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Abstract—Training a neural network is a complicated and
time-consuming task that involves adjusting and testing different
combinations of hyperparameters. One of the essential hyper-
parameters is the learning rate, which balances the magnitude
of changes at each training step. We introduce an Adaptive
Scheduler for Learning Rate (ASLR) that significantly lowers
the tuning effort since it only has a single hyperparameter.
ASLR produces competitive results compared to the state-of-the-
art for both hand-optimized learning rate schedulers and line
search methods while requiring significantly less tuning effort.
Our algorithm’s computational cost is trivial and can be used to
train various network topologies included quantized networks.

I. INTRODUCTION

Training a neural network is a time-consuming process that
often requires a great deal of optimization of the hyperparame-
ters to achieve a high-quality result. For example, in supervised
learning, one has to select an initialization method to start
the training, a cost function and an optimizer to perform the
training, and a budget of epochs or a target accuracy to stop
the training. The training process also involves other choices,
such as input normalization, pruning methods, Etc.

Each method or function selected for training comes with
a set of hyperparameters that must be tuned. For example,
Stochastic Gradient Descent (SGD), which forms the core of
many training algorithms, is defined as:

θi+1 = θi − λig(θi) (1)

SGD iteratively updates the network parameters θ (e.g.,
weights and biases) by multiplying the learning rate λ by the
derivative of the cost function g(θ) and subtracting it from
the parameters. The training script calculates the cost function
using a subset of the training set. The size of this subset is
called batch size. Throughout this work, we use ∇F (θ) to
refer to the gradient of the cost function in Batch Gradient
Descent and g(θ) to refer to the gradient of the cost function
in SGD.

Unfortunately, there are no concrete rules to select the exact
values for hyperparameters. Moreover, their optimum values1

heavily depend on the application, the network topology, and
choices made for other training parameters. For example,
applying quantization to the network parameters requires re-
adjusting both hyperparameters (learning rate and batch size)
in Equation 1 [1].

1It cannot be proved that hyperparameter values are optimum. Therefore it
is loosely used to refer to their acceptable values.

Ideally, users can fallback on existing hyperparameters that
were meticulously tweaked by experts. However, if this fails
to achieve the required results, the user resorts to guessing the
initial hyperparameters and proceeds to fine-tune the parame-
ters [2], [3]. This tuning process is often a time-consuming task
whose outcome depends on the initial guess, user experience,
and a bit of luck.

The learning rate is one of the essential hyperparameters in
a training process [4]–[6]. In this work, we aim to reduce the
complexity of tuning the learning rate. We introduce an Adap-
tive Scheduler for Learning Rate (ASLR) that automatically
adjusts the learning rate throughout the training process. Our
scheduler is particularly useful for training a network with no
provided learning rate since it has only one hyperparameter to
tune. Our adaptive learning rate scheduler achieves competitive
results compared to existing state-of-the-art and (manually)
fine-tuned schedulers with multiple user-defined parameters.

The primary contributions are as follows.
• We introduce a novel adaptive learning rate scheduler

with a single user-defined parameter and low tuning
complexity. This algorithm can achieve competitive re-
sults compared to hand-tuned schedulers and line search
methods, and its computational cost is trivial.

• We release our code as open-sourced to enhance acces-
sibility and aid in future comparisons of our work.2

The remainder of this paper is organized as follows. Sec-
tion II provides the necessary background material related
to the complexity of learning rate tuning. Common trends
and techniques for learning rate adjustment are reviewed in
Section III. Our proposed algorithm is explained in Section IV.
Experiment results are provided in Section V and conclusions
are provided in Section VI.

II. COMPLEXITY OF LEARNING RATE TUNING

Learning rate is perhaps the most important hyperparameter
to tune [7], and in general, it is not possible to calculate the
best learning rate a priori [8]. In the following, we provide a
brief review of why learning rate tuning is complex and vital.

a) Complexity of loss surface: Gradient descent algo-
rithm iteratively updates the network parameters by using the
first derivative of a cost function. This process provides a
direction and a value for changing each trainable parameter
to minimize the cost function. However, the first derivative
provides a rough estimate of the underlying curvature. To

2github.com/Xilinx/AdaptiveSchedulers



improve this process, one can use the learning rate to control
the magnitude of the change. A large learning rate causes more
significant changes to the parameters, while a small learning
rate results in smaller changes at each step of the training
process.

