, and C. Trippel, “RTL2MµPATH: Multi-µPATH synthesis with
applications to hardware security verification,” in 57th IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO ’24), 2024.

https://www.chosenplaintext.ca/articles/beginners-guide-constant-time-cryptography.html
https://www.chosenplaintext.ca/articles/beginners-guide-constant-time-cryptography.html
https://www.chosenplaintext.ca/articles/beginners-guide-constant-time-cryptography.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://developer.arm.com/documentation/ddi0595/2021-06/AArch64-Registers/DIT--Data-Independent-Timing
https://developer.arm.com/documentation/ddi0595/2021-06/AArch64-Registers/DIT--Data-Independent-Timing
https://developer.arm.com/documentation/ddi0595/2021-06/AArch64-Registers/DIT--Data-Independent-Timing
https://github.com/riscv/riscv-crypto
https://arxiv.org/abs/2304.08263
https://arxiv.org/abs/2304.08263
https://github.com/openhwgroup/cv32e40s
https://github.com/openhwgroup/cv32e40s
https://github.com/anmeza/dac_2025_fastpath
https://cycuity.com/
https://eda.sw.siemens.com/
https://opencores.org/projects/sha_core
https://opencores.org/projects/aes_core
https://github.com/secworks/aes
https://github.com/ZipCPU/zipcpu
https://github.com/Featherweight-IP/fwrisc

	Introduction
	Threat Model
	Background
	HyperFlow Graph
	Information Flow Tracking
	Unique Program Execution Checking

	Methodology
	Structural Analysis
	IFT-Enhanced Simulation
	Unique Program Execution Checking (UPEC)

	Experiments
	Cryptographic Accelerators
	Division Modules
	In-Order Processor
	Out-of-Order Processor
	Discussion - Runtime and Manual Effort

	Related Work
	Conclusion
	References

