
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

FKeras: A Sensitivity Analysis Tool for Edge Neural Networks

OLIVIA WENG and ANDRES MEZA, University of California San Diego, USA

QUINLAN BOCK and BENJAMIN HAWKS, Fermi National Accelerator Laboratory, USA

JAVIER CAMPOS and NHAN TRAN, Fermi National Accelerator Laboratory, USA

JAVIER MAURICIO DUARTE and RYAN KASTNER, University of California San Diego, USA

Edge computation often requires robustness to faults, e.g., to reduce the effects of transient errors and to function correctly in high
radiation environments. In these cases, the edge device must be designed with fault tolerance as a primary objective. FKeras is a
tool that helps design fault-tolerant edge neural networks that run entirely on chip to meet strict latency and resource requirements.
FKeras provides metrics that give a bit-level ranking of neural network weights with respect to their sensitivity to faults. FKeras
includes these sensitivity metrics to guide efficient fault injection campaigns to help evaluate the robustness of a neural network
architecture. We show how to use FKeras in the co-design of edge NNs trained on the high-granularity endcap calorimeter dataset,
which represents high energy physics data, as well as the CIFAR-10 dataset. We use FKeras to analyze a NN’s fault tolerance to
consider alongside its accuracy, performance, and resource consumption. The results show that the different NN architectures have
vastly differing resilience to faults. FKeras can also determine how to protect neural network weights best, e.g., by selectively using
triple modular redundancy on only the most sensitive weights, which reduces area without affecting accuracy.

CCS Concepts: • Hardware → Transient errors and upsets; Application specific integrated circuits; • Computing methodologies
→ Neural networks.

Additional Key Words and Phrases: Fault-tolerant neural networks, edge AI, hardware-software codesign

ACM Reference Format:
Olivia Weng, Andres Meza, Quinlan Bock, Benjamin Hawks, Javier Campos, Nhan Tran, Javier Mauricio Duarte, and Ryan Kastner.
2024. FKeras: A Sensitivity Analysis Tool for Edge Neural Networks . In . ACM, New York, NY, USA, 26 pages. https://doi.org/
XXXXXXX.XXXXXXX

1 INTRODUCTION

Machine learning (ML) is increasingly used in safety-critical applications, including autonomous vehicles [8, 12, 66],
healthcare [1, 3, 63], and scientific experiments [14, 23, 31]. In these domains, the ML computation must act reliably in
the face of errors. Soft errors are a common source of unreliability [9, 25, 37, 38], which are difficult to avoid and often
require mitigation. For example, a particle strike can cause a bit flip in neural network (NN) weights, which can lead to
incorrect results.

Prior work has investigated the fault tolerance of NNs extensively; however, most studies have focused on faults
occurring in the outputs of NN layers, namely in pipeline registers and arithmetic logic units (ALUs). They also assume
that the weights reside in memory that is protected by error correction codes or parity [4, 18, 46]. This is often the case
for large NNs that rely on retrieving weights from off-chip memory, e.g., DRAM, when they are run on GPUs because all
the weights cannot fit on chip [51]. This “off-chip inference” is a popular case, especially as researchers add increasingly

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Association for Computing Machinery.
Manuscript submitted to ACM

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Weng et al.

more parameters to improve NN performance, e.g., GPT-3 has 175 billion parameters, which amounts to 350 GB of data
when stored with float16 precision [11, 73]. By focusing on NNs that execute via off-chip inference, previous studies
have neglected to study fault tolerance in an emerging class of NNs where inference occurs completely on chip [6, 10].

On-chip inference, wherein a NN executes entirely on chip, is increasing in demand, particularly in scientific fields
like high energy physics and electron microscopy [10, 23, 24, 31, 72]. As scientific instruments improve, they are able to
produce data at extremely high rates, e.g., TBs/s. With so much data, scientists are contending with how to best collect
and analyze so much data. Many are looking to NNs to process the data because traditional methods have reached their
limits [73].

Consider the CERN Large Hadron Collider (LHC) Compact Muon Solenoid (CMS) experiment [15], which runs
particle collision experiments that generate data rates of ∼40 TB/s. To reduce data rates, LHC physicists plan to deploy
tens of thousands of encap concentrator (ECON-T) ASICs [24], each running a NN encoder, to compress experimental
data from the high-granularity endcap calorimeter (HGCAL) [21] into a smaller format for easy filtering in the trigger
system. The ECON-T encoder hardware must accept new input data at 40MHz and complete inference in 25 ns within
an area budget of 4mm2 [24]. To meet these constraints, the ECON-T:

(1) is a small two-layer NN with ∼2000 parameters,
(2) is quantized to have 6-bit fixed-point weights, and
(3) operates completely on-chip.

To complicate matters further, the ECON-Ts operate in a high-radiation environment due to their close proximity to
particle collisions in the LHC. High radiation causes transient hardware errors, which can lead to incorrect application
output (silent data corruptions) if the hardware is not designed robustly. The ECON-Ts filter terabytes per second
of data for high-energy physics studies, and faulty execution is unacceptable. Only the NN weight parameters are
vulnerable to faults because the activations are not stored in on-chip memory for longer than a cycle, as inference
completes in a single cycle.

From this example, we see that on-chip inference NNs must be small enough to be run fast enough in the given
resource constraints. These small NNs are often referred to as “edge NNs.” Many edge NNs have unique characteristics
that have not been considered extensively in prior work, namely:

(1) heavily quantized (≤ 8 bits) fixed-point weights, and
(2) fully on-chip inference that expose weights to faults.

Some techniques from prior work translate well to edge NNs while others do not. Most prior work has studied NN
faults by conducting fault injection (FI) campaigns. FI simulates faults in software or hardware and passes a number
of inputs through the NN to assess performance. This is computationally expensive because an enormous amount of
faulty scenarios must be simulated. Previous work has sought to limit the search space [18, 61, 78]. One method [18]
exploits how a more significant bit is at least as sensitive as a less significant bit—a finding that is consistent with our
own results and that we exploit too. But, this method and others find that much of the improvements in reducing the FI
search space is a direct result of using float32 to represent values. The search space of float32 is large and prior work [78]
trivially cuts down the space by focusing on only the eight exponent bits. A more clever method of statistically reducing
the search space directly hinges on how flipping bits in float32 values results in massive changes in magnitude [61].
This big swing in magnitude does not occur with low-precision fixed-point/integer data types because the range of
values that they can represent is considerably smaller, e.g., ECON-T’s 6-bit weight contains only 1-integer bit, leading

2

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

FKeras: A Sensitivity Analysis Tool for Edge Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

to a maximum difference of 2. Our work therefore seeks to fill this gap and study how faults affect edge NNs built for

on-chip inference.
We introduce FKeras, a tool that assesses the sensitivity of NN weights to faults, specifically targeting edge NNs for

on-chip inference.1 FKeras includes fast and efficient metrics that provide a bit-level sensitivity ranking of the weights,
including a novel metric based on the Hessian (second-order partial derivatives of the NN). Our fault tolerance metrics
reveal under the hood how sensitive a NN is to faults, facilitating the addition of fault tolerance into the codesign
problem by allowing the designer to consider how different quantized edge NNs handle faults. Furthermore, our metrics
provide a way to evaluate fault tolerance alongside performance, resource usage, and power consumption, which can
result in hardware accelerators that are smaller, more performant, and more resilient. For instance, the ECON-T uses
triple modular redundancy (TMR) to protect the NN weights against faults [24]. TMR is effective but incurs a 200%
overhead [7, 67], which is particularly costly when every resource counts in ECON-T’s 4mm2 area budget. Many
interesting design tradeoffs emerge when considering fault tolerance: Can one TMR a subset of the parameters to
optimize the NN architecture in another manner? Which computation and data are the most important to protect
against faults? How does quantization affect the NN’s fault resilience? How do different NN architectures compare
with respect to accuracy, performance, and fault tolerance?

FKeras facilitates fault analysis with hls4ml [30]. hls4ml targets edge ML applications with low latencies, high
throughput, minimal power budgets, and low resource usage [31]. FKeras extends the hls4ml workflow to assess the
sensitivity of NN weights to faults, perform efficient FI campaigns, and facilitate design space exploration that considers
fault tolerance alongside accuracy, performance, and resource usage.

hls4ml designs that target FPGAs/ASICs must satisfy unique requirements uncommon in other architectures like
GPUs and TPUs [39]. First, hls4ml implementations are highly quantized, often using unique arbitrary precision
fixed-point data types in each NN operation. Second, hls4ml implementations hold most of their data on-chip, including
inputs, outputs, weights, and internal state. Third, they often operate in high-radiation or safety-critical environments.
For example, the radiation of the ECON-T in the LHC is approximately 1000× that of the radiation in space. Thus,
understanding the potential effects of faults is crucial.

hls4ml accelerators are often heavily quantized to meet stringent performance, power, and area requirements.
Quantization reduces the computational and storage costs and modifies the sensitivity of computations to faults.
QKeras [20] is a tool developed by Google and the hls4ml community to handle custom hardware data types. QKeras
provides drop-in replacements for NN operations, e.g., from Dense to QDense. FKeras is modeled after QKeras, providing
similar replacements for NN operators (e.g., FQDense). FKeras allows designers to consider fault tolerance in the context
of fixed-point computations.

FKeras includes several bit-level sensitivity metrics, including

(1) most significant bits first to least significant bits last (MSB → LSB),
(2) the gradient, and
(3) the Hessian.

We introduce a new metric based on the Hessian. The Hessian (second-order partial derivatives) captures the
curvature of a NN’s loss landscape, providing insight into how the NN will react to perturbations to the weights.
The Hessian has been shown to capture NN sensitivity and is useful at quickly quantizing a NN to mixed precision

1https://github.com/KastnerRG/fkeras

3

https://github.com/KastnerRG/fkeras

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Weng et al.

bitwidths [26, 27, 74–76]. FKeras efficiently calculates the Hessian, which gives a highly competitive ranking in all our
considered networks.

Our findings show that individual bits matter—some bits are more important than other bits. Within a weight, the
importance tends to be monotonic [18], i.e., a more significant bit is at least as sensitive as a less significant bit, though
there are exceptions. We then compare the relative effect of the bits across the weights using the Hessian or gradient.

FKeras can guide FI campaigns to inject faults on the most sensitive parameters first. The sensitivity of the weights
is variable; many do not lead to faulty behaviors. Thus, a campaign should focus on injecting faults into weights that
are the most vulnerable to faults. We can use our Hessian sensitivity metric to determine the most sensitive weights and
flip those first. Fig. 9 shows that the Hessian sensitivity metric performs substantially better at guiding the FI towards
faulty behaviors than randomly or statistically injecting faults as prior FI tools and studies do [28, 44, 59, 61].