Figure 1 shows a simple example of a loss function and its
underlying surface (i.e., loss surface). Function F has only one
parameter θ, and its underlying curvature has one dimension.
At step 1, the red arrow indicates the direction of change
for θ to decrease the value of F . The learning rate controls
the amount of change in that direction. In this example, if
the learning rate is set too small, the search process will get
stuck around the local minima (θL), and the optimal minima
(θO) will not be obtained. A large learning rate will result in
the search moving too far in the wrong direction (away from
the optimal result θO), making the search process longer and
possibly leaving it to diverge.

The complexity of a loss surface calculated for a network
directly correlates with the number of trainable parameters in
that network. In a real-world network, the curvature of a loss
surface can depend on tens of millions of parameters [9]–[12].
Therefore calculating or estimating a ”good” learning rate can
be a challenging and expensive-to-compute task [13].

Fig. 1. A sketch of a loss surface with only one parameter. At θ = θ1 the red
arrow shows the direction of change in θ for descending F . The learning rate
controls the size of the change. A small learning rate holds the optimization
process around θL. A large learning rate results in a value farther from θO .

b) Dependency on other training parameters: Equation
1 is typically augmented in an attempt to improve the training
results. A common technique used for enhancing SGD is
momentum, which regularizes the changes at each step based
on the variance of the cost function:

θi+1 =θi − λivi
vi =βvi−1 + (1− β)g(θi)

(2)

If used correctly, adding momentum improves the training
process. At the same time, it adds additional hyperparameters
that must be tuned, e.g., momentum has one additional tun-
able parameter, β. Other techniques to improve training also
introduce new hyperparameters, e.g., weight decay [14]. In
many cases, these hyperparameters can affect each other. For
example, the learning rate loosely affects the momentum [15]
and is strongly related to the batch size [16].

Training a neural network typically requires the tuning of
tens of hyperparameters. A large number of hyperparameters
makes the tuning process more challenging. Tuning these

hyperparameters is a NP-complete problem [13], [17]. For ex-
ample, hyperparameters available for training the most popular
networks result from many trial and error attempts made by
many contributors and are considered ”finely-tuned”. However,
for any of those pairs (set of hyperparameters, network), it
cannot be proved that the set is optimal for training its network.
It is possible that another set of hyperparameters exists that
can improve the training results for the network.

One way to relax this complexity is to reduce the num-
ber of hyperparameters. This reduction should not reduce
the network’s performance. In this work, we introduce a
learning rate scheduler with a single user-defined parameter
and demonstrate our proposed technique’s performance by
comparing its results with state-of-the-art techniques with
finely-tuned parameters.

III. COMMON PRACTICES FOR LEARNING RATE TUNING

In the following, we review four main trends in learning rate
tuning, including their complexity, benefits, and disadvantages.
Our work is inspired by these methods.

Before starting our review, we should clarify that in each
method, only a number of user-defined parameters require
careful tuning. These parameters are commonly referred to
as hyperparameters. Other parameters that require trivial or
no tuning are frequently referred to as default parameters.

A. Second Order Information

If the loss function F (θ) is infinitely differentiable at θ, the
result of a small change in its input can be calculated using a
Taylor decomposition:

F (θ + δθ)− F (θ) = δθ

1!
F ′(θ) +

(δθ)2

2!
F ′′(θ) +R2(θ) (3)

Here, R2(θ) is the Taylor remainder of order two. A good
estimate for learning rate can be calculated by assuming
R2(θ) ≈ 0, taking a derivative with regards to δθ from both
sides, and setting ∂(F (θ + δθ)− F (θ))/∂δθ to zero:

0 = F ′(θ) + δθF ′′(θ) (4)

Solving Equation 4 for δθ, results in −F ′(θ)/F ′′(θ).
Rewriting it in a more familiar form yields: δθ = −∇F (θ)/H .
By comparing this result with the batch gradient descent
equation θi+1 = θi − λ∇F (θ), it can be concluded that an
optimum learning rate is equal to the inverse of Hessian matrix
of F .

Although that λ = H−1 can provide a good approximation
for learning rate3, calculating the inverse of a large Hessian
matrix is expensive. Moreover, using second order information
in training increases the sensitivity to sharp minima. We
discuss these drawbacks in more detail in the following.

