
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Cut and Forward: Safe and Secure Communication
for FPGA System on Chips

Francesco Restuccia and Ryan Kastner
University of California San Diego

Abstract—Modern FPGA system on chips use complex multi-
manager, multi-subordinate on-chip communication networks.
Processor cores, hardware accelerators, DMA engines, and other
manager components actively access subordinate components like
off-chip DRAM, on-chip memories, caches, and I/Os. On-chip
communication networks are designed for high bandwidth and
low latency. They use simple, fast transactions that largely as-
sumes the managers cooperate. For example, it does not describe
default mechanisms to ensure the safe behaviors of the managers
using the on-chip interconnect. This lack of specification can lead
to unpredictable behaviors: a single misbehaving, misconfigured,
or malicious component can cause denial of service of shared
resources. Clearly, this issue is critical in systems with safety
and security constraints. Cut and Forward is a novel switching
method for multi-component communication architectures on
FPGA SoCs. Cut and Forward leverages the programmability of
FPGA SoCs to enable safe and secure bus access and is carefully
designed to minimize its impact on performance and resource
usage. Experiments show that Cut and Forward ensures safety
and security in realistic applications deployed on a commercial
FPGA SoC from Xilinx including a popular DNN accelerator.

Index Terms—On-chip communication, mission-critical sys-
tems, hardware security, FPGA System-on-Chip.

I. INTRODUCTION

FPGA Systems on Chips (SoCs) are popular platforms for
applications with complex energy, performance, real-time, and
safety constraints [1]–[5]. Safety- and security-critical systems
must undergo a rigorous verification process. Any failure,
misbehaviour, or a security attack can cause dramatic conse-
quences if not properly managed. Timing predictability is cru-
cial in safety- and security-critical systems. This requires that
a processing unit executes a critical task within a deadline [6].
Other safety and security requirements involve isolation of
resources [7], noninterference [8], and authentication [9].

FPGA SoCs commonly use high-throughput and low-
latency on-chip protocols to communicate between the various
components of the system. Processors, accelerators, hardware
root of trusts, and other hardware components act as managers
to initiate transactions. Off-chip DRAM, on-chip memories,
caches, and I/Os work as subordinates to deliver data requested
by the managers. AMBA AXI [10] is a common on-chip com-
munication protocol, which we use as our example throughout
this article. However, the techniques are generally applicable
to other on-chip communication protocols.

Manuscript received April 07, 2022; revised June 11, 2022; accepted July
05, 2022. This article was presented in the International Conference on
Compilers, Architectures, and Synthesis for Embedded Systems (CASES)
2022 and appears as part of the ESWEEK-TCAD special issue.

AXI provides flexible and high-throughput bus transfers.
However, it does not provide a standard mechanism to su-
pervise the behaviors (or misbehaviors) of the managers. This
lack of specification, combined with the standard switching
method typically deployed in on-chip communication, permits
a misbehaving component to delay or deny access to a
shared resource from all the other components. Misbehav-
ing/malicious components can exploit this lack of specification
to perform a denial of service (DoS) of a critical component
to the shared resource. This is particularly critical in safety-
and security-critical systems, e.g., a DoS could stop a control
algorithm from processing data coming from a critical sensor.
Moreover, misbehaving components can cause unpredictable
behaviors in the bus components (e.g., interconnects and
buffers) within the processing system and the FPGA fabric.
This would require the system to deploy challenging detec-
tion, mitigation, and restore features. However, such features
must be compatible with the requirements of the safety- and
security-critical system. For example, resetting a component is
generally not permitted in safety-critical systems dealing with
timing constraints.

The threat becomes even more significant in systems inte-
grating third-party, closed-source IP cores and other compo-
nents. Trusting the IP vendor may not be feasible; IP cores
could implement malicious functionalities exploiting this lack
of specification to perform a denial of service attack [11]–[13].
Moreover, it may be an unintentional flaw of the hardware
component, e.g., caused by misconfiguration, improper access
to the bus, or hardware design error.

Understanding whether a component is safely and securely
integrated requires a joint verification of the entire integrated
system, involving the hardware accelerators, the interconnect,
and any other system components [14]. Some solutions have
been proposed to prevent this issue [15], [16]. Unfortunately,
they have key limitations for system integration: they lack
flexibility or have a strong impact on the system performance.
Such limitations make it impractical for mixed-critical applica-
tions, leaving them potentially affected by delays or denial of
service caused by misbehaving, faulty, or malicious hardware
components.

Contribution: Cut and Forward is a customizable switching
methodology targeting safety and security for FPGA SoCs. Cut
and Forward uses intelligent buffering to maintain operation
even in the presence of one or more misbehaving or malicious
hardware components. Cut and forward is easily integrated
into the AXI interconnect in place of the standard cut-through
buffers; no other modifications are required to the components



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

or the underlying FPGA SoC platform. This work makes the
following contributions:
• Identifying the sources of stalls in AXI-based FPGA

SoCs and the limitations of existing solutions in address-
ing them (Section II).

• Creating Cut and Forward: a parameterizable switching
methodology targeting safety and security (Section III).

• Analyzing the area and performance impact of Cut and
Forward and the other similar methods (Section IV).

• Developing a straightforward method to implement Cut
and Forward buffers while meeting performance and area
requirements of a target application (Section V).

• Demonstrating the applicability and the advantages of Cut
and Forward on a commercial FPGA SoC platform and
deploying a realistic mixed-critical application involving
a commercial deep neural network (DNN) accelerator
(Section VI).

The rest of the paper is organized as follows: Section II
introduces the threat model, identifies the source of AXI stalls,
and examines the limitations of existing solutions. Section III
describes Cut and Forward switching and defines its behavior
on bus transactions. Section IV analytically compares the im-
pact on performance and area consumption of Cut and Forward
with respect to other available switching methods. Section V
proposes a method based on the results proposed in Section IV
to target the Cut and Forward buffers on the performance
and area requirements of a target application. Section VI
reports the experimental results, evaluated on realistic, multi-
accelerator architectures deployed on commercial FPGA SoC
platforms from Xilinx including a popular hardware compo-
nent for DNN acceleration. The paper ends with related works
(Section VII) and conclusions (Section VIII).

II. MOTIVATION AND BACKGROUND

This section describes the threat model and shows how
misbehaving hardware components can sabotage on-chip com-
munications. We identify the core behaviors causing the stalls.
And we discuss the limitations of available solutions in
addressing this potential safety and security vulnerability.

Fig. 1. A sample multi-accelerators architecture implemented on an FPGA
SoC platform.

A. Threat Model

We consider the AMBA AXI protocol for on-chip com-
munications [10]. AXI is deployed in many of the modern
commercial FPGA SoC platforms. We consider a generic SoC
FPGA architecture that models many the modern FPGA SoC
commercial architectures [17]–[19]; We consider the default

commercial AXI interconnect for the platform under analysis
and provided by the FPGA vendor [20]. We focus our threat
model on the AXI bus stall that is commonly introduced
by FPGA SoC components during normal execution. For
example, we experimentally validated the presence of AXI
stalls during the nominal execution of the Xilinx DPU [21] (a
DNN acceleration component on Xilinx FPGA SoC platforms)
and of the Xilinx central DMA controller [22] (a standard
module for data movement from/to the programmable logic).
This paper focuses on providing a solution to solve the issue of
AXI stalls presented in Section II. It is worth mentioning that
previous works focused on solving different issues on the same
platforms related to access control [23] and unfair bandwidth
distribution [24]. We assume that such solutions are correctly
integrated in the platforms to mitigate these problems. All of
these solutions are compatible with Cut and Forward proposed
in this paper.

