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Abstract

Radio telemetry is a commonly used technique in conservation biology and ecology,

particularly for studying the movement and range of individuals and populations. Tra-

ditionally, most radio telemetry work is done using handheld directional antennae and

either direction‐finding and homing techniques or radio‐triangulation techniques. Over

the past couple of decades, efforts have been made to utilize unmanned aerial vehicles to

make radio‐telemetry tracking more efficient, or cover more area. However, many of

these approaches are complex and have not been rigorously field‐tested. To provide

scientists with reliable quality tracking data, tracking systems need to be rigorously

tested and characterized. In this paper, we present a novel, drone‐based, radio‐telemetry

tracking method for tracking the broad‐scale movement paths of animals over multiple

days and its implementation and deployment under field conditions. During a 2‐week
field period in the Cayman Islands, we demonstrated this system's ability to localize

multiple targets simultaneously, in daily 10min tracking sessions over a period of

2 weeks, generating more precise estimates than comparable efforts using manual

triangulation techniques.
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1 | INTRODUCTION

In conservation biology and ecology, tracking individual animals is in-

valuable for understanding how they interact with other animals, hu-

mans, and their environment. It is critical for validating species migration

and interaction models in the fields of integrative and experimental

biology (Allen & Singh, 2016; Harris et al., 1990; Kenward, 2007;

Lascelles et al., 2016; Millspaugh & Marzluff, 2009). The size of many

animals, however, often limits the techniques that may be utilized. For

instance, satellite and global positioning system (GPS) tags are not yet as

useful to movement studies for small animals, as these tags are expensive

and often too large to fit animals such as reptiles, insects, and small birds.

Other remote sensing technologies such as subdermal implants and

ultrahigh bandwidth ranging radio, are either too short‐range, or not

compact/efficient enough for tracking small animals. As a result, tracking

using very high frequency (VHF) tags that continuously transmit a very

short ping remain a valuable technique in ecological and conservation

studies (Kays et al., 2011; Wikelski et al., 2007). In particular, VHF tags

weighing 1 g or less and less than 1mm in diameter are used to study the

movement of small animals over the span of days or weeks, often over

kilometers of distance.

The most popular tracking techniques to use with VHF tags are

homing/radio direction‐finding (RDF) and triangulation, both done typi-

cally with a Yagi antenna with a beamwidth of 4–20°. However, both

techniques require a radio frequency (RF) line of sight to the transmitter

which may not be feasible in some terrain such as slot canyons or hills.
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Further, reflected signals can generate an error in positioning estimates.

In addition, the homing/RDF technique requires users to walk in the

direction of the signal to locate transmitters, which can become infeasible

due to terrain and vegetation. Triangulation is generally preferred in such

circumstances. Triangulation requires three separate measurements,

ideally from different sides of the transmitter, reducing the need to move

on foot through dense vegetation. However, triangulation tends to be

less accurate due to the lack of precision in determining the signal‐
bearing (Mech, 1986; White & Garrott, 2012). Both of these methods

also require the use of an impractically large antenna, approximately

0.5m wide, so moving through difficult terrain is very difficult (Mech,

1986). In addition, of these methods, only triangulation can track multiple

signals at the same time.

The easiest solution to avoid the obstacles of terrain and

vegetation is to escape the environment in which these obstacles

exist. In general, dense foliage or impassable terrain only affect land

mobility—it does not affect aerial mobility. Thus, flying sensors over

these areas provide an avenue for avoiding the obstacles presented

by foliage and terrain, which are common obstacles in many biolo-

gical and ecological field sites.

Some scientists have used manned aircraft to conduct wildlife

tracking surveys. In general, these surveys are conducted by at-

taching directional antennae to the outside of a fixed‐wing aircraft

and flying RDF missions. Much like conducting RDF tracks on foot,

this requires RF line of sight, however, this is much easier to manage

because the receiver is now in the air, and so has RF line of sight to

far more places on the ground. In addition, while dense vegetation

limits the ability of the researchers to visually verify a target from

overhead, flying overcomes the inability to physically track subjects

on foot (Mech, 1986; White & Garrott, 2012).