3We assumed R2(θ) ≈ 0.



a) Complexity: Calculating the inverse of the Hessian
matrix has O(n3) complexity4 where n is the number of
trainable parameters in the network. Calculating this for mod-
ern networks with tens of millions of trainable parameters is
computationally infeasible. An approximation of the Hessian
matrix can be calculated by estimating its largest eigenvalue
and the corresponding eigenvector using the power iteration
method. However, the cost is still 10× greater than a single
calculation for gradient [5]. To improve this approximation,
some methods use a layer-wise approximation. While a layer-
wise approach can improve the training results, it can also
increase the number of user-defined parameters. For example,
the method proposed by [18] has 13 user-defined parameters.

The complexity of using second order information for
estimating the learning rate can be relaxed to O(n1.5) [6].
Instead of calculating the Hessian matrix, they introduce a
notion of distance, G(θ).

By solving G(θ) using Kullback–Leibler divergence, they
achieved a Fisher matrix for G(θ) that can be factorized into a
Kronecker product of two smaller matrices. Then they create
a model based on the approximated distance. By comparing
this model with training results, they determine a trust region
(a norm ball) to control and adjust the learning rate at each
step.

b) Sensitivity: Techniques that utilize second order in-
formation are generally sensitive to sharp minima [19], [20].
Using second order information may also lead to a reduction
in the generalization of the network accuracy. It is unclear why
deep neural networks generalize well [21], but one common
belief is that SGD finds wide minima, which in turn tends to
generalize better [20], [22]. Thus, it may be beneficial to avoid
such sharp minima, and utilizing second order information
makes that less likely.

B. Adaptive Optimization Methods
A popular approach for regularizing the learning rate

throughout the training is extracting useful information from
previous steps [4], [23]–[25]. This can be done by using
averaging methods and estimating the first or second moments
(or both) of the gradient. Exponential Moving Average (EMA)
is a commonly used technique employed in these methods:

EMAi(g) = βEMAi−1(g) + (1− β)g(θi) (5)

This equation calculates a biased average. Dividing the
result by (1− βi) can correct the bias.

Using a moving average results in smaller values when the
input (g in Equation 5) has a large variance. For example,
SGD with momentum (SGDM) uses a single EMA to dampen
the learning rate when the variance is too high (Equation 2).

ADAM [4] uses two EMAs:

θi+1 = θi − λ
ÊMAi(g)√

ÊMAi(g2) + ε

(6)

4By using optimized CW-like algorithms, this complexity can be reduced
to O(n2.373)

where ÊMA is bias-corrected EMA. Moving averages can
calculate an expectation for their input: ÊMA ≈ E[g]. And
the first and second moments are related as: E[g2] = E2[g] +
var(g). Therefore, the fractional portion in Equation 6 has an
inverse correlation with var(g) and the effect of the learning
rate (λ) is regularized based on the variance of g.

With an increase in user-defined parameters, adaptive opti-
mization methods can provide a fast decay in cost function at
the beginning of the training. However, in some cases, they
produce a poor generalization [23]. In the following, we review
this drawback for these methods.

a) Reducing variance: There are two sources for vari-
ance when calculating SGD (g(θ)). One is due to the under-
lying pathological curvature of the loss function. The other is
related to the sampling of mini-batches that do not fully rep-
resent the entire data set. The variance plays an essential role
in the optimization process, as we describe in the following.

Referring back to Figure 1, the derivative of F (θ) provides
the direction of search. If the learning rate is not small enough,
it is unlikely to reach θL; the search process will cause θ to
move back and forth near θL. This increases the variance in
∇F (θ). Using an adaptive optimization method, an increase
in variance can reduce the effect of the learning rate. E.g.,
in Equation 2, an increase in variance results in a smaller vi
and, therefore, λvi becomes a smaller value, which forces the
algorithm to take smaller steps.

However, for large datasets, ∇F (θ) is not used. Instead,
its stochastic estimate, g(θ), is calculated using mini-batches
in the SGD algorithm. This estimation itself comes with a
variance [16]:

SGD fluctuation ∝ learning rate
batch size

(7)

In many applications, the SGD variance - more commonly
known as the SGD noise - can improve the training results.
Using a smaller batch size (which typically results in higher
SGD noise) is encouraged for achieving a better generalization
[26]. For these applications, moving averages can depress the
generalization by reducing the SGD noise.