The threat model assumes that the hardware components
are fully compliant with the AXI standard. We do not require
any internal knowledge about the structure of the hardware
components. Therefore, the proposed threat model holds both
for hardware components developed in-house (for which some
internal knowledge may be available to the system integrator)
and outsourced, third-party hardware components (e.g., closed-
source encrypted modules).

The hardware components are connected to the processing
system (PS), and therefore, the DRAM memory controller,
through an AXI-compliant interconnect. It is assumed that
the routing functionalities of the AXI interconnect, processing
system, memory controllers, and memories are trustworthy
and implemented correctly. It is assumed that an access
control system is in place and correctly configured to re-
strict the access of the hardware accelerators to the only
allowed memory regions [23]. We do not make any specific
assumption on the technology deployed for implementing the
access control system. Therefore, this can be implemented in
the AXI interconnect [20], in the peripherals [18], or using
custom solutions. We assume that the access control system
is properly configured and its functionalities are trustworthy,
i.e., the access control system is able to stop any illegal access
attempted by hardware components even when one or more
of them are misbehaving or have been compromised.

Nevertheless, the functionalities provided by the access
control system are not intended to stop hardware components
to propagate stalls on the common bus able that can generate a
DoS to shared resources. Hardware components may introduce
unintentional stalls on the shared bus, e.g., caused by the
internal structure of the specific hardware accelerator, by
the structure of the issued AXI transactions (i.e., maximum
number of outstanding transactions, burst lengths, etc.), or by a
combination of these. Such stalls may be unintentionally intro-
duced by high-performance hardware components leveraging
speculative bus access (e.g., booking the bus for writing data
before they are ready to be propagated). We experimentally
evaluated that the Xilinx DPU hardware accelerator [21]
using the Vitis AI framework for acceleration of deep neural
networks on Xilinx FPGA SoC platforms [25] introduces
such stalls. However, the lack of specification of stalls on



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

Fig. 2. ILA waveform track for the test-case under analysis. HA0 delays the provisioning of the data after booking the shared bus to the DRAM memory
acting a denial of service for HA1.

the common bus introduces a mechanism that, if properly
exploited, enables a malicious/compromised hardware compo-
nent to perform a DoC of one or multiple shared components
from all of the other hardware components in the system, thus
compromising the system availability.

From the previous considerations, the security threats ad-
dressed in this work relate to the availability of the shared re-
sources, e.g., a single faulty/malicious/misbehaving hardware
component can introduce a stall on the shared bus causing a
DoS attack of one or multiple shared resources (e.g., memories
and peripherals).

B. AXI Stalls on FPGA SoC Platforms
Figure 1 illustrates a typical hardware accelerator architec-

ture implemented on a FPGA SoC platform. On the left is
the programmable logic (PL) where the hardware accelerator
components reside. The Processing System (PS) is on the right.
N hardware accelerators (HAs) are connected to one of the
subordinate ports available at the FPGA-PS interface, which
is typically used to reach a shared DRAM memory controller
(MC) placed in the PS. An AXI interconnect IAXI arbitrates the
requests issued by the HAs. Conflicts are solved using round-
robin arbitration. The generic manager hardware accelerator
HAi is connected to one of the N subordinate input interfaces
of the AXI interconnect SIi . The output manager port of IAXI
is connected to the FPGA-PS interface.

To demonstrate the bus stalling issue, we deployed multi-
accelerators architectures on two FPGA-based SoCs: Xilinx
ZYNQ-7000 and ZYNQ Ultrascale+. We built the bus ar-
chitecture using AXI SmartConnect [20], which is the state-
of-the-art AXI interconnect for Xilinx platforms. The test
architecture is composed of two hardware accelerators HA0

and HA1 accessing the DRAM memory through the AXI
SmartConnect IAXI (i.e., Figure 1 with N = 2). Each hardware
accelerator issues a single write request. The following consid-
erations also apply when the hardware accelerators issue mul-
tiple transactions. We deployed an integrated logical analyzer
(ILA) in the FPGA fabric to monitor the manager interfaces of
each hardware accelerator and the manager interface of IAXI.
Figure 2 shows the recorded ILA track for ZYNQ Ultrascale+.
We observed similar results on the ZYNQ-7000, which are not
reported for brevity. The relevant transactions are:

(1) HA0 issues its write request A0. A0 is sampled by IAXI.
Similarly, HA1 issues its write request A1.

(2) HA1 starts providing the data W1 (corresponding to A1)
to IAXI. HA0 delays the provisioning of the correspond-
ing data W0 to IAXI.

(3) IAXI propagates the requests A0 and A1 to the FPGA-
PS interface. The round-robin arbitration is won by A0,
i.e., the round-robin arbiter decides to propagate the
write request A0 before A1. The data corresponding
to A1 has already been sampled by IAXI. However,
interleaving of write transactions is forbidden [26]. Thus,
even if already buffered, the data corresponding to A1 is
not propagated by IAXI to the FPGA-PS interface until
the data corresponding to A0 is sampled by IAXI and
propagated to the FPGA-PS interface.

By delaying data provisioning, HA0 can directly affect the
availability of the output port M I of IAXI to the other hardware
accelerators in the system. The delay is fully compliant with
the standard specification – according to AXI, HA0 is free
to delay the data provision for an unbounded time. Thus,
HA1 cannot access the data write channel until the data
corresponding to A0 is provided by HA0.

C. The Source of Bus Stalls: Cut-Through Switching

Many commercial AXI interconnects, including the Xilinx
AXI SmartConnect [20], use cut-through switching (CT). In
the following, we describe the behavior of IAXI when imple-
menting CT subordinate buffers. Subsequently, we describe
how cut-through switching fails in properly handling stalls
generated by hardware accelerators.

1) Sample Write Transaction: Figure 3 reports a schematic
representation of the behavior of a generic buffer implement-
ing cut-through switching (SI,CTi ) on a sample AXI write
transaction. For simplicity, only the generic hardware accel-
erator under evaluation HAi is reported. A multi-accelerator
architecture will have N hardware accelerators, as in Figure 1.
The description is as follows: (a) HAi starts the write trans-
action issuing the address request A. In this example, A is
a four-word burst request. (b) A is sampled by SI,CTi and
immediately routed to M I . HAi starts providing the data
words corresponding to A. The data words W = W1, . . . ,W

L
4



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

 

Fig. 3. Sample write transaction under cut-through switching.

are consecutively sampled by SI,CTi . The last word of the
burst is marked by HAi as last (L) word, hence named WL

4 .
(c) W are routed through the network following the address
request A, until the last word WL

4 is sampled by the FPGA-PS
interface SPS . (d) After a service delay, SPS replies with a
write response B to acknowledge HAi about the completion
of the transaction. B is routed to HAi by IAXI. The write
transaction is completed.

2) The Stalling Problem: In step (b), SI,CTi propagates A
to M I regardless of the provisioning of the corresponding
data words W by HAi. According to the AXI standard, the
propagation of A to M I books the M I ’s write channel to
HAi, which should provide the write data W corresponding
to A. However, the AXI standard does not specify any timing
constraint on HAi to provide W after A has been propagated
to M I . HAi can arbitrarily delay the provisioning of W !
M I is the shared port among all the hardware accelerators
in the system to access the shared subordinate resource (the
memory). Therefore, as also demonstrated in the real example
of Section II-C, once A is propagated to M I and HAi does not
provide W , M I is stalled and no other hardware accelerators
in the system can access it. This means that the cut-through
buffer SI,CTi implicitly trusts HAi that once A is propagated
to M I , HAi will complete the transaction as soon as possible
providing W and then leaving the access of M I to the other
hardware accelerators in the system.

Therefore, a single malicious/misbehaving hardware ac-
celerator delaying the provisioning of the data can delay
the access to the shared resource from the other hardware
accelerators in the system, endangering the availability of the
shared memory and all of the other shared peripherals of

the PS subsystem, thus generating a DoS for all the other
hardware accelerators in the system. At this point, since AXI
requests cannot be aborted, the only method to restore a safe
condition is a full reset of the network. However, a full reset
can have dramatic consequences on a safety-critical system
and is generally not acceptable.