The primary issue with manned aircraft tracking surveys is the

increased cost and logistics needed to support such surveys. Fixed‐
wing aircraft surveys require pilots, aircraft, fuel, and maintenance,

among other logistics and support items. Survey time would be

limited to the aircraft's loiter time minus transit time from the sup-

port airfield to the survey area, potentially making manned aircraft

surveys in particularly remote areas infeasible from a cost and lo-

gistics standpoint (Mech, 1986).

Over the past decade, small unmanned aerial vehicles have de-

veloped to the point that they are now inexpensive and robust en-

ough to use as low‐cost sensor platforms for scientific research.

Drones have been applied to a variety of ecological survey applica-

tions, including aerial mapping and wildlife tracking. In addition,

software‐defined radios (SDRs), which allow us to rapidly reconfigure

a radio and receive a large swath of the radio spectrum simulta-

neously, have matured to the point that there are sufficiently low

cost, robust, and lightweight radios commercially available that can

be used as part of a UAV sensor payload that can track multiple

animals simultaneously (Gottwald et al., 2019; Nabeel & Bloessl,

2016; Nguyen et al., 2019; Santos et al., 2014; Vonehr et al., 2016;

Webber et al., 2017).

Over the past few years, several researchers have developed pro-

totype autonomous drone tracking systems for tracking VHF

transmitters. The advantage of using drones is that they can move across

the survey area faster and with more precision, and collect more in-

formative and precise measurements than a human with an analog re-

ceiver. This allows us to use more information to generate a more precise

estimate. In addition, using an SDR allows drones to track multiple

transmitters simultaneously, allowing a single drone flight to be more

efficient. These systems generally approach the estimation problem in

one of two ways—bearing‐based (Posch & Sukkarieh, 2009; Bayram et al.,

2018; Cliff et al., 2015, 2018; Dressel & Kochenderfer, 2018; Vonehr

et al., 2016) and range‐based (Jensen & Chen, 2013; Korner et al., 2010;

Santos et al., 2014; Soriano et al., 2009).

Bearing‐based estimation seeks to emulate the traditional terrestrial

approaches with a drone. These systems take one of two approaches to

determine the bearing to the transmitter: using either a highly directional

antenna and rotating to detect the signal or an antenna array that can

measure the direction of arrival of the signal. Because of this, bearing‐
based estimation typically requires complex antenna or receiver config-

urations, and are typically physically larger. This affects the suitability of

such systems for field use, as larger systems are more difficult to utilize in

the field, and often require more maintenance.

Range‐based estimation, on the other hand, utilizes the precision

with which we can measure the signal strength of the received signal and

the relationship between received signal strength and distance to the

transmitter. This uses a much smaller and simpler antenna configuration,

which increases its usability and robustness while decreasing the cost

and complexity of the system. Some range‐based approaches attempt to

take the directionality of the antenna into account by mapping the di-

rectionality of the antenna to the range estimates, which can assist in

increasing the precision of the final position estimate (Posch & Sukkarieh,

2009; Cliff et al., 2018).

Many of the recent bearing‐based and range‐based systems use

estimation approaches such as particle filters (Posch & Sukkarieh,

2009; Korner et al., 2010; Nguyen et al., 2019), grid filters (Cliff et al.,

2015; Dressel & Kochenderfer, 2018), and Kalman filters (Jensen &

Chen, 2013). These are all variations of Bayesian estimation, and

require an accurately characterized probability distribution of the

source of noise from observations and sensors to determine the

probability of a particular estimate being correct.

Because the main challenge in evaluating these systems is that

the performance in real‐world field conditions is significantly dif-

ferent from those in carefully controlled test scenarios, few, if any, of

the recent prototype drone tracking systems have data on their

performance under field conditions. A survey of the most mature

systems (Cliff, Dressel, and Nguyen) found evidence for fewer than

30 field trials (Cliff et al., 2018; Dressel & Kochenderfer, 2018;

Nguyen et al., 2019). This lack of field testing results in a major

impediment to determining the real‐world usability of such systems

in scientific research. Of these, the most precise system estimates

the location to a 5m cell, but only gives a 50% certainty that the

transmitter is located within that cell. The remaining two systems

(Cliff and Nguyen) generate estimates within 20m (Cliff et al., 2018;

Nguyen et al., 2019). Both Dressel and Nguyen quote localization

times of less than 5min for trial flights, however, these were done
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with the copter starting within the detection range of the transmit-

ter, and not in field conditions, where the drone often initiates op-

erations far from the target animal (Dressel & Kochenderfer, 2018;

Nguyen et al., 2019). Note that all systems presented in this paper

require foreknowledge of the general location of the transmitter to

function properly, as the fully autonomous systems require that they

fly to within detection range before beginning their tracking, and our

partially autonomous system requires the search area to be planned

over the estimated detection range.