C. Schedulers

By using a set of user-defined parameters, schedulers adjust
a global learning rate or a set of per-layer learning rates (in
exchange for an increase in the complexity of hyperparameter
tuning) throughout the training process. For example, in multi-
step decay, the user sets a starting value, a set of milestones,
and a set of decays for each milestone, to adjust a global
learning rate during the training process.

A scheduler provides a way to adjust the learning rate at
virtually every step of the training. The main disadvantage of
using schedulers is their tuning process. Typically, a user starts
with a guess or a suggestion from the literature and fine-tunes
these parameters using their experience and trial and error.
This process can be very time-consuming.

Another common practice for learning rate adjustment is
pairing a scheduler with an adaptive optimizer. While this



can combine both approaches’ benefits, it also requires fine-
tuning user-defined parameters for both the scheduler and the
optimizer in addition to selecting the right combination for the
(scheduler, optimizer) pair.

D. Methods with Line Search

These methods monitor one of the training metrics, such as
validation or training loss, to adjust the learning rate during
the training [7]. A variety of line search methods have been
proposed in previous work. L4 [27] requires five user-defined
parameters. It maintains a minimum attainable loss throughout
the training, and by locally linearizing the loss at each step,
it solves a linear equation to calculate the next best learning
rate. L4 can be unstable [28].

In [29], authors use a probabilistic belief over the Wolfe
conditions [30] to monitor the descent and use a line search to
calculate the next best learning rate. This line search requires
second order information 5. As mentioned in Section III-A,
using second order information can be costly and sensitive to
sharp minima.

A less computationally expensive estimation of an upper
bound for a good learning rate can be obtained from the Armijo
condition [31]. Based on this condition a ”good” learning rate
should give a sufficient decrease in loss function (Figure 2)6:

F (θi + λpi) ≤ F (θi) + cλ∇FT
i pi (8)

Here, pi is the direction of change, 0 < c < 1, and ∇FT
i pi

is the directional derivative. Line search algorithms benefit
from Armijo condition to search for a good learning rate [13].

Fig. 2. Armijo condition: a ”good” learning rate should give sufficient
decrease in loss function. Here, Φ(λ) = F (θi + λpi) and l(λ) = F (θi) +
cλ∇FT

i pi are left and right sides of Equation.8, respectively. Acceptable
values for ”good” λ are when Φ(λ) < l(λ).

More straightforward line search methods have shown better
results. Authors in [28] use the Armijo condition in a line
search and showed improvements on SGD and faster conver-
gence compared to previous work [4], [24], [32]–[35]. ASLR
relates to this category because of its search algorithm. And
it differs from this category because it does not perform a
search after each step. Instead, it schedules a learning rate for

5http://tinyurl.com/probLineSearch
6Figure is created based on a drawing from [13]

the next epoch. Therefore, ASLR has a trivial computational
cost.

IV. ASLR

The intuition behind using schedulers is that there exists a
global learning rate (or a set of learning rates, one per layer)
that can produce a target result for a training process. By
fine-tuning the scheduler parameters, a user tries to find these
”good” learning rates based on the training process’s outcome
and using a validation set.

Adjusting learning rate based on changes in training error
is likely to result in poor generalization similar to adaptive
optimization methods (Section III-B) and second order infor-
mation (Section III-A). As mentioned in [7], the learning rate
should decay each time the validation error plateaus.

Theoretically, a decaying learning rate is necessary to guar-
antee convergence of SGD [36]. It is empirically shown that
keeping the learning rate constant or decaying it cautiously
often works better [29]. Also, a decay-only policy may get
stuck around a local minima (Figure 1). In ASLR, similar to
methods based on the second order information, we allow both
increase and decrease in learning rate throughout the training.

In our proposed scheduler, a user fine-tunes a starting
value for the learning rate, and then after each epoch, the
validation error is monitored. If the validation error plateaus,
a simple search algorithm starts to adjust the learning rate.
This adjustment continues after every next epoch and stops
as soon as an improvement is observed in validation error
(see Algorithm 1). We explain each part in more detail in the
following.

a) Estimating the Starting Value: From section III-A,
H−1 can provide an accurate estimate for per-parameter
learning rates λ. Let’s assume λg (a scalar) is a good global
learning rate. And λj , (0 ≤ j < n) are optimal per-parameter
learning rates with n being the total number of trainable
parameters in the network.