D. Existing Solutions and Their Limitations

The deployed switching method has a critical impact on the
safety and security of the system. Two methods are available
to prevent the bus stalling issue. We briefly introduce them in
the following.

1) AXI Stall Monitor: The AXI Stall Monitor (ASM) moni-
tors the behavior of a supervised HA and intervenes when the
HA stall endangers the schedulability of the system [15]. In
such scenarios, ASM aborts the execution of the stalling hard-
ware accelerator, safely solves the stall condition, and makes
the shared bus available to the other hardware accelerators
in the system. ASMs are configured leveraging a worst-case
analysis applying only to fully disclosed and strictly periodic
bus workloads.

2) Store and Forward: Store-and-forward switching (S&F)
is a conservative switching method alternative to the cut-
through switching [16]. Store and forward stores address write
requests and waits to propagate them (i.e., booking the bus)
until all of the corresponding data words have been received
by the interconnect. Thus, each request and the corresponding
data can be consequently propagated to M I without any stalls.
Limitations: Due to the nature of its worst-case analysis, ASM
cannot be applied to applications generating non-periodic bus
workloads. This means that ASM is not applicable to popular
safety- and security-critical systems. Moreover, experimentally
many commercial IPs introduce bus stalls as part of their
normal execution using speculative bus accesses [27], [28].
In such cases, ASM could generate a false positive affecting
the system performance. On the other hand, while S&F is
applicable regardless of the bus workload, it introduces a
long, not configurable, buffering phase that impacts the trans-
action’s latency and mandates higher resource consumption
to deploy data buffers. This makes it unpalatable for many
high-performance applications. The limitations of ASM and
store and forward leave applications characterized by non-
periodic workload with strict latency and/or area constraints
completely uncovered, and therefore potentially affected by
DoS attacks. In the following section, we describe the cut-and-
forward approach that overcomes these limitations. Section IV
provides a complete comparison of Cut and Forward with
ASM and S&F.

III. THE CUT-AND-FORWARD SWITCHING

Cut and Forward (C&F) is a configurable and easy-to-
integrate one-to-one substitute for traditional switching meth-
ods. Cut and forward enforces safe bus accesses while making
no assumption on the workload generated by the hardware
components. Moreover, it is configurable to match the perfor-
mance and resource usage requirements. Cut and forward com-
bines data buffering with a configurable, low-latency chunking



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

machine. It introduces a pipeline between data buffering and
data propagation. The cut-and-forward buffer SI,C&F

i is charac-
terized by the pipeline parameter C, corresponding to the size
of the cut-and-forward data buffer. C affects the performance
and resource usage. Thus, it can be tuned to provide a tradeoff
between performance and resource utilization to match the
requirements of a target application (see Section IV for more
details). In the following, we describe the cut-and-forward
buffering process. For simplicity, the description is reported
considering a single hardware accelerator issuing a single
request. Since each hardware accelerator has exclusive access
to its cut-and-forward buffer, the same considerations hold
when multiple hardware components issue transactions in
parallel.

Consider the situation where a hardware accelerator HAi
initiates an address write burst request A for βA words. The
C&F buffer SI,C&F

i adheres to the following rules:
Rule 1: A is buffered by SI,C&F

i .
Rule 2: If βA ≤ C, SI,C&F

i waits to receive all of the data
words corresponding to A. Then, it propagates A and W
without introducing stalls.
Rule 3: If βA > C, SI,C&F

i buffers the first C data words
W1,W2, . . . ,WC of A before booking M I . Then, SI,C&F

i

generates a C-word burst sub-request A1 and propagates it
to M I . A1 is immediately followed by W1,W2, . . . ,WC . The
C-th data word completes A1 and is marked as last by SI,C&F

i .
The data phase of A1 is completed and M I is released.
Rule 4: While propagating W1,W2, . . . ,WC to M I , SI,C&F

i

frees internal space and starts buffering the next C words of
data WC+1, . . . ,W2C corresponding to A. This introduces a
pipeline between buffering and propagation phases.
Rule 5: Once W1,W2, . . . ,WC have been propagated by
SI,C&F
i and the next C words WC+1, . . . ,W2C have been

internally buffered, SI,C&F
i generates and propagates to M I

a new C-word sub-request A2. A2 is immediately followed
by the corresponding data words WC+1, . . . ,W2C . W2C is
marked by SI,C&F

i as the last word.
Rule 6: As in Rule 4, while propagating WC+1, . . . ,W2C ,
SI,C&F
i starts buffering the next C data words. Rules 4 and 5

are repeated until all of the βA data words corresponding to
A have been propagated. SI,C&F

i splits A into Q = dβA/Ce
transactions A1, A2, . . . , AQ. If the ratio βA/C is not an
integer, the last sub-request is shorter than C words and
managed accordingly by SI,C&F

i .
Rule 7: SI,C&F

i merges the Q write responses received at the B
channel into a single response. This maintains the transparency
to HAi and the network.

Cut-and-forward buffers are AXI-compliant and fully trans-
parent to the hardware accelerators and network components.
Thus, they can be integrated into existing AXI interconnects
without requiring any modification to the hardware accelera-
tors nor the underlying FPGA SoC platform.

A. Formal Description of the Cut-and-Forward Switching
This section aims to describe the safety of our approach.

We describe all of the possible scenarios a cut-and-forward
buffer can face during execution.

Consider a sample hardware accelerator HAi initiating an
address write burst request A for βA words to the C&F
buffer SI,C&F

i . After the address write request A is sampled
and buffered by SI,C&F

i (Rule 1), two cases are possible: (i)
βA ≤ C or (ii) βA > C.

In case (i), C&F works as a store-and-forward buffer (Rule
2). A is buffered internally – the C&F buffer waits to internally
buffer all of the βA words before propagating A. This means
that the shared bus M I is booked only when all of the
corresponding βA data words are internally buffered and ready
to be propagated. At that point, the cut-and-forward buffer
propagates the request A (booking the shared bus), fulfills
the transaction, and leaves the bus for the other HAs in the
system. The burden of fulfilling the transaction is removed
from HAi (which is considered untrusted) and given to the
cut-and-forward buffer.

In case (ii), a sub-request for C-words is generated. The sub-
request is kept internally by the cut-and-forward buffer and
not propagated until C words have been internally buffered by
SI,C&F
i (Rule 3). Following the AXI standard, this means that

even if HAi stalls while providing the C words corresponding
to the sub-request, the shared bus M I has not been booked
yet, and therefore the stall is internally managed by the cut-
and-forward buffer and not propagated to M I . After the C
words have been provided by HAi and buffered inside SI,C&F

i ,
the subrequest can be completed. Once again, the burden of
completing the transaction is removed from HAi and left to
SI,C&F
i . The data propagation to the shared bus M I and the

sample of the new incoming data provided by the HA (Rule
4) are two separate processes managed by SI,C&F

i . Thus, they
do not influence each other. The following steps (reported
in Rule 5 and Rule 6) are performed by SI,C&F

i in Rule 4
and demonstrated before. The shared bus is never booked
before all of the data corresponding to a sub-request have
been sampled internally by SI,C&F

i and therefore are ready
to be propagated without stalls. Finally the write responses
are merged according to the length of the original transaction
(Rule 7). This remains in compliance with the AXI protocol
with the request issued by HAi and makes cut and forward
completely transparent to both the hardware accelerator and
the interconnect.