We demonstrate the value of FKeras in considering fault analysis in the design space exploration process for a NN.
We perform a design space exploration on three different NN architectures for the ECON-T autoencoder. We use FKeras
to assess the resilience of these different architectures to faults alongside accuracy, performance, and resource usage.
We also analyze the resilience of an edge convolutional neural network (CNN) trained on CIFAR-10 [41] that operates
also completely on-chip. Our results show that different-sized networks have vastly different levels of fault tolerance,
e.g., a smaller, less accurate NN has more sensitive bits than a larger, more accurate NN.

FKeras is a tool that helps design fault-tolerant NNs for on-chip inference. The primary contributions of FKeras are:

• Providing bit-level weight sensitivity metrics tailored for on-chip inference edge NNs.
• Using sensitivity metrics to guide fault injection campaigns that consider the most sensitive bits first.
• Performing NN architecture design space exploration that considers fault tolerance alongside traditional

optimization criteria like performance and area.

The remainder of the paper is organized as follows. Sec. 2 discusses related work. Sec. 3 introduces FKeras. Sec. 4
describes the experimental setup and assesses the fault tolerance of four different networks using FKeras. Sec. 5
concludes the paper.

2 RELATEDWORK

Prior work has sought to understand NN fault tolerance and to develop techniques to protect NNs from faults, but few
have considered edge NNs that are quantized and run on specialized hardware, such as FPGAs and ASICs, completely
on chip [50, 52, 71]. As we review related work, we will point out some of the shortcomings of prior work when their
fault analysis methods are applied to on-chip edge NNs. We then describe how FKeras addresses these shortcomings.

It is well known that NNs have many redundant parameters [33, 34]. Faults in different weights are expressed
differently, especially depending on the size of the NN, as our results later show (see Fig. 11). Furthermore, the bit
position of the weights is important—within a weight, there is a significant range of effects for the different bits. Our
results show that the most significant bits are the most sensitive, and the least significant bits are fairly insensitive
to faults, as confirmed by prior work [18]. To optimally compress quantized NNs, it is crucial to have a bit-level

understanding of faults, especially when we want to run an edge NN entirely on chip. Thus, we develop FKeras to
quantify the fault tolerance of an hls4ml edge NN for on-chip inference.

Tab. 1 compares FKeras to prior work. It categorizes FI tools and methods based on if a tool targets single or multiple
bits or randomly selects bits to fault inject (Bit Target-ability), if a tool supports different data types for quantized

4

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

FKeras: A Sensitivity Analysis Tool for Edge Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

FI Tool/Method Bit Target-ability Quantization Support FI Speedup Method Sensitivity Metrics

Ares [59] Random Fixed Point/Int No No
TensorFI [45] Single, Random No No No
PyTorchFI [49] Single Integer No No
GoldenEye [52] Single Custom No No
enpheeph [22] Single, Multiple, Random Custom GPU support No
[19] N/A N/A N/A (Heuristic) Gradient
BinFI [18] Single Limited Element-wise binary search No
StatFI [61] N/A N/A Statistical sampling No

FKeras Single, Multiple, Random Fixed Point/Int Metric-guided FI Hessian, Gradient, MSB → LSB

Table 1. Comparison of FKeras to prior work. If the work presents an FI method and is not a tool, then we list the Bit Target-ability
andQuantization Support as not applicable (N/A).

NNs (Quantization Support), if a tool/method presents a way to speedup a FI campaign (FI Speedup Method), and if a
tool/method introduces any sensitivity metrics (Sensitivity Metrics). Next, we elaborate further on prior work.

2.1 Assessing NN Resilience

Researchers have studied the resilience of NNs to identify silent data corruptions (SDCs)—soft errors that lead to
incorrect NN output [44, 67]. They take three primary approaches: fault injection (FI) campaigns, heuristics, and ML
modeling [50, 54, 67].

FI campaigns simulate a fault either in software [18, 44, 49, 52, 55, 56, 59] or hardware [32, 59] and run a number of
inputs through the NN to assess performance. Such campaigns are computationally expensive because theymust simulate
an enormous amount of faulty scenarios, especially when considering the thousands to millions of parameters and
operations present in anNN [67]. Researchers have developedmethods to accelerate fault injection campaigns [18, 32, 50];
however, many of their evaluations are often limited to NNs that rely on off-chip memory accesses, meaning they
assume the weights are fully protected by error correction codes (ECC) or parity and thus only study the effects of
faults to NN activations [4, 18, 46]. FKeras instead focuses on a fault model that targets NN weights that fully reside on
chip, where ECC or parity bits require extra resources, which is costly when most resources are preciously devoted to
implementing the edge NN.

Researchers have also developed heuristics that measure NN sensitivity through characteristics such as the gradi-
ent [19, 48] or how errors propagate through a model [62]. Since heuristics are naturally lossy, they are less accurate
than FI campaigns, but significantly cheaper to run. They trade some accuracy for speedup.

Researchers have further developed ML models to predict which bits in a NN are mostly likely to induce faulty
output [16, 68, 69, 78]. These methods extract salient features of NNs relevant to fault analysis and train a machine
learning model to predict the faulty parts of the NN on a relatively small amount of ground truth data. While these
models are fairly accurate, they are expensive to scale up because they need to train a new ML model for each new NN
they want to evaluate.

Researchers have created a fault injection method called BinFI [18], which relies on the monotonicity of the bit order,
i.e., higher order bits are at least as sensitive as lower order bits, to reduce the number of faults to inject by performing a
binary search within each NN output. This is an effective approach because they reduce the search space by 𝑂 (log(𝑛))
per NN output where 𝑛 is the number of bits representing the output. However, our results show that this assumption
of monotonicity leads to false negatives, as seen in our results in Sec. 4.2.3.

5

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Weng et al.

Researchers have looked into statistical fault injection [61], which we call “StatFI”, to reduce the FI search space of a
NN’s weights. However, StatFI is primarily effective in reducing the search space because it relies on how flipping bits
in float32 format leads to large changes in the magnitude of the weights, as previously discussed in Sec. 1. Based on
this information, StatFI selects a subset of the bits in each bit position, e.g., MSB, in each layer to randomly flip. These
large changes in magnitude do not occur with low-precision fixed-point data types because the range represented is
considerably smaller. Our results show that StatFI fails to identify many sensitive bits. It is not as effective as any of
FKeras’s sensitivity metrics when considering low-precision quantized NNs for on-chip inference. This is because
StatFI is selecting which bits to flip in each bit position in each layer randomly, whereas FKeras’s metrics are selecting
which bits to flip using the Hessian for instance, which captures how sensitive a given NN’s parameter is to faults
(see Fig. 8). We present a more detailed comparison later in Sec. 4.2.3.

In response to these shortcomings, FKeras provides a bit-level ranking using the Hessian matrix of second partial
derivatives of the loss function to identify the most crucial weights and bits. The Hessian reveals how sensitive a weight
is to faults. As a result, FKeras’s Hessian-based bit-level ranking uses fine-grained information on a NN’s sensitivity,
rather than more coarse-grained approaches that rely solely on bit order monotonicity or statistical sampling that do
not translate as well to quantized, on-chip edge NNs. Even more, FKeras presents the opportunity to combine the FI
campaign with a sensitivity metric and guide the campaign to search for more sensitive bits first. FKeras combines the
monotonicity of the bit order with its Hessian sensitivity metric to rank the most significant bits based on its Hessian
sensitivity score first before doing the same for each lower order bit. Our results show this bit-level Hessian metric can
identify the most sensitive parameters with high accuracy, and thus serves as a valuable guide for FI campaigns.

2.2 Optimizing NN Resilience

Prior work has taken several approaches to protect NNs and optimize said protection. Some proactive approaches, such
as fault-aware training [7, 57, 58, 64, 77], prevent faults by training the weights themselves to be more resilient. Other
approaches are more reactive, including DMR and TMR [24, 65], selective DMR/TMR [7, 40, 47, 50], and activation
clipping [17, 36]. Activation clipping is an attractive and inexpensive option. It involves profiling the model to capture
what the numerical range of the activations should be and then clipping an activation if it falls outside the range due to
faulty hardware. It is particularly effective at protecting float32 NNs as the range of float32 values is very large. However,
this is less effective in quantized models because quantized data types, like int8, naturally clip the activations [50]. hls4ml
networks are usually heavily quantized, making activation clipping not an option. Prior work [7, 50] also combines a
number of these techniques to improve error coverage while minimizing protection overhead costs.

FKeras can help determine how to best protect NN weights, which is especially important for edge NNs that run fully
on-chip. As we show in our experiments (Sec. 4), certain bits are much more sensitive to faults than others. Protecting
only those most sensitive bits can reduce the overhead of fault-tolerant mitigation. For example, our results show that
it is possible to selectively perform TMR on the ECON-T weights with minimal effect on the encoder’s resilience to
faults. We can use the FKeras sensitivity metrics to find the most important bits to protect, which is especially valuable
when resources are precious for on-chip inference.

3 FKERAS

NNs are often over-parameterized, and not all weights are equally important [33, 34], which indicates that some weights
are more sensitive to faults than others. FKeras is a codesign tool for designing fault-tolerant NNs in hls4ml. It provides
a sensitivity score that ranks the NN parameters based on their sensitivity to faults and supports modeling single- and

6

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

FKeras: A Sensitivity Analysis Tool for Edge Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

multiple-bit fault injection campaigns on NN weights. FKeras can use the sensitivity score to speed up fault injection
campaigns by quickly and accurately identifying the most important NN parameters. FKeras is also valuable for NN
co-design problems for applications that require fault tolerance.

3.1 NN Sensitivity Scores

To analyze NN sensitivity, we want to understand how a NN performs under faulty conditions, e.g., bit flips in the
weights. Previously, researchers have used the gradient as a metric to capture a NN’s resilience to faults [19, 48]. A
NN’s gradient with respect to the parameters is a vector of size 𝑛, defined as

𝜕𝐿

𝜕𝜃
∈ R𝑛 (1)

where 𝐿 is the NN’s loss function and 𝜃 represents the 𝑛 parameters of the NN. The gradient provides information
about the steepness of the loss function.

The Hessian matrix 𝐻 describes the steepness and curvature, providing additional insight into the NN behavior. It is
an 𝑛×𝑛 matrix of the second-order partial derivatives of the loss 𝐿:

𝐻 =
𝜕2𝐿

𝜕𝜃2
∈ R𝑛×𝑛 (2)

The Hessian captures the local curvature of the loss function, as it shows the rate at which the gradient changes. The
local curvature of the loss reflects the sensitivity of a NN’s parameters [27, 76]. A steep curvature around a given
parameter indicates that it is highly susceptible to noise. Perturbing this parameter even slightly will result in significant
changes to the loss, implying that the model will behave worse and lead to incorrect output. Conversely, a relatively
flat curvature around a given parameter indicates that it is insensitive to noise. Small perturbations to it will result in
minimal changes to the loss, i.e., the model’s behavior remains about the same. Since the Hessian models parameter
sensitivity, researchers have relied on it to successfully quantize NNs to mixed precision [13, 27].