Let’s λmax = max
j
{λj} be the upper bound and λmin =

min
j
{λj} be the lower bound for learning rate. A reasonable

per-layer learning rate, λg , must satisfy the following condi-
tion:

λmin ≤ λg ≤ λmax (9)

The right inequality is from Armijo condition and the left
inequality is from curvature condition [37]. Together, they are
referred to as The Wolfe conditions [30].

A user can find an initial learning rate that satisfies Equation
9 with a simple learning rate range test [15]: running the
training for a few epochs while increasing the learning rate
linearly. By checking the accuracy against the learning rate,
one can observe the boundaries for a reasonable starting value.
Then the user can select a value between those boundaries, for
example, the middle point.



b) Adjusting Process: The adaptive algorithm starts with
the user-specified initial value for the learning rate. When there
is no improvement in training results, it searches for the next
good learning rate using a simple search algorithm shown in
Algorithm 1. Figure 3 illustrates an example of learning rate
adjustment with ASLR.

Algorithm 1: ASLR Search Algorithm
Require: initial learning rate c

min cost ← 1
search direction ← 1
search range ← 1
search steps ← 0
while training do

process one epoch and for each mini-batch generate
new per-layer learning rates (cu in Equation 10)
cost ← validation cost
if min cost < cost then
s← Equation 10
if c+ search direction× s = 0 then
c← 0.9× c

else
c← c+ search direction× s

end if
search steps ← search steps+1
if search steps = search range then

search range ← search range+1
search steps ← 0
search direction ← (−1)×search direction

end if
else

min cost ← cost
search direction ← 1
search range ← 1
search steps ← 0

end if
end while

In Algorithm 1, an update to the learning rate is only
possible after processing one epoch. A search for a better
learning rate can potentially be possible after any step of the
training. However, since most training scripts use SGD and not
Batch Gradient Descent, the results of each step include SGD
fluctuation (Equation 7). Our proposed algorithm updates the
learning rate between epochs to dampen this noise and avoid
the evaluation’s cost after every step.

c) Step Size in Learning Rate Adjustment: Extremely
small changes cannot be applied to the learning rate because
each time ASLR adjusts the learning rate, the search process
may take several epochs of the training to reach a good
learning rate. Therefore we have no choice other than adding
discontinuity to the learning rate and apply a feasible change
to the learning rate while adjusting it in our algorithm.

Heuristically, we observed that feasible changes in the
current learning rate, c, should be equal to 10blog10 cc.

Fig. 3. Adjusting learning rate. With no improvement in validation loss at
epoch i, learning rate increases by s (Equation 10). Search stops after the
improvement in validation loss at epoch i + 1. At epoch j, improvement
stops again and similar to before, current learning rate increases by s. With
no improvement in validation loss at the next epoch, search region increases
by one and search direction changes. This happens again at epoch k. And
continues until epoch l when there is an improvement in validation loss.

d) Search Direction and Search Range: As shown in
Algorithm 1, each time that the search range is increased,
search direction is changed. This mechanism helps to scan
a range around the current learning rate for finding a good
learning rate. As reported in [38], adaptive methods can suffer
from generating extreme values for the learning rate. By
gradually increasing the range and changing the direction,
we minimize our chance of generating extremely large or
extremely small learning rates.

e) Drawing the Learning Rate from a Uniform Distribu-
tion: The starting learning rate (provided by the user) and any
other value calculated by the algorithm is, at best, an estima-
tion for a good learning rate. The discontinuity created by the
step size applies a limit on these estimated learning rates. For
example at c = 0.05, the step size is 10blog10 0.05c = 0.01. If
the search direction=1, the next possible value for the learning
rate is 0.06. In ASLR, we will not ignore all possible values
between 0.05 and 0.06.

As mentioned in Section III-A, authors in [6] explained
how to (more) efficiently use second order information to
calculate a trust region (norm ball) and use it to control and
adjust the learning rate at each step. Motivated by their work,
we fix a range around our estimated learning rates and draw
per-batch and per-layer learning rates from that region. The
region used in ASLR is a uniform distribution centered at the
current learning rate with a width equal to the step size. With
c being the current learning rate, for each step of the training,
a per-layer learning rate, cu, is calculated and provided to the
optimizer as following:{

cu ∼ U(c− s
2 , c+

s
2 )

s = 10blog10 cc (10)

This way, when c = 0.05, we draw our learning rates from
U(0.045, 0.055) and when c = 0.06, we draw our learning
rates from U(0.055, 0.065) (see Figure 4).