B. Cut and Forward Example

Figure 4 shows the behavior of the cut-and-forward buffer
SI,C&F
i on an AXI write transaction. In this example, SI,C&F

i is
configured with C = 2. The transaction proceeds as follows:
(a) HAi issues a four-word burst address write request A. (b)
A is internally buffered by SI,C&F

i . Subsequently, HAi starts
providing the data words W = W1, . . . ,W

L
4 corresponding to

A. (c) SI,C&F
i has buffered C = 2 data words associated with

A (W1 and W2). SI,C&F
i generates a two-word burst subrequest

A1 and propagates it to M I . M I is booked for two data words.
W1 and W2 have already been buffered by SI,C&F

i and can be
propagated immediately after A1. W2 is converted by SI,C&F

i

into a last data word WL
2 . In parallel with the propagation of

W1 and W2, SI,C&F
i buffers W3 and WL

4 . (d) W3 and WL
4

have been buffered into SI,C&F
i . SI,C&F

i generates a second



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

Fig. 4. Sample write transaction under Cut-and-Forward switching.

sub-request A2 for C = 2 data words. The address of A2

is calculated according to C. A2 is propagated to M I . M I

is booked for two data words. W3 and WL
4 are propagated

to M I immediately after A2. (e) After a service delay, the
FPGA-PS interface replies with the two write responses B1

and B2 corresponding to A1 and A2, respectively. B1 is the
response for A1 and it is first one to reach IAXI. S

I,C&F
i buffers

B1 while waiting for B2. (f) B2 has reached SI,C&F
i . SI,C&F

i

merges B1 and B2 into a single response B for the original
request A. B is propagated to HAi. The write transaction is
concluded.

C. Cut and Forward Scalability

For the sake of simplicity, the considerations made in
the previous sections focus on a single misbehaving hard-
ware module in the system. In this section, we extend our
discussion to the case where multiple manager hardware
components in the system concurrently misbehave. Consider
the sample architecture reported in Figure 1. Following the

AXI standard, each of the manager hardware modules in the
system is connected to a private secondary interface at the
AXI interconnect. This means that each hardware manager
interfaces exclusively with its private buffer integrated into the
AXI interconnect. When integrating cut-and-forward buffers
in the AXI interconnect, each buffer is independent of the
others, meaning that each cut-and-forward buffer manages and
contains the stalls introduced by the hardware components is
connected to independently of the behavior or state of the
other hardware components and cut-and-forward buffers in
the system. Thus, the hardware components cannot influence
each other before the transactions are validated by the cut-
and-forward buffers; multiple stalls are contained in parallel,
with no interactions among cut-and-forward buffers. From
the previous considerations, our methodology is intrinsically
able, with no modifications, to shield against bus stalls even
when stalls are introduced concurrently by multiple modules,
following the same methodology described in Section III.

IV. ANALYSIS AND FEATURES COMPARISON

In this section, we analyze the features of cut-and-forward
buffers against the other existing solutions. We leverage this
formulation later in Section V to propose a method for con-
figuring the cut-and-forward buffers for a target application.

A. Latency

We start formulating a worst-case analysis bounding the re-
sponse time of a write transaction under cut-through switching.

1) Cut-Through Switching: Consider the example from
Section II-C. A write transaction issued by HAi begins by
issuing an address write request A, which is sampled by IAXI.
The hold time for A is tA. In cut-through switching, A is
immediately propagated through IAXI after being received. The
propagation delay experienced by A is dAI . The write data W
are sequentially propagated by HAi with A through IAXI, one
word after the other. As W follows A, the propagation latency
introduced by IAXI on W is covered by dAI . The hold data time
for each word of data is tW. The generic burst length of the
transaction under analysis is βi words (any AXI-compliant
burst length is admitted). After traversing IAXI, A and W
reach the FPGA-PS interface. A and W are then routed to
the DRAM memory controller. A write response B is issued
by the MC after at most dDRAM

PS time units. We opted for a
safe coarse-grain model for the MC that considers the limited
information available for the MC deployed on commercial
platforms [29], [30]). Finally, B is propagated through IAXI
to HAi after a propagation latency dBI . The hold time for
B is tB . The memory access time dCTW for a single write
transaction under cut-through switching is:

dCTW = tA+dAI +βi ·tW +dDRAM
PS +tB+dB

I cycles (1)

2) General Formulation: The formulation introduced for
cut-through switching can be extended to cover S&F and
C&F buffers by introducing an extra term accounting for the
buffering delay. The memory access time d∗W of a single



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

write transaction for the generic switching policy has an upper
bound of:

d∗W = dCTW +H∗buff × dbuff
word cycles (2)

where dbuff
word is the buffering delay for a single data word

(generally equal to 1 cycle) and H∗buff is the maximum, per-
transaction, number of data words required to be buffered.
Thus, d∗buff = H∗buff × dbuff

word is the worst-case, per-transaction,
additional buffering latency introduced by the switching pol-
icy. While dCTW and dbuff

word are constant, H∗buff depends on the
specific switching method as follows:

HCT
buff = 0; HS&F

buff = 256; HC&F
buff = C. (3)

Equations 3 show how the buffering phase of S&F introduces
a worst-case structural buffering delay HS&F

buff equal to the
maximum burst length allowed by the AXI standard (256
words). This buffering latency introduced by store and forward
can increase more than 90% the write access time with respect
to cut-through switching (see Section VI-B). Clearly, store
and forward is not a viable solution for applications having
low-latency requirements. The pipelining effect introduced by
cut-and-forward buffers enables a customizable impact on the
maximum buffering latency via the configuration parameter C
(see Section V).

B. Resource Consumption

The buffering stage of cut-and-forward and store-and-
forward buffers requires a minimum amount of internal buffer-
ing slots for data words to work properly. This impacts the area
consumption of the AXI interconnect. We propose a simple
model for the minimum resource consumption required by
a switching method. We start considering generic resources.
Then, we target the resources required on FPGA SoC plat-
forms. The amount of required resources r∗W for the generic
single subordinate input buffer SI,∗i is modeled as:

r∗W = rlogic +H∗data × rword; generic resources (4)

where rlogic is the cost for the logic of the buffer, rword is
the resource cost of a single-word data buffer and H∗data is
the minimum required number of single-word data buffers for
the generic solution to work properly. Thus, H∗data × rword is
the overall resource cost of a generic data buffer. We expand
the generic formulation to consider FPGA resources of lookup
tables (LUTs) and flip-flops (FFs)1:{

r∗W,LUT = rLUT
logic +H∗data × rLUT

word LUTs
r∗W,FF = rFF

logic +H∗data × rFF
word FFs

(5)

where r∗W,LUT, rLUT
logic, and rLUT

word are the LUT costs and r∗W,FF,
rFF

logic, and rFF
word are the FF costs. Since CT, S&F, and C&F

have similar logic complexity, rLUT
logic and rFF

logic are comparable
between the switching methods. While rLUT

word and rFF
word are

independent of the switching method, Hdata depends on the
specific solution:

HCT
data = 0; HS&F

data = 256; HC&F
data = C; (6)

1DSPs or BRAM blocks were not required for the implementation.

Approach Features

Safe Latency
impact

Area
impact

Contains
bounded stalls

Supported
workloads

CT No Low Low No All
CT+ASM Yes Low Low No Periodic
S&F Yes High High Yes All
C&F Yes Config. Config. Yes All

TABLE I
SUMMARY OF THE FEATURES COMPARISON.

To comply with the AXI specification, store-and-forward
buffers require room for buffering at least one entire maximum
length AXI transaction (256 words). In our experimentation,
such buffering resources double the resource cost of the
interconnect in a three hardware accelerator architecture (see
Sections VI-D). Thus, store and forward does not scale well
and can be unfeasible for area-constrained applications. The
area impact of cut-and-forward buffers depends on the param-
eter C and is customizable towards the target application (see
Section V).