Despite how valuable the Hessian is, it is not commonly used because of the misconception that computing Hessian
information for a large NN is infeasible, given that it requires O(𝑛2) memory [76]. However, extracting the Hessian
eigenvalues and eigenvectors takes O(𝑛) memory in O(𝑛) time using techniques from randomized numerical linear
algebra (RandNLA) [5, 29, 53, 70]. The eigenvectors and eigenvalues capture the relevant Hessian information.

FKeras provides a Hessian-based sensitivity score for each bit of every NN weight. The sensitivity score provides a
quick and accurate method to assess the fault tolerance of an NN. This allows us to speed up fault injection campaigns
and perform codesign considering fault-tolerance as a constraint.

FKeras uses the power iteration method to compute the top 𝑘 eigenvalues and eigenvectors of the Hessian in O(𝑛)
time, where 𝑛 is the number of parameters [76]. Based on these 𝑘 eigenvalues, we compute a parameter score:

𝐻
′
=

𝑘∑︁
𝑖=1

𝜆𝑖 (𝑣𝑖 · 𝜃)𝑣𝑖 ∈ R𝑛 (3)

where 𝜆𝑖 is the 𝑖th eigenvalue, 𝑣𝑖 is the 𝑖th eigenvector, and 𝜃 is a vector representing the model parameters (of which
there are 𝑛). The parameter 𝑖 sensitivity score aims to identify which parameters contribute most significantly to the
Hessian by weighting it by the eigenvalue along the most sensitive direction (eigenvector). Fig. 1 visualizes how we
compute our Hessian score.

We sort the parameters’ most significant bits (MSBs) by the parameter sensitivity score to get a bit-wise ranking.
Then, we do the same for the parameters’ 𝑖th MSB until we reach the least significant bit (LSB). We sort from MSB to

7

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Weng et al.

...

Fig. 1. How to compute our Hessian sensitivity score.We compute our Hessian sensitivity score using the top 𝑘 eigenvalues
and eigenvectors of the Hessian, where 𝜆𝑖 is the 𝑖th eigenvalue, ®𝑣𝑖 is the 𝑖th eigenvector, and ®𝜃 is a vector representing the model
parameters (of which there are𝑛). For instance, for 𝑖 = 1, we multiply the top-1 eigenvalue 𝜆1 with the dot product of top-1 eigenvector
®𝑣1 and the parameters ®𝜃 . We then multiply this constant result element-wise with the top-1 eigenvector 𝑣1 to get the Hessian score
®
𝐻

′
1 based on the top-1 eigenvalue and eigenvector. We then sum these top-𝑘 Hessian score vectors together to get the final Hessian

score 𝐻
′ ∈ R𝑛 such that 𝐻

′
𝜃𝑖

is the Hessian score for the 𝑖th parameter 𝜃𝑖 . We rank our weights based on this score, where a higher
score means the weight has higher sensitivity to faults. Then we rank all of the MSB’s by the weight sensitivity score, then the second
MSB’s, and so on to form our Hessian bit-level ranking.

LSB, where we consider MSBs to be the most sensitive bits because they cause the most significant perturbation in the
weights of the NN when flipped (based on a twos-complement representation).

FKeras also provides a sensitivity score based on the gradient. This works in a similar manner as the Hessian, but
instead uses the gradient value from Equation 1 and sorts the bits from MSB to LSB in a similar manner as the Hessian.

FKeras can compute the Hessian trace in 𝑂 (𝑛) time, where 𝑛 is the number of parameters, using the Hutchinson
method [76]. FKeras provides the trace per layer so the user can compare the layer sensitivity. A higher trace implies
that a layer is more sensitive to faults and other weight perturbations.

3.2 Fault Model

Different environments have different fault rates. For example, at the LHC, high energy physicists expect a fault to
occur in their NN hardware every 15 seconds whereas in data centers, system administrators expect faults to occur
once every few thousand events [25, 37]. Thus, we want to model these fault rates using a fault model, which describes
how often a bit flip occurs.

A designer can use FKeras to perform experiments on two kinds of fault models: the single-bit flip model and the
multi-bit flip model.

8

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

FKeras: A Sensitivity Analysis Tool for Edge Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

3.2.1 Single-Bit Flip Model. A common fault model is the single-bit flip model [32, 44, 50], which represents the
case when only one bit flips at a time. The single-bit flip fault model can be applied to NN weights, activations,
both, or at an even finer grain [35]. We limit our scope to only the weights of a NN, as motivated by the hardware
implementations of on-chip inference for edge NNs. In particular, our fault model is motivated by the ECON-T’s ASIC
hardware implementation, as seen in Fig. 2. In this diagram, we see that the entire NN is implemented fully on chip,
and inference completes in a single cycle. Faults in the activations only affect a single inference, whereas faults in the
weights will affect billions of inferences before the weights are refreshed every four hours [24]. Thus, we focus our
fault model on bit flips in the NN weights.

3.2.2 Multi-Bit Flip Model. We also consider a multi-bit flip fault model to represent high radiation conditions. This is
motivated by our running example—the ECON-T autoencoder ASIC operating in the LHC HGCal [24], as seen in Fig. 2.

The multi-bit flip model for the HGCal expects ∼0.06 bit flips per ECON-T per second, or one bit-flip every 15 seconds
for an individual ECON-T chip. Particles go through the HGCal detector at a rate of 108 particles/cm2/second [2].
However, not every particle will flip a bit. The rate at which any single ECON-T flip-flop will get hit depends on a
number of factors, such as the material (silicon) and the ASIC technology node (65 nm). Moreover, the ECON-T’s
weights are refreshed every four hours. Thus, we define our multi-bit flip model to expect 960 bit flips when there is no
fault protection in between the weight refreshes.

I2Cserial input
(weights)

on chip

ReLU ReLUimage input encoded
output

combinational logic (single cycle)

DenseConv2D

Bit flip!

Fig. 2. ECON-T ASIC hardware design and fault model. The ECON-T ASIC is designed to run inference completely on chip in a
single cycle. The weights are thus the most vulnerable to bit flips caused by high-energy particle strikes because they persist over
billions of cycles before getting refreshed every four hours; whereas, the activations last a single cycle only.

4 EXPERIMENTAL EVALUATION

This section describes the experimental setup and results.

4.1 Experimental Setup

We demonstrate how FKeras can efficiently analyze a NN’s fault sensitivity by performing experiments on CIFAR-
10 [42] and an HGCal dataset. CIFAR-10 is a popular image classification dataset. The HGCal dataset contains vectors
of high-energy particle collision sensor data. We use FKeras to understand the fault tolerance of four different models:
(1) an edge CNN trained on CIFAR-10, specifically hls4ml’s submission to the MLPerf Tiny Inference Benchmark [10],
(2) a medium ECON-T NN, (3) a large ECON-T NN, and (4) a small ECON-T NN.

9

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Weng et al.

The three Pareto-optimal ECON-T models (Small, Medium, and Large) represent tradeoffs between model accuracy
and size. All ECON-T models were trained on the HGCal dataset. We evaluate model performance using Earth mover’s
distance (EMD), a distance measure between two probability distributions [60]. In our case, the EMD measures the
distance between the encoder’s input energy readings and the decoder’s outputs, respectively. Lower EMD is better
and an EMD of 0 indicates the autoencoder is lossless. The three models were found using a Bayesian optimization
neural architecture search. We used HAWQ-V2 [26] to quantize the large and small models (the medium model was
hand-tuned from prior work). Fig. 3 provides details on the NN topology and quantization for the three ECON-T NNs.

ECON-T Medium is the model described in the paper by Di Guglielmo et al [24] - a 2D convolution layer followed by
a dense layer using a 6-bit arbitrary precision fixed point data type. It balances between accuracy and model complexity.
ECON-T Medium has 2 120 weights (180 for the convolution and 1 940 for the dense layer) for a total of 12 720 weight
bits.

ECON-T Large has the same two-layer structure but larger convolution and dense layers. ECON-T Large uses a 5-bit
arbitrary precision fixed point data type in the convolution layer and a 7-bit arbitrary precision fixed point data type in
the dense layer. ECON-T Large has 800 weights in the convolution layer, 8 192 weights in the dense layer for 61 344
total weight bits.

ECON-T Small has two dense layers both using an 8-bit arbitrary precision fixed point data type. It has 1 280 weights
and 10 240 total weight bits. The first dense layer is 64×16 and the second is 16×16. There are 10 240 total weight bits.

The final benchmark is the hls4ml CIFAR-10 submission to the MLPerf Tiny Inference benchmark [10]. It uses a
two-stack model with no skip connections (five convolutional layers with 32, 4, 32, 32 and 4 filters, kernel size of 1, 4, 4,
4, and 4, and strides of 1, 1, 1, 4, 1, respectively). It achieves an accuracy of 83.1%.

We used FKeras to perform the single- and multi-bit flip fault injection campaigns. We conduct all of the fault
injection campaigns on Google Cloud’s c3-highcpu-88 compute engine which utilizes an Intel Sapphire Rapids with
88 vCPU, 44 cores and 176GB of memory. We first generate oracles for the single-bit fault models by exhaustively
performing single-bit flips on the weights and determining their effect. We create the single-bit flip oracle for CIFAR-10
by flipping a parameter bit and evaluating the model on 8 313 test images. This is a subset of the 10 000 images provided
by the test dataset. This subset only includes the images that the CNN correctly classifies under non-faulty conditions.
If flipping a bit causes the model to mispredict an image, we classify that bit as sensitive. To generate the single-bit
flip oracle for the HGCal dataset, we flip a bit and evaluate the model on 20 000 validation inputs. We classify a bit as
sensitive if flipping it causes the model error to exceed the average non-faulty model error.

We perform our multi-bit flip experiments on the ECON-TMediummodel. The extremely high-radiation environment
of the HGCal makes the ECON-T models subject to multi-bit flips. We flip 960 random parameter bits and evaluate
ECON-T Medium on 20 000 validation inputs. We perform this process 14 000 times for the baseline ECON-T model,
which corresponds to a 98% confidence level with 1% confidence intervals. This 14 000 sample size was determined
based on a statistical model defined by [43].