Because µ(cu) = c, our effective learning rate [16] for
processing each epoch is still equal to c.

Fig. 4. Drawing learning rates from a uniform distribution. At each step,
per-layer learning rates, cu are drawn from U(c1 − s

2
, c1 + s

2
). When c1 is

the learning rate for epoch i, calculated with Algorithm 1.

f) Limitations: We believe that it is essential for every
work to state its limitations. We carefully performed extensive
experiments and repeated all the reported tests multiple times.
Our proposed algorithm is tested on a variety of models rang-
ing from quantized and custom networks to popular networks
with Non-quantized parameters, including very deep networks
such as the VGG family and residual networks such as the
ResNet and DenseNet families. We have also open-sourced
our code to allow reproducibility.

Although we did not observe an example of our algorithm’s
failure, we can not prove or guarantee that this algorithm is
superior to all other manually fine-tuned schedulers for all
network topologies and training scripts.

We also can not provide a precise comparison between the
time spent on tuning our algorithm parameter (starting value)
against the time spent on tuning other schedulers’ parameters
due to the lack of reporting such processes in the literature.

V. RESULTS

To evaluate ASLR we used a selection of moderate and
hard to classify datasets consisting of ImageNet [39] and
both CIFAR10 and CIFAR100 [40] datasets. We selected
a variety of different network architectures, including very
deep architectures, networks with skip connections, and dense
architectures.

We also tested ASLR on networks with quantized parame-
ters. This is a significant test result because hyperparameters
of a network must be re-tuned after the quantization is applied
[7], [41]. Our results show that ASLR can be employed to train
quantized networks with no additional tuning.

Unfortunately, there are no widely recognized benchmarks
to use for comparison. Therefore, in our setup, we use publicly
available implementations to evaluate ASLR against other
work.

In all of our experiments, the reported accuracy results
are average over three runs with different seeds. We also set
ASLR’s initial learning rate similar to the initial rate of the
network that we compared against and therefore did not have
to perform the initial learning rate search described in Section
IV.

In the following, we first describe our results for comparing
ASLR against line search methods, which includes test results
on CIFAR10 and CIFAR100 datasets using ResNet34. We
then compare ASLR and different schedulers on CIFAR10 and
ImageNet on various network topologies, including quantized
networks.

1) Comparing with Line Search Methods: To compare our
work with methods mentioned in Section III-D, we used the
implementation 7 that is described at [28] and integrated ASLR
into this implementation.

TABLE I
COMPARING VALIDATION ACCURACY OF ASLR WITH LINE SEARCH

METHODS ON RESNET34

Dataset Batch Size L4 SGD Armijo ASLR

CIFAR10 64 87.5% 93.4% 93.6%
128 86.2% 93.6% 94.2%

CIFAR100 64 63.7% 73.8% 74.5%
128 60.8% 74.8% 75.7%

Table I shows a comparison between our results and two
other line search methods. To generate these results, we set
ASLR’s initial learning rate to 0.1 (with no additional tuning)
and total epochs to 150. Accuracy results are average over
three runs with different seeds.

An interesting observation is the processing time between
the three methods. At each step, ASLR draws the learning rates
from a uniform distribution. Whereas L4 [27] and SGD Amijo
[28] have to do a line search. Compared to ASLR, these line
search methods required extra time for processing each epoch.
We calculated the average of per-epoch additional time needed
for these methods on a desktop machine with one GPU for all
the training epochs. Table II shows our results.

TABLE II
COMPARING AVERAGE TRAINING TIME PER EPOCH BETWEEN ASLR, L4,

AND SGD AMIJO (CIFAR10 AND RESNET34).

Training time per epoch (Seconds)
batch size ASLR L4 SGD Amijo

64 85 119 129
128 84 113 127

The validation accuracy evolution curve for experiments
in Table I is shown in Figure 5. The oscillation in ASLR’s
curve is due to its search algorithm. Each time the validation
loss plateaus, ASLR starts its search, and the search range
expands after each epoch until an improvement is observed in
validation loss. Changes in the learning rate during this search
cause the oscillation in its validation accuracy curve.