C. Summary of Features
Table I summarize the features of the methodologies. ASM

is able to prevent unbounded AXI stalls with no impact on
resources and latency. However, as discussed in Section II-D,
ASM show three major limitations: 1) It can be applied only
to applications characterized by strictly periodic bus workload.
2) The number of transactions issued by each HA (per-period)
must be known a-priori; 3) It is not compatible with hardware
accelerators that introduce long stalls as part of their normal
execution behavior (e.g., for speculative bus access). However,
some safety-critical applications, such as mixed-critical, are
characterized by mixed or partially unknown bus workload. In
such scenarios, store and forward is the only solution available
to enforce safe and secure bus access. Nevertheless, the strong
impact on response times and resource consumption of store
and forward may not be suitable for area-constrained and/or
low-latency applications.

Cut and forward has a configurable impact on area and
performance. Moreover, cut and forward makes the shared
bus M I independent from the behavior/misbehavior of the
hardware accelerators, shielding M I from any kind of stall
(bounded or unbounded) without requiring any assumption on
the bus workload.

V. CONFIGURING CUT-AND-FORWARD BUFFERS

This section proposes a straightforward method to find the
configuration parameter C for cut-and-forward buffers. To be
as general as possible, we suppose a typical mixed-critical
scenario where a subset ΓRT = {HART

1 , . . . ,HART
P } of P

hardware accelerators are periodic and critical, and therefore
their execution must be guaranteed within strict timing con-
straints. We leverage such timing constraints to parameterize
the cut-and-forward buffers. The other R = N − P hardware
accelerators are non-critical and execute using a best-effort
approach. The inputs considered for the analysis are:

1) Timing constraints for the write transactions: the
HART

i ∈ ΓRT must be able to complete a write transac-
tion within a deadline DW

i .



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

2) The overall resource available to implement the N
subordinate C&F buffers on the platform Roverall, split
in RLUT

overall and RFF
overall.

For the sake of simplicity, we assume that all the cut-and-
forward buffers implemented in IAXI share the same parameter
C.

A. Analysis

As the first step, we evaluate the maximum response time
of a single write transaction Ai issued by HARTi ∈ ΓRT,
considering the worst-case interference generated by the other
hardware components in the system. Due to the round-robin
arbitration implemented in IAXI, in the worst-case scenario, Ai
is delayed by N − 1 interfering address requests, each issued
by one of the N − 1 interfering hardware accelerators and
propagated before Ai by IAXI [30]. Since we are considering
C&F buffers, no stalls can happen on M I . Also, the buffering
time of interfering transactions does not delay Ai. From the
point of view of HARTi , interfering transactions can delay Ai
only after they reach M I . This means that the buffering time
of interfering transactions is only experienced by the issuer
HA, and not by HARTi ). Thus, each of the N − 1 interfering
requests can delay the service of Ai by at most dCT

W cycles.
Summing up the contributions from Equations 2 and 3, the
worst-case overall response time for Ai is equal to

δC&F
W = (N−1)×dCT

W +dC&F
W = N×dCT

W +HC&F
buff ×dword (7)

where (N − 1) × dCT
W is the worst-case interference time,

while dC&F
W is the worst-case service time for Ai. The round-

robin arbitration of IAXI makes all the hardware components
in the system experience the same worst-case interference.
Therefore, δC&F

W bounds the response time of a generic write
transaction issued by any component. Consider now that the
most critical componet is the one having the strictest deadline,
equal to DW = minHAi∈ΓRT D

W
i . Therefore, if δC&F

W ≤ DW

the deadline is guaranteed for any component in the system.
Considering now the area requirements, each cut-and-forward
buffer requires the same amount of resources (C is shared).
Thus, Roverall is equally split among the N buffers. The
single cut-and-forward buffer SI,C&F

i can occupy at most
RLUT

max = RLUT
overall/N LUTs and RFF

max = RFF
overall/N FFs. From

the previous considerations, Equation 7, and Equation 5, we
derive the following system (HC&F

buff = HC&F
data = C):

δC&F
W = N × dCT

W + C × dword ≤ DW ;

rC&F
W,LUT = rLUT

logic + C × rLUT
word ≤ RLUT

max ;

rC&F
W,FF = rFF

logic + C × rFF
word ≤ RFF

max;

(8)

Isolating C in the equations and considering that C ∈ N>0:
C ≤

⌊DW−N×dCT
W

dbuff
word

⌋
C ≤

⌊RLUT
max −rLUT

logic

rLUT
word

⌋
C ≤

⌊RFF
max−rFF

logic

rFF
word

⌋ (9)

System 9 has multiple solutions. To find the best value of
C, we note that DRAM memory controllers can implement

policies favoring long and consecutive memory accesses aim-
ing at optimizing the average throughput in high-performance
applications [18], [19]. The chunking employed by cut and
forward can interfere with such policies. The lower the value
of C, the higher the potential impact on average performance.
The solution minimizing such an effect is the maximum value
satisfying System 9 is

C = min(

⌊
Dmax

W −N × dCT
W

dbuff
word

⌋
,

⌊RLUT
max − rLUT

logic

rLUT
word

⌋
,

⌊RFF
max − rFF

logic

rFF
word

⌋
)

(10)
The interaction with average throughput is platform dependent,
conditioned on the internals of the memory controller. Such
details are unfortunately not generally disclosed by vendors.
We experimentally analyzed the impact on average perfor-
mance for the platforms under analysis in Section VI-C. Given
our focus on critical systems, for our purposes a limited impact
on average performance is an acceptable tradeoff if balanced
with the safety and security features provided by cut and
forward. We note that, in other scenarios, it is the responsibility
of the system integrator to evaluate the best tradeoff for the
application.

VI. EXPERIMENTAL VALIDATION

The performance of cut and forward is evaluated on realistic
multi-accelerator architectures deployed on commercial FPGA
SoC platforms. The architectures involve multiple hardware
accelerators sharing the main DRAM memory in the process-
ing system. It is worth noting that same considerations apply
to other popular memory configurations (e.g., accessing an ex-
ternal DRAM memory through the MIG IP in the FPGA [31])
as long as two or more hardware accelerators share the bus
for the access. Such shared-bus configurations are popular
in multi-accelerator architectures as typically peripherals and
MCs export a single [31] or limited [18], [19] access ports.
We developed a cut-and-forward buffer compliant with the
rules described in Section III in VHDL. Subsequently, we
integrated cut-and-forward buffers in the AXI HyperConnect
(AXI HC) – an open-architecture AXI interconnect for safety-
critical systems [32]. We deployed multiple setups to eval-
uate the effectiveness, performance, and area consumption
of cut and forward on designs running on Zynq Ultrascale+
(ZCU102) and Zynq Z-7020 (PYNQ) platforms. The setups
include commercial hardware accelerators, such as DMAs,
an FIR filter, and a popular hardware accelerator for DNNs.
Such setups perform different memory access patterns to
evaluate the effectiveness of our solution on multiple AXI-
compliant hardware accelerators. The results are compared
against ASM [15], cut through, and store and forward.