In 2013, the San Diego Zoo Institute for Conservation Research

(SDZICR) partnered with Engineers for Exploration, a student‐
centered research group at UC San Diego, to explore the potential

systems for automating the radio tracking of iguana hatchlings in the

Dominican Republic leveraging existing VHF technologies. The initial

results on this system were published in 2014 by dos Santos et al.,

(2014). This represented a proof‐of‐concept system in a controlled

test environment. In 2015, we deployed an initial field‐deployable
system to the Dominican Republic that corrected the signal pro-

cessing presented by dos Santos and enabled using multiple mea-

surements of the transmitter's signal strength to generate a

heatmap, and thus generate an estimate of the transmitter location,

and over the course of several days, a track of the animal's move-

ment in field conditions. This iteration of the proof‐of‐concept sys-
tem showed that our approach worked, but required too much

maintenance to be a valuable tool in the field. In 2016 and 2017, an

improved system that further expanded the capability of the signal

acquisition and processing, as well as added the position estimation

and full systems integration, was deployed in the Cayman Islands in

conjunction with SDZICR, Mississippi State University, and the

Cayman Islands Department of Environment to track nesting female

iguanas and hatchling iguanas dispersing from their natal sites.

During the deployment in 2017, we were able to compare the

performance of the drone‐based tracking system to that of trained

field ecologists. Unlike many other comparative studies, which pit

drone systems against field ecologists in isolated trials, we were able

to evaluate the system with the time and resource constraints of an

actual research expedition. This provides a relevant and applicable

metric from the perspective of the end‐user, which assisted in de-

termining that this can be an effective tool for field biologists, as well

as validates the original system concept described by dos Santos et al.

In this paper, we will describe this system, the results of those

real‐world field deployments, and our analysis of the data. We be-

lieve it shows our system is a robust and rugged solution that uses

range‐based measurement to drive model‐based estimation of the

target. This system, during extended field deployment, demonstrated

performance on par with traditional triangulation methods in terms

of accuracy and outperforms traditional tracking methods in terms of

measurements per day. We will first present the architecture and

methodology from an algorithmic perspective for the drone‐based
tracking system, then the specific implementation and realization of

the system used, and finally, the qualitative and quantitative per-

formance metrics from in‐field validation and a comparison of this

system with other solutions. The contribution of this study is the

presentation of a complete drone‐based tracking system that has

been tested and validated in a multiday remote field expedition.

2 | SYSTEM OVERVIEW

Our drone‐based tracking system is comprised of two independent

subsystems—the drone (flight platform), and the sensor payload. We

elected to make this separation to permit the future move to dif-

ferent flight platforms, or even different mobility platforms such as

vehicles and balloons, and to ensure that failures in the sensor

payload do not propagate into the flight platform and cause further

issues.

We chose to use received signal strength to drive our estimation

of the transmitter location for its simplicity and robustness. De-

termining the signal strength of a ping simply requires an analog to

digital converter. Determining the distance from the ping to the

transmitter then requires relating the received signal strength of a

transmission to the distance to the transmitter. This is independent

of the directionality of the antenna, transmission power, and system

gain. In addition, this approach benefits from having an antenna with

as little directionality as possible.

To accomplish this, we further break the payload system down

into several subsystems: antenna, low noise amplifier (LNA), SDR,

GPS/compass, on‐board computer, data storage, processing pipeline,

and visualization tools. We show the overall system architecture in

Figure 1.

In this system, the antenna receives the RF ping from the

transmitter. This signal is amplified by the LNA, which is then am-

plified yet again and digitized by the SDR. The on‐board computer

records this digital signal from the SDR, along with GPS and heading

information from the GPS/compass unit, and stores all of this into

external storage. The recorded data feed into the processing pipe-

line, which detects all pings, then estimates the location and cer-

tainty of the transmitter location. This information can then be

visualized in geospatial information system (GIS) software. The fol-

lowing sections will present the wildlife transmitters themselves, and

F IGURE 1 Left: Payload system diagram. The antenna and
LNA feed radio signals to the SDR. The on board computer receives
the radio signal from the SDR, GPS position from the GPS/compass,
and commands from the UI. All of this is stored on the local data
storage. Right: 3DR Solo (discontinued in 2016) with radio tracking
payload. GPS, global positioning system; LNA, low noise amplifier;
SDR, software defined radio; UI, user interface [Color figure can be
viewed at wileyonlinelibrary.com]
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then the detection and estimation process. The specific hardware

implementation is presented in Section 3, and the testing and per-

formance results are presented in Section 5.