2) Comparing with Schedulers: To our knowledge, there
are no widely recognized benchmarks to use for comparing
our method with methods described in Section III-C. Therefore

7https://github.com/IssamLaradji/sls



Fig. 5. Comparison between the validation accuracy evolution curve for ASLR
and line search methods: L4 and SGD Amijo.

for this part of our experiments, we have selected a diverse
range of networks with publicly available implementations and
already-tuned hyperparameters for CIFAR10 and ImageNet
datasets.

CIFAR10: We compared ASLR with state-of-the-art results
for a number of networks selected from ResNet [9], DensNet
[12], WRN [11], and VGG [10] families. We also selected
two reduced precision networks: WRN 1bit and CNV 1bit
[42] and a custom VGG11 network 8 where parameters are
quantized and fully connected layers are removed to avoid
over-fitting for the CIFAR10 dataset.

TABLE III
COMPARING VALIDATION ACCURACY OF ASLR WITH SCHEDULERS ON

CIFAR10.

Network Scheduler accuracy ASLR accuracy

Resnet20 92.2% 92.2%
Resnet56 93.3% 93.9%

DenseNet40 92.8% 92.9%
WRN20 1bit 95.2% 94.9%
VGG11 8bits 91.5% 91.4%
VGG11 6bits 91.2% 91.2%

CNV 1bit 78.5% 78.5%

The results of our comparisons are shown in Table III. In
the following, we describe the schedulers used to generate the
results in Scheduler accuracy column.

ResNet20, ResNet56, and DenseNet40 used multi-step-
decay scheduler with nine, nine, and five user-defined pa-
rameters respectively 9. WRN20 1Bit used a cosine annealing
scheduler with two user-defined parameters 10. VGG11 used a
multi-step decay scheduler with seven user-defined parameters.
And CNV 1Bit used a multi-step-decay scheduler with nine
user-defined parameters.

To generate the results in ASLR accuracy column, we set the
initial learning rate of ASLR equal to the initial learning rate

8https://github.com/Xilinx/brevitas
9https://keras.io/examples
10https://github.com/osmr/imgclsmob

of the scheduler that we compared against (the scheduler in
the same row of the table). Results are an average of three runs
with different seeds. Table III shows that ASLR can achieve
similar or better results compared to highly tuned manual
schedulers while having only one user-defined parameter.

Figure 6 illustrates a comparison between ASLR and the
multi-step-decay scheduler used with ResNet20. Both sched-
ulers achieved similar validation accuracy results. As shown
in Figure 6, throughout the training, ASLR starts its search
earlier than the first decay in the other scheduler, and by the
end of the training, it almost follows the finely tuned multi-
step-decay. Similar behavior was observed when training other
networks in Table III.

Fig. 6. Comparison between ASLR and multi-step-decay on ResNet20

ImageNet: We selected three networks from ResNet and
VGG families to test ASLR on the ImageNet dataset.
ResNet10, ResNet50, and VGG11. Table IV shows the results
of our experiments on this dataset. The schedulers used to
generate the results in Scheduler accuracy column are cosine
annealing schedulers with two user-defined parameters 10.
ASLR’s initial learning rate was set to the scheduler’s initial
learning rate in the same row in Table IV. All results are an
average of three runs with different seeds.

TABLE IV
COMPARING VALIDATION ACCURACY OF ASLR WITH SCHEDULERS ON

IMAGENET.

Network Scheduler accuracy ASLR accuracy

Resnet10 65.5% 66.0%
Resnet50 75.2% 75.2%
VGG11 67.7% 70.9%

VI. CONCLUSIONS

This work provided a brief review of commonly used
learning rate adjustment methods and explained their gains and



disadvantages. We described the complexity of finding reason-
able learning rates and introduced an Adaptive Scheduler for
Learning Rate (ASLR) with a single user-defined parameter.
We explained how our algorithm adjusts the learning rate
during the training process and showed that even though it has
a simple algorithm, it can achieve competitive results com-
pared to training scripts with finely-tuned hyperparameters.
Our result section provided performance results for ASLR
on various network topologies, including custom networks
with quantized parameters. The ability to train uncommon
and quantized networks is an essential feature of ASLR and
shows that this scheduler can train a wide range of network
designs. This feature can reduce the time for testing and
designing custom networks by reducing the tuning time spent
on hyperparameters for the learning rate. We also showed that
ASLR has a smaller computation complexity compared to line
search methods.
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