A. Buffering Latency

This experiment compares the buffering latency experienced
by hardware accelerators. The architecture is populated with
three Xilinx DMA IPs [28], each performing a single write
transaction to the DRAM (see Figure 1 with N = 3). We
made this choice since DMAs are programmable and are able
to mimic the behavior on the bus of any generic hardware



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

1-word 4-word 16-word 64-word 256-word

100

101

102

1 1 1 1 11

4 4 4 4

1

4

16 16 16

1

4

16

64

256
L

at
en

cy
[c

lk
cy

cl
es

]

CT and CT+ASM C&F 4-word C&F 16-word S&F

Fig. 5. Additional buffering latency on a single write transaction as a function
of its burst length. Results are reported in log scale.

component. DMAs execute with no interference. We deployed
a custom timer in the FPGA for accurate measurements. We
implemented five designs. In each design, IAXI implements: i)
cut-through buffers, ii) cut-through buffers protected by ASM,
iii) cut-and-forward buffers configured with C = 4 (C&F-4),
iv) cut-and-forward buffers configured with C = 16 (C&F-
16), and v) store-and-forward buffers. Figure 5 reports the
measured buffering latency as a function of the transaction
burst length. Results are the same for ZCU102 and PYNQ and
confirm the model proposed in Section IV. In particular, 1) The
worst-case buffering latency of store and forward is 256 clock
cycles that occurs when the DMA accesses the bus in a greedy
manner (256-word transactions). 2) C&F-4 and C&F-16 have
a worst-case buffering latency of 4 and 16 cycles, respectively,
which is independent of the burst length of the transaction. 3)
C&F-4 and C&F-16 reduce the worst-case buffering latency
by 98% and 93%, respectively, compared to store and forward.
This confirms the effectiveness of the pipelining effect of cut
and forward to reduce the buffering latency.

1 KB 4 KB
0

200

400

L
at

en
cy

[c
lk

cy
cl

es
]

16 KB 128 KB
0

0.5

1

1.5

·104

2 MB 4 MB
0

2

4

6
·105

CT and CT+ASM C&F 4-word C&F 16-word S&F

Fig. 6. Memory write access times as a function of accessed data.

B. Memory Write Access Time

In this second experiment, we evaluate the memory access
time of the solutions on multiple transactions. The architecture

CT C&F-2 C&F-4 C&F-16 C&F-32 C&F-64 S&F
0

2

4

1
.3

7

1
.2

7

1
.2

9

1
.3

3

1
.3

7

1
.3

5

1
.1

7

1
.1

4

1
.0

9

1
.1

1

1
.1

4

1
.1

4

1
.1

4

1
.1

4

4
.3

2

4 4
.0

8

4
.1

4
.1

4
.1

2
.9

6

4
.7

3

4
.3

7

4
.7

1

4
.7

2

4
.7

2

4
.7

2

4
.3

G
B

/s

4KB (PYNQ) 1MB (PYNQ) 4KB (ZCU102) 1MB (ZCU102)

Fig. 7. Average throughput comparison under contention. The hardware
accelerators are configured to access separate pages.

under analysis is the same one as the previous section. How-
ever, in this experiment, the DMAs are configured to perform
sequential write transactions to the memory. DMAs execute in
isolation. Figure 6 reports the overall write access times for
ZCU102. We obtained similar results on PYNQ, which are
not reported for the sake of brevity. The results confirm that:
1) The buffering time of store and forward strongly impacts
the write access time of the DMA. We measured an increase
in the measured average write access time of more than 90%
in all of the configurations with respect to (w.r.t.) CT. 2) Cut-
and-forward buffers have a lower impact on performance. We
measured an increase of the average write access time of the
DMA around 3% (C&F-4) and around 7% (C&F-16) w.r.t. cut
through in all of the configurations.

C. Impact on Average Throughput

Most of the DRAM memory controllers for high-
performance implement policies favoring long consecutive
accesses as introduced in Section V-A. The granularity of
such policies is typically page-wise (e.g., see [19] p.302).
The chunking performed by cut and forward could interfere
with such policies and impact the average performance. Even
though we are targeting critical systems and thus our focus
is mainly on the maximum latency of the transactions, this
experiment aims at evaluating the impact on the average
performance of cut and forward on the platforms under
analysis. We implemented a test setup composed of two
hardware accelerators, each concurrently writing a private
buffer sizing 4KB (one page) or 1MB (256 pages). To highlight
the maximum performance impact, we placed the buffers on
separate physical pages. We setup the hardware accelerators to
request maximum allowable throughput to the DRAM memory
controller, setting up for each platform: i) maximum allowed
bus width (PYNQ: 64bit, ZCU102: 128bit); ii) maximum
FPGA clock (PYNQ: 250Mhz. ZCU102: 330Mhz); iii) most
greedy access from hardware accelerators, issuing maximum-
size burst transactions.

We deployed seven designs to compare CT, store and
forward, and 5 configurations of cut and forward. Figure 7



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

HC CT HC S&F HC C&F-4 HC C&F-16 SC CT
LUT 2950 5902 3088 3099 3785
FF 1228 1696 1467 1479 7137

TABLE II
AREA COMPARISON FOR THE ZCU102 PLATFORM.

reports the average bandwidth measured on 1000 runs, ob-
tained by dividing the overall, per-run exchanged data for
the measured execution time. The considerations follow: 1)
The maximum measured impact on average throughput for
cut and forward is for C&F-2 and at most 8% w.r.t. cut
through. 2) As expected, the impact decreases for higher
values of C, e.g., C&F-16 impacts at most 5% the average
throughput w.r.t. cut through. This effect is due to a better
tradeoff for average throughput between increased signaling
on the address channel and the pipelining effect introduced
by cut and forward. It is worth noting that the best trade-
off for average throughput can depend on the optimizations
policies implemented in the interconnect and peripherals of the
platform under evaluation.2 For the platform under analysis,
all of the other tested configuration of cut and forward (except
C&F-2) shows similar average performance. 3) The maximum
impact of cut and forward on average performance is minor or
comparable with store and forward. This confirms that, even
though we target latency and resource consumption as major
evaluation metrics, cut and forward has never demonstrated a
higher impact on average performance with respect to store
and forward. Such results are also confirmed by the limited
performance impact measured in the real scenario reported in
Section VI-E.

D. Resource Consumption

Table II reports the LUTs and FFs consumption for the
AXI HyperConnect in the designs deployed in Section VI-B
(ZCU102). The cost of the vendor infrastructure AXI Smart-
Connect deploying cut-through buffers is also reported for
comparison (SC CT). The results show that: 1) Store-and-
forward buffers require +100% LUTs and +38% FFs for the
AXI HC with respect to cut-through buffers. The synthesis tool
(Xilinx Vivado) uses more LUTs than FFs to deploy the larger
store-and-forward buffer. 2) Cut-and-forward buffers have a
lower impact on the footprint of AXI HC. 3) C&F-4 has an
impact 48% and 14% lower with respect to S&F, on LUT and
FF, respectively. The area impact on LUT and FF is 47% and
13% reduced with respect to S&F when considering C&F-
16. This confirms that the area impact of cut-and-forward
buffers is controllable and depends on the size of the input
buffer, i.e., the parameter C. 4) AXI HC deploying cut-and-
forward buffers show lower resource impact with respect to
AXI SmartConnect in both of the tested configurations.

2This work focuses on latency-critical tasks and therefore addressing the
best average performance is beyond the scope of this paper. This experiment
has been designed to confirm the configurable impact on the average perfor-
mance of our technique.

E. Mixed-Critical Application Case Study

This last experiment is a case study aiming at demonstrating
the features and performance of cut-and-forward buffers on a
typical mixed-critical application scenario. We populated the
architecture with three popular commercial hardware acceler-
ators: a Xilinx FIR filter IP [33] HART1 , a general-purpose
DMA HADMA

2 , and the CHaiDNN hardware accelerator [27]
HADNN

3 . The hardware accelerators share the memory in
the processing system to collaborate in the execution with
the processors. Each HA is activated by a software task
running in the processing system: HART1 is activated by a
periodic and critical software task SWRT . When activated,
HART1 issues ten 256-word read burst transactions (4KB
each), processes the data, and then writes the result to the
shared DRAM issuing ten 256-word burst transactions. The
entire read-process-write execution must complete within a
given deadline DRT

1 . HART1 is an accelerator used by SWRT

to process the data of a critical sensor. A deadline miss of
HART1 can have fatal consequences. HADMA

2 is a general-
purpose DMA that can be activated by non-critical SW-tasks.
For instance, HADMA

2 is used to move data by a non-critical
audio/video processing software task. HADNN

3 is leveraged by
the CHaiDNN software task SWDNN to obtain the maximum
execution rates of a quantized DNN model for classification
operating on images. We suppose that HADNN

3 must process
a minimum required amount of frames per second (FPS) to
avoid dangerous conditions. HART1 produces a periodic bus
workload (activated periodically by SWRT ). However, the bus
workload of HADMA

2 is unknown and SWDNN makes HADNN
3

greedily adapt to the generated bus workload according to
the instant bandwidth availability. This means that the overall
bus workload is not fully periodic. This case study cannot be
protected from denial of service using ASM. Thus, we imple-
mented four designs, considering the tested configurations of
the previous experiment except the one using ASMs: i) CT
buffers, ii) C&F buffers, configured with C = 4 (C&F-4), iii)
C&F buffers, configured with C = 16 (C&F-16), and iv) S&F
buffers.