4.2 Single Bit Flip Results

4.2.1 ECON-T Medium Model Resilience. We perform the first set of experiments on the ECON-T Medium Pareto
autoencoder. Fig. 4 shows the fault sensitivity of the encoder’s parameter bits. The first 180 weights correspond to the
encoder’s convolutional layer, and the remaining weights correspond to the encoder’s linear layer. The bit index is the
index of the bit that was flipped, where bit 0 is the sign bit, bit 1 is the integer bit, and bits 2–5 are the fractional bits. As
expected, the sign bit and integer bit create the largest changes in the magnitude of the parameters, so those bit flips

10

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

FKeras: A Sensitivity Analysis Tool for Edge Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Kernel: 16x512

Bias: 512

Total Weights: 8,192

Quantization�
� Total: �
� Integer: �
� Keep Negative: True

Layer Weight Bits: 57,344

DENSE
Kernel: 5x5x1x32

Bias: 32

Total Weights: 800

Quantization�
� Total: �
� Integer: �
� Keep Negative: True

Layer Weight Bits: 4,000

CONV-2D

Large Pareto (Total Weight Bits: 61,344)

Kernel: 16x128

Bias: 128

Total Weights: 2,048

Quantization�
� Total: �
� Integer: �
� Keep Negative: True

Layer Weight Bits: 12,288

DENSE
Kernel: 3x3x1x8

Bias: 8

Total Weights: 72

Quantization�
� Total: �
� Integer: �
� Keep Negative: True

Layer Weight Bits: 432

CONV-2D

Medium Pareto (Total Weight Bits: 12,720)

Kernel: 16x16

Bias: 16

Total Weights: 256

Quantization�
� Total: �
� Integer: �
� Keep Negative: True

Layer Weight Bits: 2,048

DENSE
Kernel: 64x16

Bias: 16

Total Weights: 1,024

Quantization�
� Total: �
� Integer: �
� Keep Negative: True

Layer Weight Bits: 8,192

DENSE

Small Pareto (Total Weight Bits: 10,240)

Fig. 3. A layer-by-layer overview of the three ECON-T models. Each box represents a layer in the given model. At the top of a box,
we list what kind of layer it is, e.g., Dense or Conv2D. Within a box, we list details about each layer, namely the size of the kernel,
the number of biases, the total number of weights, and quantization information on how each weight is quantized to fixed point
according to QKeras. For example, a quantization scheme of Total: 8, Integer: 1, Keep Negative: True means there are a
total of 8 bits, one of which represents the integer portion. When Keep Negative is True, the value is signed, and this sign bit is
stolen from the fractional portion. Thus, out of a total of 8 bits, one bit represents the sign bit, one bit represents the integer part, and
the remaining six bits represent the fractional part.

lead to higher EMDs. The non-faulty model has a non-zero EMD whose value is 1.10. Overall, 63.5% of the bits exceed
the baseline EMD.

Not surprisingly, the largest EMD values, corresponding to most faults, occur when faults are induced on the most
significant bits. The MSB (Bit 0) visually has higher EMD values than the other bits. The LSB (Bit 5) barely has any
visibly discernible change from the baseline EMD value. This is not surprising, and this monotonicity has been used
previously to guide fault injection campaigns [18].

The first 180 weights correspond to the convolutional layer; the remaining 1940 weights are for the dense layer.
Faults in the convolutional weights generally lead to more errors than faults in the dense layer. This is especially visible
in the MSB. There are a lot of weights in the dense layer where a fault does not induce any additional error, and some

11

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Weng et al.

Fig. 4. The average EMD for the ECON-T medium Pareto NN under a single-bit fault model. The 𝑥-axis corresponds to the NN weight.
The 𝑦-axis represents the bit index of the weight where 0 is the MSB and 5 is the LSB. Note that the top heatmap reports the average
EMD over all weight bits whereas the bottom heatmap only reports the average EMD for the first 600 weight bits (NN weights 0 - 100).

in the convolutional layer. The variability of the EMD across bits of the same significance can vary greatly. For example,
many of the dense layer Bit 0 weights have high EMD, but many have low EMD.

4.2.2 Sensitivity Ranking Accuracy. Our second set of experiments evaluates the ability of the Hessian and gradient
to provide a bit-level sensitivity ranking. In particular, we aim to understand how well the model error (e.g., EMD) is
captured by the Hessian and gradient sensitivity metrics from Sec. 3.1. We calculate these two bit-level metrics for the
ECON-T Medium Pareto model and compare them with the single-bit fault EMD values from the experiments in the
previous section.

Fig. 5 compares the EMD values versus the Hessian and gradient bit-level sensitivity ranking values. We separate out
the rankings by bit, i.e., the first column is the MSB, and the sixth column is the LSB. These match the bit indices from
Fig. 4. The first row plots the EMD (𝑦-axis) against the Hessian ranking (𝑥-axis) for each of the bits.

Generally speaking, we want a metric that ranks the weights that cause little change in EMD lower than those
that have a higher change. Consider the Hessian MSB (bit 0) shown in the upper left plot. The EMD values of the
lowest-ranked bits ranked are generally very small. After that, the EMD generally increases though there are certainly
outliers. The Spearman’s rank correlation coefficient 𝜌 = 0.508 shows a high correlation between the Hessian ranking
and the EMD. In the Hessian LSB (upper right figure), almost all bits have a very small EMD; thus, the ranking is
somewhat arbitrary (𝜌 = 0.098). The major takeaway is that the more significant bits matter more. and the errors in
the least significant bits have relatively little effect on this model. The first three significant bits cause the most faults,
whereas faults in the least three significant bits induce little error.

12

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

FKeras: A Sensitivity Analysis Tool for Edge Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Fig. 5. A comparison of the normalized EMD (𝑦-axis) versus the normalized Hessian and gradient sensitivity metrics (𝑥-axis). The
first column is the most significant bit and is ordered to the least significant bit in the sixth column.

The second row plots the EMD against the gradient sensitivity ranking. For this model, the Hessian performs better
than the gradient in the most significant bits. The performance of the least significant bits is less important since they
induce few errors.

The Hessian and gradient are measures of the loss landscape that provide valuable insight into how the NN behaves
with respect to the different weights. The Hessian and gradient provide a metric to compare different weights. They
do not have the ability to rank individual bits across those weights. Our Hessian and gradient metrics rank the most
significant bits highest (Bit 0), followed by the second most significant bit (Bit 1), all the way down to the least significant
bit (Bit 6 in this case). This is not ideal, and a better bit-level ranking can be achieved by mixing bits of different
significance. This is clearly shown in Fig. 5. Some bit 1 EMD values are higher than the bit 0 values in the ECON-T
Medium model. Some bit 2 EMD values are higher than bit 1 and bit 0, and so on. Those bit 1 variables should be ranked
higher by the sensitivity metric, and both of our metrics do not allow for this. We believe that a similar approach to
BinFI [18], which attempts to find the inflection point within a weight, could lead to a productive metric. We leave
that as future work. However, the ranking of MSB to LSB works well as a first-order approximation. We compare the
benefits in the next set of experiments.

4.2.3 Sensitivity Metric Comparison. Our next set of experiments aims to understand how different metrics perform at
identifying the bits most sensitive to single-bit faults. We use four different models—three different ECON-T autoencoder
models and a CIFAR-10 edge CNN, specifically hls4ml’s submission to the MLPerf Tiny Inference Benchmark [10]. We
compare the abilities of four metrics to rank the weights: random, MSB to LSB, Hessian, and gradient. Random picks
a bit at random. MSB to LSB selects the most significant bits first, followed by the second most significant bit, all the
way to the least significant bits. The bits are selected in the weight index provided by Keras after flattening a layer’s
weight matrix, e.g., the ECON-T Medium NN has the weight ordering shown in Figure 4. Hessian uses the Hessian-based
sensitivity score as computed in Equation 3. Gradient uses the parameter’s gradient value from Equation 1 and sorts the
bits from MSB to LSB in a similar manner to Hessian (see Section 3.1).

13

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Weng et al.

All Bits MSB-0s MSB-1s MSB-2s MSB-3s MSB-4s MSB-5s

0.0

0.2

0.4

0.6

0.8

1.0

-0.00

0.57
0.61 0.60

1.00

-0.01

0.30

0.75

0.67

1.00

-0.02

0.27

0.70

0.62

1.00

0.02

0.22

0.53
0.48

1.00

0.04

0.16

0.36
0.33

1.00

-0.01

0.09

0.21
0.23

1.00

-0.04

0.06
0.10 0.11

1.00

Sp
ea

rm
an

's

ECON-T Medium Pareto
Random MSB to LSB Hessian Gradient Oracle

All Bits MSB-0s MSB-1s MSB-2s MSB-3s MSB-4s MSB-5s MSB-6s

0.0

0.2

0.4

0.6

0.8

1.0

-0.01

0.53 0.55 0.54

1.00

-0.01

0.35

0.69
0.66

1.00

-0.00

0.30

0.64
0.60

1.00

0.01

0.24

0.48
0.44

1.00

-0.00

0.15

0.29
0.27

1.00

-0.01

0.07

0.16 0.14

1.00

-0.01

0.08 0.10 0.07

1.00

0.00
0.03 0.04 0.03

1.00

Sp
ea

rm
an

's

ECON-T Large Pareto
Random MSB to LSB Hessian Gradient Oracle

All Bits MSB-0s MSB-1s MSB-2s MSB-3s MSB-4s MSB-5s MSB-6s MSB-7s

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.46
0.500.50

1.00

-0.03

-0.20

0.75
0.68

1.00

-0.00

-0.15

0.67

0.58

1.00

0.04

-0.07

0.44
0.38

1.00

-0.01

-0.14

0.29
0.25

1.00

0.03

-0.10

0.180.18

1.00

-0.02
-0.07

0.130.10

1.00

0.01

-0.05

0.090.08

1.00

0.00
0.04

-0.03

0.00

1.00

Sp
ea

rm
an

's

ECON-T Small Pareto
Random MSB to LSB Hessian Gradient Oracle

All Bits MSB-0s MSB-1s MSB-2s MSB-3s MSB-4s MSB-5s MSB-6s MSB-7s

0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.680.680.67

1.00

-0.00

0.68
0.70

0.61

1.00

-0.00

0.69

0.77

0.66

1.00

0.01

0.71

0.79

0.67

1.00

-0.00

0.72

0.79

0.68

1.00

-0.00

0.74
0.77

0.67

1.00

-0.01

0.77
0.73

0.64

1.00

0.00

0.80

0.68

0.62

1.00

-0.00

0.80

0.62
0.58

1.00

Sp
ea

rm
an

's

CIFAR-10
Random MSB to LSB Hessian Gradient Oracle

Fig. 6. The ability of four sensitivity metrics (random, MSB to LSB, Hessian, and gradient) to rank the bits whose faults induce
the most errors. Spearman’s rank correlation coefficient 𝜌 is provided for all the bits in the first column and then broken down by
individual bits from most to least significant. 14

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

FKeras: A Sensitivity Analysis Tool for Edge Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Fig. 7. The magnitude of the error vs. the number of bits flipped for the four NN models. The three ECON-T models use cumulative
ΔEMD, where ΔEMD = |EMDbitflip − EMDnon-faulty | as the error measure and the CIFAR-10 CNN uses the cumulative number of
mispredicts. In both cases, larger indicates more errors. Each model plots five ranking metrics which attempt to order the NN weight
bits from those to contribute most to error to those that contribute little or nothing to the error.

