Hardware Security Coverage

Ryan Kastner Jason Oberg, Nicole Fern, Alric Althoff

http://kastner.ucsd.edu http://tortugalogic.com

UC San Diego

@ Tortuga
" Logicg

http://kastner.ucsd.edu/
http://tortugalogic.com/

Hardware Verification

Verification Plan Testbench Analyze Results

Functional Design « Features to be verified « Stimulus/Test cases * Debug Failures
Verification Specification « Verification Methods & Scenarios « Checking/Assertions * Fill coverage
» Coverage/Statistics

S it Verification Plan Testbench Analyze Results
e_c_u Il y Threat Security properties * Security transactions, » Assess vulnerability
Verification Modeling « Verification Methods & Scenarios behaviors, and events - Debug

 Security-centric tests * Redesign & Reverify

Key Difference: Need to Specify the Threat Model!

Property Driven Hardware Security*

Sriday, 2Lth June, .

Checking a large routine. by Dr, A, Turing.

How can one check a routine in the sense of making sure that it is right?
In order that the man wiw checks may not have too dirficult « task the
prograumasr should muke a number of definite assertions which cun be checked

individually, and from which the correctness of the whole programae easily
follows,

Security Properties
* Formal specification of security requirements & threat model
* Test Driven Development**

Security Verification

* Formal methods, simulation, emulation, run-time checks

* Leverage existing design tools as much as possible

* Automatic Property Refinement, e.g., “Properties First?” ***

*W. Hu, A. Althoff, A. Ardeshiricham, and R. Kastner, “Towards Property Driven Hardware Security, Microprocessor Test and Verification Conference 2016 (pdf)
+*+ K. Beck. Test Driven Development: By Example. Addison-Wesley, 2002.
##% . Urdahl, S. Udupi, T. Ludwig, D. Stoffel and W. Kunz , “Properties First? A New Design Methodology for Hardware, and its Perspectives in Safety Analysis”, ICCAD 2016

http://kastner.ucsd.edu/wp-content/uploads/2013/08/admin/mtv16-property_security.pdf

Hardware Security Coverage

* How do you know your properties are complete?
* How do you know if your testbench is sufficient?

* How do you leverage extensive, existing hardware verification tools?

Get CWE-IFT!

C Y @& cwe.mitre.org/data/definitions/1194.html

< W Common Weakness Enumeration Ol ot

TOP Dangerous
A Community-Developed List of Software & Hardware Weakness Types 2 5 i e:;:;";’;;i
Home About CWE List Scoring Community News Search
CWE VIEW: Hardware Design
View ID: 1194 Status: Incomplete
Type: Graph
Downloads: Booklet | CSV | XML
v Objective

This view organizes weaknesses around concepts that are frequently used or encountered in hardware design. Accordingly, this view

can align closely with the perspectives of designers, manufacturers, educators, and assessment vendors. It provides a variety of
categories that are intended to simplify navigation, browsing, and mapping.

v Audience

Hardware Designers use this view to better understand potential mistakes that can be made in specific areas

of their IP design. The use of concepts with which hardware designers are familiar makes it easier to
navigate.

Hardware Designers

Edlicators Educators use this view to teach future professionals about the types of mistakes that are commonly made in
hardware design.

¥ Relationships

The following graph shows the tree-like relationships between weaknesses that exist at different levels of abstraction. At the highest
level, categories and pillars exist to group weaknesses. Categories (which are not technically weaknesses) are special CWE entries
used to group weaknesses that share a common characteristic. Pillars are weaknesses that are described in the most abstract
fashion. Below these top-level entries are weaknesses are varying levels of abstraction. Classes are still very abstract, typically
independent of any specific language or technology. Base level weaknesses are used to present a more specific type of weakness. A
variant is a weakness that is described at a very low level of detail, typically limited to a specific language or technology. A chain is a

Information Flow Tracking (IFT)

Source: Which design signals should
information be tracked from:?

Destination

Destination: Which design signals should
information not flow to?

Rule fa7/s if source information reaches
destination

' §\\ Source

{ Source Signal Set }
=/=> { Destination Signal Set }

Wei Hu, Armaiti Ardeshiricham, and Ryan Kastner, “Hardware Information Flow Tracking”, to appear ACM Computing Surveys (pdf)

http://kastner.ucsd.edu/wp-content/uploads/2020/12/admin/hw_ift_survey.pdf

1) Identify CWEs related to
threat model CWE-IFT

2) List assets and

3) Write properties

—) 4) Get CWE-IFT!

e ;’,—} ,’,‘ F‘*".-

conditions Sy
MY T T TT1 . Jiee [T T 11
o ~
/ =
| j/ éﬂ
¢ f
% \
/ \

A :

‘\\\Copyright: Rick a

1) Identity CWEs

C (0 @& cwe.mitre.org/c

< W Common Weakness Enumeration Ol Faet

TOP Dangerous
A Community-Developed List of Software & Hardware Weakness Types 2 5 Weaslf’,::v:::
—
Home About CWE List Scoring Community News Guidance Search

CWE-1271: Uninitialized Value on Reset for Registers Holding Security Settings

Weakness ID: 1271 Status: Incomplete
Abstraction: Base
Structure: Simple

Presentation Filter: | Complete v

¥ Description

Security-critical logic is not set to a known value on reset.
v Extended Description

When the device is first brought out of reset, the state of registers will be indeterminate if they have not been initialized by the logic. Before the registers are
initialized, there will be a window during which the device is in an insecure state and may be vulnerable to attack.
v Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf,

MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are
defined to show similar weaknesses that the user may want to explore.

¥ Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name
Childof © 665 Improper Initialization
¥ Relevant to the view "Hardware Design" (CWE-1194)
Nature Type ID Name
MemberOf 1206

Power, Clock, and Reset Concerns
PeerOf & 1304 Improperly Preserved Integrity of Hardware Configuration State During_a Power Save/Restore Operation

Also, CWEs 1258, 1269, 1272, ...

2) List Assets & Conditions 3) Write Properties

Asset: Controller Condition: RESET Properties

Boundary; _ Example Trace Property
Mol g Controller receives the baseline AXI signals
S1 while the ACW is in reset mode.
Reset CWEs 1258, 1271
Trusted entity ‘sig to C' == W@l (value check)
Sets access || (RESET !'= 1) (condition)
control policy
S2 Example Information Flow Property
Supervising Information from controller originating during
Controller Trusted | reset mode will never flow to the peripheral.
- Trusted mar’;ecigftga reﬂf’;’;ts CWEs 1269, 1272
Untrusted S3 controller| Nsig_from C" (source)
Decouple when (RST == 0) (track condition)
=/=> (no-flow operator)
‘sig to P‘ (destination)

Access Control Wrapper Repository: https://github.com/KastnerRG /Access Control ext

https://github.com/KastnerRG/Access_Control_ext

Conclusion

* Security Verification |= Functional Verification
* Security Coverage = Functional Coverage

* Security Coverage Metrics!?

1) Identity CWEs
2) List Assets & Conditions
3) Write Properties

4) Get CWE-IFT!

Hardware Security Coverage

Ryan Kastner Jason Oberg, Nicole Fern, Alric Althoff

http://kastner.ucsd.edu http://tortugalogic.com

UC San Diego

@ Tortuga
" Logicg

http://kastner.ucsd.edu/
http://tortugalogic.com/