(a) No stalls (b) HADMA
2 stalls

0

20

40

60

80

R
es

po
ns

e
tim

es
(µ
s

)

SW RT (HART
1 )

CT C&F 4-word C&F 16-word S&F

(a) No stalls (b) HADMA
2 stalls

0

20

40

Fr
am

e
pe

r
Se

co
nd

(F
PS

)

SWDNN (HADNN
3 )

Fig. 8. Measured timing performance for the case-study.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

1) Considered Scenarios: For each of the designs, we
tested two scenarios: a) concurrent execution of SWRT and
SWDNN (HADMA

2 not in use and b) concurrent execution
of SWRT and SWDNN while HADMA

2 triggers a misbe-
haviour stalling the bus. The misbehaviour of HADMA

2 may
be due to various reasons – HADMA

2 is assumed to be
a generic faulty/malicious/misbehaving/misconfigured compo-
nent. To showcase the worst-case scenario, we configured
HADMA

2 to stall the bus indefinitely. This corresponds to
the case in which HADMA

2 introduces a permanent fault in
the system, e.g., due to bad development/testing or it is
maliciously exploiting such lack of specification to attack the
availability of the shared DRAM memory. It is worth noting
that limited stalls have similar capabilities to threaten the
safety and security of the system.

The average performance measured for ZCU102 on Sce-
nario a) and b) are reported in Figure 8 as response times for
SWRT (lower is better) and FPS for SWDNN (higher is better).
We could not deploy this design on PYNQ due to limited avail-
ability of resources. The performance of SWRT and SWDNN

strictly depends on the performance of the leveraged HA,
respectively, HART1 and HADNN

3 . Considering Scenario a), the
average measured response time of SWRT associated with CT
is 52 µs. The same response time associated with store and
forward is 78 µs, corresponding to an increase of around 50%
with respect to cut through. The measured increase confirms
that the long buffering time introduced by store-and-forward
buffers in the writing phase of HART1 strongly impacts the
performance of memory-intensive hardware accelerators. Cut-
and-forward buffers show a significantly lower impact: we
measured an average response time of SWRT equal to 54 µs
(C&F-4) and 55 µs (C&F-16), corresponding to an increase
of just 4% and 6%, respectively, with respect to CT. Consid-
ering SWDNN, we measured a smaller performance impact of
store-and-forward buffers. This depends on the less memory
intensity of HADNN

3 with respect to HART1 and confirms
that store and forward has a higher performance impact on
memory-intensive tasks. Also, such results confirm the limited
impact on average performance introduced in Section VI-C on
a realistic case-study.

Concerning Scenario b), Figure 8 does not report any
result associated with cut-through buffers. This is because cut-
through buffers are not able to contain the misbehavior of
HADMA

2 – the shared bus M I is stalled and the availability
of the shared memory is compromised for HART1 and for
HADNN

3 . The response time of SWRT is unbounded and
SWDNN executes 0 FPS – any timing requirement is broken
a priori. Store and forward and cut and forward are able to
keep the availability of the memory for HART1 and HADNN

3

and therefore the critical functionalities running. The measured
performances are equal to the one measured in Scenario a),
confirming the higher performance impact of store and forward
and the ability of cut and forward of making any hardware
component independent from other misbehaving hardware
components. The bus access is predictable and HART1 and
HADNN

3 can address their timing requirements regardless of
the misbehavior of HADMA

2 .

VII. RELATED WORKS

The research community and the industry proposed several
solutions specifically addressing safety and security on com-
mercial FPGA SoC platforms. Pagani et al. [34] introduced a
method to predictably redistribute and allocate the bus band-
width to the hardware accelerators. Restuccia et al. proposed
the AXI HyperConnect [32], a research AXI interconnect for
the management of the hardware accelerators from hypervisor
technologies and a method to guarantee fair bandwidth dis-
tribution among multiple hardware accelerators deployed in
modern FPGA SoCs [24]. Rahmatian et al. [35] proposed a
method to detect software intrusion through specific modules
deployed in the FPGA logic. Kyung et al [36] and Moro et
al. [37] proposed two solutions to monitor the AXI traffic
generated by the hardware accelerators and eventually react to
critical situations by performing a reset of the system network.

The research community also spent multiple efforts propos-
ing arbitration policies for on-chip interconnects aiming at
improving the throughput and predictability of the system
interconnect [38]–[41]. Modern commercial FPGA SoC plat-
forms integrate blocks for the management of the Quality-
of-Service in the Processing System (see [18], p.375) and
mechanisms for isolating bus managers (see [18], p. 366).
The Xilinx AXI protocol firewall IP is a tool for decoupling
and protecting portions of AXI interconnections. Since its
version 1.1 [42], it can be configured to timeout on bus stalls,
behaving similarly to ASM [15]. In safety-critical systems, this
methodology requires the application of a worst-case analysis
requiring the full knowledge of the bus traffic generated by
the hardware accelerators in the system. This is generally not
possible in systems integrating hardware accelerators gener-
ating best-effort traffic on the shared bus, as in the case of
mixed-critical applications. Moreover, it is worth mentioning
that stalls propagation impacts the system performance.

VIII. CONCLUSIONS

Commercial FPGA SoCs can be affected by unbounded
stalls of the bus that can compromise the availability of the
shared resources and cause denial of service. This is a critical
issue for safety-critical and security-critical applications and
prevents any execution timing guarantee. This paper proposed
Cut and Forward, a novel configurable switching methodology
targeting safety and security in FPGA SoCs. Cut-and-forward
buffers shield the system against misbehaving/malicious hard-
ware accelerators independently of the bus workload and
keeping its impact on area and performance under control. The
experiments demonstrated the applicability of cut-and-forward
buffers in realistic scenarios deployed on commercial FPGA
SoCs.

REFERENCES

[1] M. Wirthlin, “High-reliability fpga-based systems: space, high-energy
physics, and beyond,” Proceedings of the IEEE, vol. 103, no. 3, pp.
379–389, 2015.

[2] R. B. Atitallah, V. Viswanathan, N. Belanger, and J.-L. Dekeyser,
“Fpga-centric design process for avionic simulation and test,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 54, no. 3, pp.
1047–1065, 2017.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 12

[3] G. Serra, P. Fara, G. Cicero, F. Restuccia, and A. Biondi, “Pac-pl:
Enabling control-flow integrity with pointer authentication in fpga soc
platforms,” in 2022 IEEE 28th Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE, 2022, pp. 241–253.

[4] L. Qiao, G. Luo, W. Zhang, and M. Jiang, “Fpga-accelerated iterative
reconstruction for transmission electron tomography,” in 2021 IEEE
29th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2021, pp. 152–156.

[5] F. Restuccia and A. Biondi, “Time-predictable acceleration of deep
neural networks on fpga soc platforms,” in 2021 IEEE Real-Time
Systems Symposium (RTSS). IEEE, 2021, pp. 441–454.