We compare the ability of these metrics to predict the sensitivity accurately. Fig. 6 shows the Spearman’s rank
correlation coefficient 𝜌 for the four different models. The results compare the four metrics and an Oracle (a perfect
ranking derived from the brute-force single-fault experiments) to predict the bit sensitivity. The 𝜌 values are shown for
all the bits, followed by them being broken out into the individual bits in order of most significant to least significant.
As expected, the random ranking has a near zero correlation, and the oracle has a perfect correlation across all the
models. The Hessian is consistently the best, especially in the more significant bits. The gradient also provides good
performance close to the Hessian but clearly lower in most cases. The MSB to LSB ranking performs quite well and
provides a relatively simple way to consider bit sensitivity, e.g., for a fault injection campaign.

Next, we consider the relative magnitude of the error and not just the relative ranking. Fig. 7 shows the results of an
experiment that plots the cumulative error when ranking the sensitivity of the weight bits. A larger error indicates
that flipping that particular bit increases the error of the overall model. The error measure depends on the model. The
three ECON-T autoencoder NNs use EMD for error. Recall that EMD is a measure of error where larger indicates worse
autoencoder performance. The CIFAR-10 CNN uses the number of mispredictions for the error where larger indicates
more error.

15

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Weng et al.

Consider first Fig. 7a that plots the cumulative ΔEMD versus the number of bits flipped for the four metrics and an
oracle on the ECON-T Medium Pareto NN. The oracle is the optimal or best-case ranking calculated from the brute-force
single-fault experiments (e.g., from Fig. 4 for ECON-T medium). The oracle ranks the bits with the largest mean ΔEMD
first. The cumulative EMD provides the difference between the faulty model EMD and the EMD of a model with no
faults. The EMD for the non-faulty model is 1.100. The cumulative ΔEMD for the oracle results quickly approaches
the maximum cumulative ΔEMD of 57.37. Only 63.5% (8 080/12 720) of the bits are sensitive, i.e., they have a nonzero
ΔEMD. The remaining 36.5% do not affect the autoencoder EMD.

The random metric is the worst of the metrics showing that chance alone provides roughly an equal chance of
guessing the bits that contribute most to the EMD. MSB to LSB performs significantly better than random. This shows
that the bit order matters. The most significant bit has the lion’s share of the cumulative ΔEMD (40.91 of the 57.37). The
impact on ΔEMD falls quickly; weights from last few significant have little effect on the EMD. Hessian and gradient both
perform better. Hessian does perform better at ordering the MSB weights with Hessian being slightly better as indicated
by the separation between the two lines. In particular, Hessian is more accurate for the first 2 120 bits (corresponding to
the weights of the most significant bit). The subsequent bits are approximately equal between Hessian and Gradient.
These bits contribute less to the overall EMD and thus are overall less sensitive.

It is interesting to compare the difference between the random and oracle on the three ECON-T NNs. ECON-T
Small NN (Fig. 7c) has a much smaller spread due to the fact that the model is smaller and all of the weights are more
sensitive. Conversely, the spread in the large ECON-T NN (Fig. 7b) is the largest of the three. The large model has
a small percentage of sensitive weights as indicated by the steep initial slope of the Oracle. In other words, the vast
majority of the weights are insensitive to faults, which is not surprising given that the model has many more weight
bits. The ECON-T large NN has 61 344 weight bits compared to ECON-T medium (12 720 weight bits) and the ECON-T
small (10 240 weight bits).

CIFAR-10 is a different classification problem with a different error measure. Thus, the results are not as easily
comparable as the three ECON-T NNs. Overall, CIFAR-10 is the largest model with 459 520 weight bits. The fairly steep
initial slope of the Oracle indicates that most of the sensitivity resides in a small number of bits. However, there is
a relatively long tail, e.g., more similar to ECON-T medium Pareto NN. The relatively large separation between the
Random and Oracle indicates that the bit sensitivity is not easy to predict. Hessian generally performs best in determining
the most sensitive bits.

In Fig. 8, we compare the cumulative ΔEMD and mispredicts with state-of-the-art work in fault injection: BinFI [18]
and StatFI [61]. To recap Sec. 2, BinFI performs a binary search within each value in the NN to find the bit that is the
“inflection point,” wherein all the bits more significant than it are considered sensitive to faults. BinFI calls this the silent
data corruption (SDC) boundary. While BinFI applies this technique to the NN activations, we instead apply it to the NN
weights according to our fault model. Since BinFI performs a binary search to find the SDC boundary, we first plot the
actual bits BinFI flips during the binary search, which we call BinFI (Actual Bits Flipped). The SDC boundary implies
that all the bits more significant than it are also sensitive. We plot the actual bits flipped plus these implied sensitive
bits as BinFI (Actual+Implied Bits Flipped). BinFI does not specify the order in which to search the NN values, so we
flip them in the order they appear in the NN. StatFI introduces two fault injection methods for finding the sensitive
NN weight bits: data-aware and data-unaware. StatFI statistically determines the sample size of how many bits to flip
per weight bit index, e.g., the MSB or second MSB, per layer. StatFI (Data-aware) statically measures the changes in
magnitude in each weight that occur from flipping a bit to determine the sample size per weight bit index per layer. The
larger the magnitude change the higher the sample size will be and vice versa. StatFI (Data-unaware) does not rely on

16

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

FKeras: A Sensitivity Analysis Tool for Edge Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Fig. 8. Comparing the magnitude of the error vs. the number of bits flipped for the four NN models with state-of-the-art fault
injection methods BinFI [18] and StatFI [61]. The three ECON-T models use cumulative ΔEMD as the error measure and the CIFAR-10
CNN uses the cumulative number of mispredicts. In both cases, larger indicates more errors. Each model plots six ranking metrics
which attempt to order the NN weight bits from those to contribute most to error to those that contribute little or nothing to the
error. In particular, we compare our own Hessian metric to BinFI’s and StatFI’s bit flips.

changes in magnitude and selects the same sample size per weight bit index per layer. StatFI randomly sample based on
the determined sample size, i.e., they do not specify the order in which to flip bits. We thus order them MSB to LSB, as
StatFI provides a list of bits to flip per MSB, second MSB, etc.

Let us first consider Fig. 8a and look at how BinFI compares with the Hessian and the Oracle on the ECON-T Medium
Pareto NN. We find that BinFI (Actual Bits Flipped) is not very impressive, as expected. BinFI uses each of these bit
flips to implicate more bits. As such, BinFI (Actual+Implied Bits Flipped) performs more impressively in the beginning;
however, it begins to falter after a few hundred bit flips. This is expected because BinFI does not specify an order in
which to search the weights, whereas the Hessian does. By only flipping around half of all of the NN weight bits though,
BinFI (Actual+Implied Bits Flipped) identifies most of the sensitive bits, as indicated by the dashed vertical line that
drops down after ∼6 000 bits flipped. It fails to identify 5% of the sensitive bits (676 out of a total of 8 080). Comparing
BinFI (Actual+Implied Bits Flipped) to our work, the Hessian finds more sensitive bits much sooner in its search. In fact,
for the first ∼5 500 bit flips, the Hessian’s bit flips are much more informative, as it finds the highly sensitive bits early
on. Thus from Fig. 8a as well as Fig. 8b, we observe this tradeoff of the Hessian finding more sensitive bits earlier in the

17

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Weng et al.

search versus the BinFI (Actual+Implied Bits Flipped) finding a majority of the sensitive bits earlier for the ECON-T
Medium and Large Pareto models.

Fig. 8c and Fig. 8d show more complex trends. In both the ECON-T Small Pareto (Fig. 8c) and CIFAR-10 (Fig. 8d),
we see that BinFI (Actual+Implied Bits Flipped) rises slowly, as we have seen previously, before exceeding the oracle.
This happens because BinFI (Actual+Implied Bits Flipped) implies multiple bits are sensitive per bit flip whereas the
oracle only implicates one bit based on how we plot it. Clearly, the oracle knows all of the sensitive bits prior to fault
injection (and could reach the maximum cumulative ΔEMD/mispredicts with 0 bit flips); however, we are interested in
understanding the ceiling for theHessian in our oracle. As such, BinFI (Actual+Implied Bits Flipped) exceeds the best
the Hessian could perform for these two models. This is likely the case because most of the bits in the ECON-T Small
Pareto and CIFAR-10 models are sensitive. 100% of the ECON-T Small Pareto bits and 82.72% of the CIFAR-10 bits are
sensitive. Thus, these NNs are easier tasks for BinFI—each bit flip is highly likely to find a sensitive bit. We are not
necessarily finding a needle in a haystack the way we are for ECON-T Large, where only 6.5% of the bits are sensitive.
The Hessian is clearly better in this case (Fig. 8b).

However, there is a major caveat with BinFI: the only information we receive on how sensitive the model bits are
is from BinFI (Actual Bits Flipped). As seen in all four charts in Fig. 8, BinFI (Actual Bits Flipped) reveals very little
information and has the lowest cumulative ΔEMD/mispredicts out of all of the methods. We have no way of determining
cumulative ΔEMD/mispredicts unless we actually flip all the bits plotted by BinFI (Actual+Implied Bits Flipped). As a
result, it is difficult to determine which bits are a higher priority to protect, which may be a tradeoff worth considering
in the resource-constrained environments of edge NNs. Overall, BinFI performs well when the lion’s share of a model’s
bits are sensitive and poorly when most of a model’s bits are insensitive.

StatFI performs the worst in all cases in Fig. 8. Its statistical sampling is ineffective at selecting the sensitive bits in a
NN. In particular, StatFI (Data-aware) depends on large changes in magnitude from flipping a weight bit to determine
the sample size per weight bit index per layer. These large changes are more likely to occur in float32 and less likely to
occur when we represent our weights with ≤8-bit fixed point precision. We therefore observe a large gap between the
StatFI (Data-aware) line and the Hessian line in the ECON-T Medium Pareto (Fig. 8a), ECON-T Large Pareto (Fig. 8b),
and CIFAR-10 (Fig. 8d) models charted. We would expect either StatFI method to work well for ECON-T Large Pareto,
where few of the bits are sensitive because it was designed to find the few sensitive bits with fewer fault injections;
however, StatFI randomly selects the bits to sample per weight bit index per layer, which is ineffective. For the ECON-T
Small Pareto model (Fig. 8c), where 100% of the bits are sensitive, StatFI Data-aware fails to identify 37% of the sensitive
bits, whereas StatFI Data-unaware fails to identify 5% of the bits. StatFI (Data-unaware) samples more bits, as we see
in the pink line falling down after having flipped more bits than StatFI (Data-aware)’s brown line falling point in
every case; nevertheless, it fails to find many of the bits, especially for the ECON-T Large Pareto (Fig. 8b), missing
35% of the sensitive bits, and for CIFAR-10 (Fig. 8d), missing 76% of the sensitive bits. Both the StatFI Data-aware and
Data-unaware methods are not sampling cleverly enough. Since the Hessian captures how sensitive the NN weights are,
it easily outperforms both StatFI Data-aware and StatFI Data-unaware.

Fig. 9 provides a different analysis related to the ability of the sensitivity metrics to find the top-𝑘 percentile of the
sensitive bits. The Oracle provides a perfect ranking with respect to the bit’s sensitivity. In other words, the oracle
perfectly selects the top-𝑘 percentile of the bits and provides a lower bound (best-case result) for a sensitivity metric.
Oracle will not go to 1.0 on the y-axis when a subset of the bits are insensitive to single-bit faults. For example, only
63.5% of the bits are sensitive for the ECON-T Medium Pareto NN, only 6.55% of the bits are sensitive for the ECON-T
Large Pareto NN, 100% of the bits are sensitive for the ECON-T Small Pareto NN, and 82.72% of the bits are sensitive for

18

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

FKeras: A Sensitivity Analysis Tool for Edge Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Fig. 9. The ability of the sensitivity metrics to find the top k-percentile of the sensitive bits across the four NN models. The oracle
provides a perfect ordering of the bits and thus provides a best-case result (lower bound).

the CIFAR-10 NN. Random provides the other extreme as the top-𝑘 bits are randomly distributed through its ranking,
and thus the entire ranking must be enumerated to find the top-𝑘 bits for all but the smallest values of 𝑘 .

For the ECON-T NNs, MSB to LSB performs the worst of the other metrics. Overall, Hessian is better than Gradient

for the ECON-T Large and Small Pareto NNs. Gradient is overall generally lower (better) than Hessian for the ECON-T
Medium Pareto model.

The CIFAR-10 classification task is interesting in that MSB to LSB performs quite well overall, while it is the worst
sensitivity metric for the ECON-TNNs. The CIFAR-10 NN is a two-stack ResNet model with five convolutional layers [10].
This is fundamentally different than the ECON-T models, which have only two layers, especially for ECON-T Small
which consists of only dense layers.

We then compare the top-𝑘 percentile performance of the Hessian and the oracle with BinFI [18] and StatFI [61]
in Fig. 10. We first compare with BinFI. Let us first focus on the ECON-T medium model in Fig. 10a. To find the top-1
percentile of the sensitive bits, the Hessian only needs to flip ∼18% of the bits, whereas BinFI (Actual+Implied Bits Flipped)

must flip ∼41% of the bits, taking longer to find the most sensitive bits. BinFI then drops to 0 after the top-15th percentile
because it produces false negatives, i.e., it does not find all of the sensitive bits. The top-𝑘 percentile requirement is
stringent. If a method fails to identify even a single bit in the top-𝑘 percentile, then we say this method has failed
because there is no number of bits to flip according to that method that will find all of the top-𝑘 sensitive bits. We can

19

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Weng et al.

Fig. 10. Comparing the ability of the sensitivity metrics to find the top k-percentile of the sensitive bits across the four NN models
with state-of-the-art fault injection methods BinFI [18] and StatFI [61]. . The oracle provides a perfect ordering of the bits and thus
provides a best-case result (lower bound).

thus infer from Fig. 10a that BinFI (Actual+Implied Bits Flipped) fails to identify bits beyond the top 15th percentile,
e..g, it misses bits that are quite sensitive (such as in the 20th percentile). The Hessian provides both weight-level and
bit-level sensitivity information to rank weight bits, whereas BinFI only provides bit-level sensitivity information per
weight without any way of ranking the weights. Therefore, the Hessian is significantly more efficient than BinFI at
finding the most sensitive bits because it captures more sensitivity information. For the ECON-T Large Pareto (Fig. 10b),
the Hessian outperforms BinFI (Actual+Implied Bits Flipped) for the top 10th percentile before BinFI (Actual+Implied Bits

Flipped) exceeds the Hessian up until the top 20th percentile when it falls to 0—once again due to its failure to find
sensitive bits. For ECON-T Small Pareto, the Hessian is the closest to the oracle up until the top 15th percentile when
BinFI (Actual+Implied Bits Flipped) is the better method at finding top sensitive bits, eventually exceeding the oracle past
the top 50th percentile. As previously discussed, this is due to BinFI (Actual+Implied Bits Flipped)’s implicating multiple
bits as sensitive per bit flip, whereas the oracle only implicates one bit per bit flip. Since all the bits in ECON-T Small
Pareto are sensitive, BinFI (Actual+Implied Bits Flipped) always succeeds in finding a sensitive bit. Moreover it only
needs to flip about half of the bits to identify all of the sensitive bits. This is due to the easy nature of this task, i.e., when
most if not all of the bits are sensitive. We see a similar pattern for the CIFAR-10 model where BinFI (Actual+Implied Bits

20

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

FKeras: A Sensitivity Analysis Tool for Edge Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Fig. 11. Part a) As model size increases, the percentage of sensitive bits in the model decreases. Part b) As 𝐸𝑀𝐷 increases, the
percentage of sensitive bits in the model increases.

MSB MSB-1 MSB-2 MSB-3 MSB-4 MSB-5 MSB-6 MSB-7
Weight Bit Index

0

2000

4000

6000

8000

Co
un

t

Small Pareto
Medium Pareto
Large Pareto

(a) Total Sensitive Bit Count Distribution.

MSB MSB-1 MSB-2 MSB-3 MSB-4 MSB-5 MSB-6 MSB-7
Weight Bit Index

0.0

0.2

0.4

0.6

0.8

1.0
Co

un
t (

No
rm

al
ize

d
pe

r M
od

el
)

Small Pareto
Medium Pareto
Large Pareto

(b) Normalized Sensitive Bit Count Distribution.

Fig. 12. Distribution of the sensitive bits related to bit position for the three ECON-T NNs.

Flipped) outperforms the oracle for a bit around the top 60th percentile before it falls to 0 due to its failure to identify
all of the sensitive bits beyond the 60th percentile. Note that BinFI (Actual Bits Flipped) always lies at 0 for all four
NNs because it is primarily flipping bits to implicate other bits in the model and is thus not good at flipping the most
sensitive bits first.

We then compare with StatFI (Data-aware) and StatFI (Data-unaware). For all four models, both StatFI methods fail to
identify any top-𝑘 percentile sensitive bits, so all StatFI lines lie at 0, except for StatFI (Data-unaware) for the ECON-T
Small Pareto model (Fig. 10c) which can find the top-1st percentile by flipping 80% of the bits before immediately
falling to 0. Beyond this instance, no number of bits flipped according to StatFI will find some top-𝑘 percentile of the
sensitive bits.

Next, we summarize the relationship between model size and the sensitivity of its weights. Fig. 11a plots the number
of sensitive bits versus the total number of bits for the three ECON-T NNs. All of the bits in the ECON-T Small Pareto

21

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Weng et al.

model are sensitive. As the model size increases, the number of sensitive bits decreases. The ECON-T Large Pareto
model has only 6.55% of its bits sensitive to single-bit faults. Fig. 11b show the same three ECON-T models with respect
to the EMD (error) of the non-faulty model. The ECON-T Large Pareto model has the smallest EMD (0.807), which is
expected given that it is more complex. Reducing the model size increases the EMD (decreasing its performance).

Fig. 12 breaks out the number of sensitive bits according to their relative bit position in the weight from the MSB to
the LSB. All models are quantized to a fixed-point representation such that MSB is a sign bit followed by 1–3 integer
bits and some fractional bits remaining. Note that each model has a different quantization, with ECON-T Small Pareto
having 8-bit weights, ECON-T Medium Pareto having 6-bit weights, and ECON-T Large Pareto having both 5-bit and
7-bit weights. In the ECON-T Small Pareto NN, all the bits are sensitive; thus the sensitive bits are equally distributed
across all bit indices. 63.5% of the bits are sensitive in the ECON-T Medium Pareto NN. The sensitive bits are relatively
equally distributed across each bit index though more reside in the MSB and MSB-1 bit indices. In the ECON-T Large
Pareto NN, only a tiny fraction (6.5%) of the bits are sensitive. The sensitive bits are clustered in the first 3 MSBs out of
(at most) 7 bits. Fig. 12b shows that when there are sensitive bits in the model, the majority of them reside in the most
significant bits. Moreover, as model size increases, the percentage of sensitive bits decreases (as shown in Fig. 11a).

4.3 Multiple Bit Flip Results

We also aim to understand how the NNs respond to multiple-bit faults. Unlike the previous experiments, where we flip
only one bit at a given time, we assume multiple bit flips are possible. Such scenarios are more likely in high radiation
environments as is experienced by the ECON-T ASICs in the LHC. In particular, we want to understand the resilence of
using protection mechanisms, e.g., using TMR on the NN weights as is done in the LHC [24].

0.0 0.2 0.4 0.6 0.8 1.0
Number of Parameter Bits Protected (Normalized)

0.2

0.4

0.6

0.8

1.0

Nu
m

be
r o

f E
rro

rs
 P

re
ve

nt
ed

(o
ut

 o
f 1

40
00

) (
No

rm
al

ize
d) ECON-T Medium Pareto

Fig. 13. The effect of bit protection on errors for the ECON-T medium Pareto NN.

For this experiment, we assume a multi-bit flip fault model with a variable amount (0%, 32%, 63.5%, and 100%) of
protection for the parameter bits. For the 100% protection level, all parameter bits are protected, which means that none
of the attempted bit flips will occur. For the 63.5% protection level, we protect all of the sensitive bits identified under
the single-bit flip fault model. For the 32% protection level, we protect the top 50% of the sensitive bits identified under
the single-bit flip fault model. For the 0% protection level, we do not protect any parameter bits. Fig. 13 shows that by
protecting all of the sensitive bits identified by the single-bit flip fault model, we can prevent all of the errors induced

22

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

FKeras: A Sensitivity Analysis Tool for Edge Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

by the simultaneous multiple bit flips. Even without protection, a small percentage (13.4%) of the multi-bit flip errors
are prevented.