[6] M. Damschen, L. Bauer, and J. Henkel, “Corq: Enabling runtime
reconfiguration under wcet guarantees for real-time systems,” IEEE
Embedded Systems Letters, vol. 9, no. 3, pp. 77–80, 2017.

[7] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood, and R. Kastner, “In-
formation flow isolation in i2c and usb,” in 2011 48th ACM/EDAC/IEEE
Design Automation Conference (DAC). IEEE, 2011, pp. 254–259.

[8] H. M. Wassel, Y. Gao, J. K. Oberg, T. Huffmire, R. Kastner, F. T. Chong,
and T. Sherwood, “Networks on chip with provable security properties,”
IEEE Micro, vol. 34, no. 3, pp. 57–68, 2014.

[9] C. H. Gebotys and R. J. Gebotys, “A framework for security on noc
technologies,” in IEEE Computer Society Annual Symposium on VLSI,
2003. Proceedings. IEEE, 2003, pp. 113–117.

[10] AMBA® AXI™ and ACE™ Protocol Specification, ARM, IHI 0022D.
[11] A. Dhavlle, R. Hassan, M. Mittapalli, and S. M. P. Dinakarrao, “Design

of hardware trojans and its impact on cps systems: A comprehensive
survey,” in 2021 IEEE International Symposium on Circuits and Systems
(ISCAS), 2021, pp. 1–5.

[12] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor,
“Hardware trojans: Lessons learned after one decade of research,” ACM
Trans. Des. Autom. Electron. Syst., vol. 22, no. 1, may 2016. [Online].
Available: https://doi.org/10.1145/2906147

[13] J. Rajendran, E. Gavas, J. Jimenez, V. Padman, and R. Karri, “Towards
a comprehensive and systematic classification of hardware trojans,” in
Proceedings of 2010 IEEE International Symposium on Circuits and
Systems, 2010, pp. 1871–1874.

[14] A. Meza, F. Restuccia, and R. Kastner, “Safety verification of third-party
hardware modules via information flow tracking,” in 1st Real-time And
intelliGent Edge computing workshop (RAGE) co-located with the 2022
59th Design Automation Conference (DAC).

[15] F. Restuccia, A. Biondi, M. Marinoni, and G. Buttazzo, “Safely Pre-
venting Unbounded Delays During Bus Transactions in FPGA-based
SoC,” in 2020 IEEE 28th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). IEEE, 2020.

[16] S. Lam, “Store-and-forward buffer requirements in a packet switching
network,” IEEE Transactions on Communications, vol. 24, no. 4, pp.
394–403, 1976.

[17] Platform Designer System Design Tutorial, Intel Corp., aN 812.
[18] Zynq UltraScale+ - Technical Reference Manual, UG1085, Xilinx.
[19] Zynq-7000 - Technical Reference Manual, UG585, Xilinx.
[20] SmartConnect, LogiCORE IP Product Guide, Xilinx, 2018, pG247.
[21] Zynq DPU Product Guide, Xilinx-AMD, pG338.
[22] AXI CDMA, LogiCORE IP Product Guide, Document number PG034,

Xilinx.
[23] F. Restuccia, A. Meza, and R. Kastner, “Aker: A design and verification

framework for safe and secure soc access control,” in 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD). IEEE,
2021, pp. 1–9.

[24] F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo,
“Is your bus arbiter really fair? restoring fairness in AXI interconnects
for FPGA SoCs,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 18, no. 5s, p. 51, 2019.

[25] Vitis AI User Guide, Xilinx, uG1414v1.3.
[26] AMBA AXI and ACE Protocol Specification, ARM, 2011.
[27] CHaiDNN official github., Xilinx, https://github.com/Xilinx/chaidnn.
[28] AXI CDMA, LogiCORE IP Product Guide, PG034, Xilinx.
[29] H. Yun, R. Pellizzon, and P. K. Valsan, “Parallelism-aware memory

interference delay analysis for cots multicore systems,” in 2015 27th
Euromicro Conference on Real-Time Systems. IEEE, 2015, pp. 184–
195.

[30] F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo,
“Modeling and Analysis of Bus Contention for Hardware Accelerators
in FPGA SoCs,” in 32st Euromicro Conference on Real-Time Systems
(ECRTS 2020), 2020.

[31] UltraScale Architecture-Based FPGAs Memory IP v1.4, Xilinx, 2021,
pG150.

[32] F. Restuccia, A. Biondi, M. Marinoni, G. Cicero, and G. Buttazzo, “Axi
hyperconnect: A predictable, hypervisor-level interconnect for hardware
accelerators in fpga soc,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2020, pp. 1–6.

[33] FIR Compiler, LogiCORE IP Product Guide, Xilinx Inc., 2018, pG149.
[34] M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, and G. But-

tazzo, “A bandwidth reservation mechanism for AXI-based hardware
accelerators on FPGAs,” in 31st Euromicro Conference on Real-Time
Systems (ECRTS). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2019.

[35] M. Rahmatian, H. Kooti, I. G. Harris, and E. Bozorgzadeh, “Hardware-
assisted detection of malicious software in embedded systems,” IEEE
Embedded Systems Letters, vol. 4, no. 4, pp. 94–97, 2012.

[36] H.-m. Kyung, G.-h. Park, J. W. Kwak, T.-j. Kim, and S.-B. Park, “Design
and implementation of performance analysis unit (pau) for axi-based
multi-core system on chip (soc),” microprocessors and microsystems,
vol. 34, no. 2-4, pp. 102–116, 2010.

[37] A. Moro, F. Federici, G. Valente, L. Pomante, M. Faccio, and V. Muttillo,
“Hardware performance sniffers for embedded systems profiling,” in
2015 12th International Workshop on Intelligent Solutions in Embedded
Systems (WISES). IEEE, 2015, pp. 29–34.

[38] T. D. Richardson, C. Nicopoulos, D. Park, V. Narayanan, Y. Xie, C. Das,
and V. Degalahal, “A hybrid soc interconnect with dynamic tdma-based
transaction-less buses and on-chip networks,” in VLSI Design, 2006.
Held jointly with 5th International Conference on Embedded Systems
and Design., 19th International Conference on. IEEE, 2006, pp. 8–pp.

[39] P. Burgio, M. Ruggiero, F. Esposito, M. Marinoni, G. Buttazzo, and
L. Benini, “Adaptive tdma bus allocation and elastic scheduling: A
unified approach for enhancing robustness in multi-core rt systems,”
in Computer Design (ICCD), 2010 IEEE International Conference on.
IEEE, 2010, pp. 187–194.

[40] H. Shah, A. Raabe, and A. Knoll, “Priority division: A high-speed
shared-memory bus arbitration with bounded latency,” in Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE), 2011.
IEEE, 2011, pp. 1–4.

[41] K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “The lotterybus
on-chip communication architecture,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 14, no. 6, pp. 596–608, 2006.

[42] AXI Protocol Firewall IP v1.1, Xilinx, 2021, pG293.

Francesco Restuccia is a postdoctoral researcher at
the University of California San Diego. He received
his Ph.D. in Computer Engineering (cum laude)
from Scuola Superiore Sant’Anna Pisa in 2021. His
main research interest includes hardware security
and safety for hardware acceleration on heteroge-
neous platforms, cyber-physical systems, and time
predictable hardware acceleration of deep neural
networks on commercial FPGA SoC platforms.

Ryan Kastner is a professor in the Department
of Computer Science and Engineering at UC San
Diego. He received a PhD in Computer Science at
UCLA, a masters degree in engineering and bache-
lor degrees in Electrical Engineering and Computer
Engineering from Northwestern University. His cur-
rent research interests include hardware acceleration,
hardware security, and remote sensing.