5 CONCLUSION

We develop FKeras as a tool to assess the fault tolerance of edge neural networks that run inference fully on chip.
FKeras provides several bit-level metrics that can quickly identify NN weight bits that are most sensitive to faults. We
use FKeras to study four different NN models—three Pareto-optimal models for an autoencoder hardware in the CERN
Large Hadron Collider and an edge NN that performs CIFAR-10 image classification. We show that the sensitivity of
the bits varies greatly across weights and that the Hessian provides a good weight sensitivity ranking. Additionally,
our results indicate that the sensitivity of different bits within a weight can vary dramatically. Even more, we found
that larger, more accurate NNs have signficantly fewer sensitive bits compared with smaller, less accurate NNs. This
raises some architectural codesign tradeoffs: should we design hardware for a larger, more accurate NN that requires
less protection or a smaller, less accurate NN that requires full protection? How much more resilience can a larger NN
provide at the expense of resource efficiency? FKeras provides valuable insights for addressing these codesign tradeoffs
to design fault-tolerant, quantized NNs for hardware.

ACKNOWLEDGMENTS

The authors thank the anonymous referees for their valuable comments and helpful suggestions. The authors would
also like to thank Isaac Adeleke and Christopher Zutler for their generous input. This material is based upon work
supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-2038238.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation.

This work is supported by the U.S. Department of Energy (DOE), Office of Science, Office of Advanced Scientific
Computing Research under the “Real-time Data Reduction Codesign at the Extreme Edge for Science” Project (DE-FOA-
0002501). JD is also supported by the DOE, Office of Science, Office of High Energy Physics Early Career Research
program under Grant No. DE-SC0021187, and the U.S. National Science Foundation (NSF) Harnessing the Data Revolution
(HDR) Institute for Accelerating AI Algorithms for Data Driven Discovery (A3D3) under Cooperative Agreement No.
OAC-2117997. NT is also supported by the DOE Early Career Research program under Award No. DE-0000247070.

REFERENCES
[1] Qeethara Kadhim Al-Shayea. 2011. Artificial neural networks in medical diagnosis. International Journal of Computer Science Issues 8, 2 (2011),

150–154.
[2] Rubén García Alía, Markus Brugger, Francesco Cerutti, Salvatore Danzeca, Alfredo Ferrari, Simone Gilardoni, Yacine Kadi, Maria Kastriotou, Anton

Lechner, Corinna Martinella, et al. 2017. LHC and HL-LHC: Present and future radiation environment in the high-luminosity collision points and
RHA implications. IEEE Transactions on Nuclear Science 65, 1 (2017), 448–456.

[3] Syed Muhammad Anwar, Muhammad Majid, Adnan Qayyum, Muhammad Awais, Majdi Alnowami, and Muhammad Khurram Khan. 2018. Medical
image analysis using convolutional neural networks: a review. Journal of medical systems 42 (2018), 1–13.

[4] Rizwan A Ashraf, Roberto Gioiosa, Gokcen Kestor, Ronald F DeMara, Chen-Yong Cher, and Pradip Bose. 2015. Understanding the propagation
of transient errors in HPC applications. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and
Analysis. 1–12.

[5] Haim Avron and Sivan Toledo. 2011. Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix. Journal
of the ACM (JACM) 58, 2 (2011), 1–34.

[6] Colby Banbury, Vijay Janapa Reddi, Peter Torelli, Jeremy Holleman, Nat Jeffries, Csaba Kiraly, Pietro Montino, David Kanter, Sebastian Ahmed,
Danilo Pau, et al. 2021. Mlperf tiny benchmark. arXiv preprint arXiv:2106.07597 (2021).

23

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Weng et al.

[7] Timoteo García Bertoa et al. 2023. Fault Tolerant Neural Network Accelerators with Selective TMR. IEEE Des. Test 40, 2 (2023), 67. https:
//doi.org/10.1109/MDAT.2022.3174181

[8] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs
Muller, Jiakai Zhang, et al. 2016. End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316 (2016).

[9] Shekhar Borkar. 2005. Designing reliable systems from unreliable components: the challenges of transistor variability and degradation. Ieee Micro
25, 6 (2005), 10–16.

[10] Hendrik Borras, Giuseppe Di Guglielmo, Javier Duarte, Nicolò Ghielmetti, Ben Hawks, Scott Hauck, Shih-Chieh Hsu, Ryan Kastner, Jason Liang,
Andres Meza, et al. 2022. Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark. arXiv preprint arXiv:2206.11791 (2022).

[11] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. 2020. Language models are few-shot learners. Advances in neural information processing systems 33 (2020), 1877–1901.

[12] Simon Burton, Lydia Gauerhof, and Christian Heinzemann. 2017. Making the case for safety of machine learning in highly automated driving. In
Computer Safety, Reliability, and Security: SAFECOMP 2017 Workshops, ASSURE, DECSoS, SASSUR, TELERISE, and TIPS, Trento, Italy, September 12,
2017, Proceedings 36. Springer, 5–16.

[13] Javier Campos, Zhen Dong, Javier Duarte, Amir Gholami, Michael W Mahoney, Jovan Mitrevski, and Nhan Tran. 2023. End-to-end codesign of
Hessian-aware quantized neural networks for FPGAs and ASICs. arXiv preprint arXiv:2304.06745 (2023).

[14] Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria Schuld, Naftali Tishby, Leslie Vogt-Maranto, and Lenka Zdeborová. 2019.
Machine learning and the physical sciences. Reviews of Modern Physics 91, 4 (2019), 045002.

[15] S Chatrchyan, G Hmayakyan, V Khachatryan, AM Sirunyan, W Adam, T Bauer, T Bergauer, H Bergauer, M Dragicevic, J Eroe, et al. 2008. The CMS
experiment at the CERN LHC. Journal of instrumentation 3 (2008).

[16] Arjun Chaudhuri, Ching-Yuan Chen, Jonti Talukdar, Siddarth Madala, Abhishek Kumar Dubey, and Krishnendu Chakrabarty. 2021. Efficient
fault-criticality analysis for AI accelerators using a neural twin. In 2021 IEEE International Test Conference (ITC). IEEE, 73–82.

[17] Zitao Chen, Guanpeng Li, and Karthik Pattabiraman. 2021. A low-cost fault corrector for deep neural networks through range restriction. In 2021
51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE, 1–13.

[18] Zitao Chen, Guanpeng Li, Karthik Pattabiraman, and Nathan DeBardeleben. 2019. Binfi: An efficient fault injector for safety-critical machine
learning systems. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 1–23.

[19] Wonseok Choi, Dongyeob Shin, Jongsun Park, and Swaroop Ghosh. 2019. Sensitivity based error resilient techniques for energy efficient deep
neural network accelerators. In Proceedings of the 56th Annual Design Automation Conference 2019. 1–6.

[20] Claudionor N. Coelho, Aki Kuusela, Shan Li, Hao Zhuang, Thea Aarrestad, Vladimir Loncar, Jennifer Ngadiuba, Maurizio Pierini, Adrian Alan
Pol, and Sioni Summers. 2021. Automatic heterogeneous quantization of deep neural networks for low-latency inference on the edge for particle
detectors. Nature Mach. Intell. 3 (2021), 675–686. https://doi.org/10.1038/s42256-021-00356-5 arXiv:2006.10159 [physics.ins-det]

[21] CMS collaboration et al. 2017. The phase-2 upgrade of the CMS endcap calorimeter. CMS Technical Design Report CERN-LHCC-2017-023. CMS-TDR-019,
CERN (2017).

[22] Alessio Colucci, Andreas Steininger, and Muhammad Shafique. 2022. enpheeph: A fault injection framework for spiking and compressed deep
neural networks. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 5155–5162.

[23] Allison McCarn Deiana, Nhan Tran, Joshua Agar, Michaela Blott, Giuseppe Di Guglielmo, Javier Duarte, Philip Harris, Scott Hauck, Mia Liu, Mark S
Neubauer, et al. 2022. Applications and techniques for fast machine learning in science. Frontiers in big Data 5 (2022), 787421.

[24] Giuseppe Di Guglielmo, Farah Fahim, Christian Herwig, Manuel Blanco Valentin, Javier Duarte, Cristian Gingu, Philip Harris, James Hirschauer,
Martin Kwok, Vladimir Loncar, et al. 2021. A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC. IEEE
Transactions on Nuclear Science 68, 8 (2021), 2179–2186.

[25] Harish Dattatraya Dixit, Sneha Pendharkar, Matt Beadon, Chris Mason, Tejasvi Chakravarthy, Bharath Muthiah, and Sriram Sankar. 2021. Silent
data corruptions at scale. arXiv preprint arXiv:2102.11245 (2021).

[26] Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. 2020. Hawq-v2: Hessian aware trace-weighted
quantization of neural networks. Advances in neural information processing systems 33 (2020), 18518–18529.

[27] Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. 2019. Hawq: Hessian aware quantization of neural networks with
mixed-precision. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 293–302.

[28] Fernando Fernandes dos Santos, Caio Lunardi, Daniel Oliveira, Fabiano Libano, and Paolo Rech. 2019. Reliability evaluation of mixed-precision
architectures. In 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA). IEEE, 238–249.

[29] Petros Drineas and Michael W Mahoney. 2018. Lectures on randomized numerical linear algebra. The Mathematics of Data 25, 1 (2018).
[30] Javier Duarte, Song Han, Philip Harris, Sergo Jindariani, Edward Kreinar, Benjamin Kreis, Jennifer Ngadiuba, Maurizio Pierini, Ryan Rivera, Nhan

Tran, et al. 2018. Fast inference of deep neural networks in FPGAs for particle physics. Journal of Instrumentation 13, 07 (2018), P07027.
[31] Javier Duarte, Nhan Tran, Ben Hawks, Christian Herwig, Jules Muhizi, Shvetank Prakash, and Vijay Janapa Reddi. 2022. FastML Science Benchmarks:

Accelerating Real-Time Scientific Edge Machine Learning. arXiv preprint arXiv:2207.07958 (2022).
[32] Giulio Gambardella, Johannes Kappauf, Michaela Blott, Christoph Doehring, Martin Kumm, Peter Zipf, and Kees Vissers. 2019. Efficient error-tolerant

quantized neural network accelerators. In 2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT). IEEE, 1–6.

24

https://doi.org/10.1109/MDAT.2022.3174181
https://doi.org/10.1109/MDAT.2022.3174181
https://doi.org/10.1038/s42256-021-00356-5
https://arxiv.org/abs/2006.10159

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

FKeras: A Sensitivity Analysis Tool for Edge Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

[33] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. 2021. A survey of quantization methods for efficient
neural network inference. arXiv preprint arXiv:2103.13630 (2021).

[34] Song Han, Huizi Mao, and William J Dally. 2015. Deep compression: Compressing deep neural networks with pruning, trained quantization and
huffman coding. arXiv preprint arXiv:1510.00149 (2015).

[35] Yi He, Prasanna Balaprakash, and Yanjing Li. 2020. Fidelity: Efficient resilience analysis framework for deep learning accelerators. In 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 270–281.

[36] Le-Ha Hoang, Muhammad Abdullah Hanif, and Muhammad Shafique. 2020. Ft-clipact: Resilience analysis of deep neural networks and improving
their fault tolerance using clipped activation. In 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 1241–1246.

[37] Peter H Hochschild, Paul Turner, Jeffrey C Mogul, Rama Govindaraju, Parthasarathy Ranganathan, David E Culler, and Amin Vahdat. 2021. Cores
that don’t count. In Proceedings of the Workshop on Hot Topics in Operating Systems. 9–16.

[38] IEEE 2008. Intermittent faults and effects on reliability of integrated circuits. IEEE.
[39] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al

Borchers, et al. 2017. In-datacenter performance analysis of a tensor processing unit. In Proceedings of the 44th annual international symposium on
computer architecture. 1–12.

[40] Navid Khoshavi, Arman Roohi, Connor Broyles, Saman Sargolzaei, Yu Bi, and David Z Pan. 2020. Shieldenn: Online accelerated framework for
fault-tolerant deep neural network architectures. In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[41] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images. Tech Report (2009).
[42] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features from tiny images. (2009).
[43] Régis Leveugle, A Calvez, Paolo Maistri, and Pierre Vanhauwaert. 2009. Statistical fault injection: Quantified error and confidence. In 2009 Design,

Automation & Test in Europe Conference & Exhibition. IEEE, 502–506.
[44] Guanpeng Li, Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai, Karthik Pattabiraman, Joel Emer, and StephenWKeckler. 2017. Understanding

error propagation in deep learning neural network (DNN) accelerators and applications. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 1–12.

[45] Guanpeng Li, Karthik Pattabiraman, and Nathan DeBardeleben. 2018. Tensorfi: A configurable fault injector for tensorflow applications. In 2018
IEEE International symposium on software reliability engineering workshops (ISSREW). IEEE, 313–320.

[46] Guanpeng Li, Karthik Pattabiraman, Siva Kumar Sastry Hari, Michael Sullivan, and Timothy Tsai. 2018. Modeling soft-error propagation in
programs. In 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE, 27–38.

[47] Fabiano Libano, Brittany Wilson, J Anderson, Michael J Wirthlin, Carlo Cazzaniga, Christopher Frost, and Paolo Rech. 2018. Selective hardening for
neural networks in FPGAs. IEEE Transactions on Nuclear Science 66, 1 (2018), 216–222.

[48] Abdulrahman Mahmoud et al. 2020. HarDNN: Feature map vulnerability evaluation in CNNs. In 1st Workshop on Secure and Resilient Autonomy
(SARA) at MLSys 2020. arXiv:2002.09786 [cs.LG]

[49] Abdulrahman Mahmoud, Neeraj Aggarwal, Alex Nobbe, Jose Rodrigo Sanchez Vicarte, Sarita V Adve, Christopher W Fletcher, Iuri Frosio, and Siva
Kumar Sastry Hari. 2020. Pytorchfi: A runtime perturbation tool for dnns. In 2020 50th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W). IEEE, 25–31.

[50] Abdulrahman Mahmoud, Siva Kumar Sastry Hari, Christopher W Fletcher, Sarita V Adve, Charbel Sakr, Naresh R Shanbhag, Pavlo Molchanov,
Michael B Sullivan, Timothy Tsai, and Stephen W Keckler. 2021. Optimizing Selective Protection for CNN Resilience.. In ISSRE. 127–138.

[51] Abdulrahman Mahmoud, Siva Kumar Sastry Hari, Michael B Sullivan, Timothy Tsai, and Stephen W Keckler. 2018. Optimizing software-directed
instruction replication for gpu error detection. In SC18: International Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE, 842–854.

[52] Abdulrahman Mahmoud, Thierry Tambe, Tarek Aloui, David Brooks, and Gu-Yeon Wei. 2022. GoldenEye: A Platform for Evaluating Emerging
Numerical Data Formats in DNN Accelerators. In 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
IEEE, 206–214.

[53] Michael W Mahoney et al. 2011. Randomized algorithms for matrices and data. Foundations and Trends® in Machine Learning 3, 2 (2011), 123–224.
[54] Sparsh Mittal. 2020. A survey on modeling and improving reliability of DNN algorithms and accelerators. Journal of Systems Architecture 104 (2020),

101689.
[55] Niranjhana Narayanan, Zitao Chen, Bo Fang, Guanpeng Li, Karthik Pattabiraman, and Nathan Debardeleben. 2022. Fault Injection for TensorFlow

Applications. IEEE Transactions on Dependable and Secure Computing (2022).
[56] Mohamed A Neggaz, Ihsen Alouani, Smail Niar, and Fadi Kurdahi. 2019. Are cnns reliable enough for critical applications? an exploratory study.

IEEE Design & Test 37, 2 (2019), 76–83.
[57] Elbruz Ozen and Alex Orailoglu. 2020. Boosting bit-error resilience of DNN accelerators through median feature selection. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems 39, 11 (2020), 3250–3262.
[58] Elbruz Ozen and Alex Orailoglu. 2022. Architecting Decentralization and Customizability in DNN Accelerators for Hardware Defect Adaptation.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 41, 11 (2022), 3934–3945.
[59] Brandon Reagen, Udit Gupta, Lillian Pentecost, Paul Whatmough, Sae Kyu Lee, Niamh Mulholland, David Brooks, and Gu-Yeon Wei. 2018. Ares: A

framework for quantifying the resilience of deep neural networks. In Proceedings of the 55th Annual Design Automation Conference. 1–6.

25

https://arxiv.org/abs/2002.09786

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Weng et al.

[60] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. 2000. The Earth Mover’s Distance as a Metric for Image Retrieval. Int. J. Comput. Vis. 40 (2000),
99. https://doi.org/10.1023/A:1026543900054

[61] A Ruospo, G Gavarini, C De Sio, J Guerrero, L Sterpone, M Sonza Reorda, E Sanchez, R Mariani, J Aribido, and J Athavale. 2023. Assessing
convolutional neural networks reliability through statistical fault injections. In 2023 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 1–6.

[62] Christoph Schorn, Andre Guntoro, and Gerd Ascheid. 2018. Accurate neuron resilience prediction for a flexible reliability management in neural
network accelerators. In 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 979–984.

[63] Nida Shahid, Tim Rappon, and Whitney Berta. 2019. Applications of artificial neural networks in health care organizational decision-making: A
scoping review. PloS one 14, 2 (2019), e0212356.

[64] David Stutz, Nandhini Chandramoorthy, Matthias Hein, and Bernt Schiele. 2021. Bit error robustness for energy-efficient dnn accelerators.
Proceedings of Machine Learning and Systems 3 (2021), 569–598.

[65] Emil Talpes, Debjit Das Sarma, Ganesh Venkataramanan, Peter Bannon, Bill McGee, Benjamin Floering, Ankit Jalote, Christopher Hsiong, Sahil
Arora, Atchyuth Gorti, et al. 2020. Compute solution for tesla’s full self-driving computer. IEEE Micro 40, 2 (2020), 25–35.

[66] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated testing of deep-neural-network-driven autonomous cars. In
Proceedings of the 40th international conference on software engineering. 303–314.

[67] Cesar Torres-Huitzil and Bernard Girau. 2017. Fault and error tolerance in neural networks: A review. IEEE Access 5 (2017), 17322–17341.
[68] Marcello Traiola, Angeliki Kritikakou, and Olivier Sentieys. 2023. harDNNing: a machine-learning-based framework for fault tolerance assessment

and protection of DNNs. In ETS 2023-IEEE European Test Symposium.
[69] Marcello Traiola, Angeliki Kritikakou, and Olivier Sentieys. 2023. A machine-learning-guided framework for fault-tolerant DNNs. In 2023 Design,

Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 1–2.
[70] Shashanka Ubaru, Jie Chen, and Yousef Saad. 2017. Fast estimation of tr(f(A)) via stochastic Lanczos quadrature. SIAM J. Matrix Anal. Appl. 38, 4

(2017), 1075–1099.
[71] ZishenWan, Aqeel Anwar, Abdulrahman Mahmoud, Tianyu Jia, Yu-Shun Hsiao, Vijay Janapa Reddi, and Arijit Raychowdhury. 2022. Frl-fi: Transient

fault analysis for federated reinforcement learning-based navigation systems. In 2022 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 430–435.

[72] Yumou Wei, Ryan F Forelli, Chris Hansen, Jeffrey P Levesque, Nhan Tran, Joshua C Agar, Giuseppe Di Guglielmo, Michael E Mauel, and Gerald A
Navratil. 2023. Low latency optical-based mode tracking with machine learning deployed on FPGAs on a tokamak. Technical Report. Fermi National
Accelerator Laboratory (FNAL), Batavia, IL (United States).

[73] Olivia Weng, Alexander Redding, Nhan Tran, Javier Mauricio Duarte, and Ryan Kastner. 2024. Architectural Implications of Neural Network
Inference for High Data-Rate, Low-Latency Scientific Applications. arXiv:2403.08980 [cs.LG]

[74] Yaoqing Yang, Liam Hodgkinson, Ryan Theisen, Joe Zou, Joseph E Gonzalez, Kannan Ramchandran, and Michael W Mahoney. 2021. Taxonomizing
local versus global structure in neural network loss landscapes. Advances in Neural Information Processing Systems 34 (2021), 18722–18733.

[75] Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan, Leyuan Wang, Qijing Huang, Yida Wang, Michael Mahoney, et al.
2021. Hawq-v3: Dyadic neural network quantization. In International Conference on Machine Learning. PMLR, 11875–11886.

[76] Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. 2020. Pyhessian: Neural networks through the lens of the hessian. In 2020 IEEE
international conference on big data (Big data). IEEE, 581–590.

[77] Ussama Zahid, Giulio Gambardella, Nicholas J Fraser, Michaela Blott, and Kees Vissers. 2020. FAT: Training neural networks for reliable inference
under hardware faults. In 2020 IEEE International Test Conference (ITC). IEEE, 1–10.

[78] Yangchao Zhang, Hiroaki Itsuji, Takumi Uezono, Tadanobu Toba, and Masanori Hashimoto. 2022. Estimating vulnerability of all model parameters
in dnn with a small number of fault injections. In 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 60–63.

Received 28 September 2023; revised 15 March 2024; accepted 29 April 2024

26

https://doi.org/10.1023/A:1026543900054
https://arxiv.org/abs/2403.08980

	Abstract
	1 Introduction
	2 Related Work
	2.1 Assessing NN Resilience
	2.2 Optimizing NN Resilience

	3 FKeras
	3.1 NN Sensitivity Scores
	3.2 Fault Model

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Single Bit Flip Results
	4.3 Multiple Bit Flip Results

	5 Conclusion
	Acknowledgments
	References