2.1 | Wildlife transmitters

For the 2017 deployment, we were tracking VHF wildlife transmit-

ters, in particular, the Holohil BD‐2 and PD‐2 transmitters.1 How-

ever, our methodology is independent of the specific choice of

transmitter. Figure 2 shows the BD‐2 transmitter in detail and at-

tached to a Cyclura cornuta hatchling in the Dominican Republic.

These transmitters are all very small, in general less than 2 g. As a

result of their size and weight, they do not have a very high output

power, on the order of 1–10mW. These are typically configured to

transmit a 10–20ms pulse on a specific frequency every 1–2 s in a

way that maximizes their battery life over the intended field life.

One of the challenges of working with these transmitters is the

variability in transmission characteristics. Because of the simplicity

of these devices, the transmit frequency will vary as the battery

voltage decreases and the temperature varies. Field notes suggest a

drift due to battery depletion of as much as 1 kHz over a period of 1

week. Lastly, as the transmitter ages, the transmission power de-

creases, which makes these transmitters more difficult to detect.

However, all of these issues are addressed in our signal processing,

which is discussed later.

2.2 | Path planning

Our system estimates the location of the transmitter by using

measurements of the ping's signal strength in a survey area to esti-

mate where the loudest point should be, and thus where the trans-

mitter would be located. However, since we do not know the

transmitter's exact location before flying the mission and the

transmitter location is being estimated on a separate computer, we

need to maximize the efficiency of the flight path in terms of area

covered.

Given the constraints above, our flight path must maximize its

coverage of an area while still loitering above each point on the

ground long enough to determine whether or not there is a ping at

that location. Fundamentally, we are attempting to determine the

location of the transmitter by mapping out the transmitter's signal

strength over the search area. We develop our search area by

evaluating our best guess of where the transmitter currently is.

Often, we use a combination of last known position, as well as quick

verification using traditional tracking equipment to verify that the

transmitter is roughly where we expect. This usually consists of

taking a quick bearing with a handheld directional antenna to con-

firm that the transmitter is in the same direction as the search area.

In some cases, we find that the animal had started moving significant

distances—in these cases, we use a directional antenna to find the

bearing along which the animal is located, drive to a convenient

launch point, and set up a search area to search along that bearing as

far as possible. This maximizes the coverage of the area that we think

the animal is in. While the search area could be defined without using

the directional antenna to provide an initial guess, operationally,

using the directional antenna to inform the initial search area re-

duces the amount of effort spent searching areas that are known to

not contain a transmitter.

The simplest and most efficient flight path for surveying a con-

vex polygon is what is known as a lawnmower pattern. This pattern

consists of evenly spaced lanes oriented parallel to the survey area's

longest axis, with the drone flying up one lane and down the next. An

example of this is shown in Figure 5. We select our survey speed to

be 5m/s based on our understanding of the minimum effective range

of the payload, and the most efficient speed for the flight system.

Based on a worst‐case detection range of 30m and a lane spacing of

30m, if we fly at our minimum speed of 5m/s, we can, in the worst‐
case scenario of flying a line directly over the transmitter, with ad-

jacent lanes just out of range of the transmitter, detect eight pings. In

the best‐case scenario of flying two lanes equidistant from the

transmitter, we can expect as many as 13 pings. This choice of lane

width maximizes the area that we can survey while still ensuring that

we have enough measurements to estimate the transmitter location.

Note that the worst‐case scenario occurs when searching for

F IGURE 2 Holohil BD‐2 wildlife transmitters, in detail and
attached to Cyclura cornuta [Color figure can be viewed at
wileyonlinelibrary.com]

1http://www.holohil.com/
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transmitters with depleted batteries. In normal operations, trans-

mitters with fresh batteries have a detection range of nearly 100m,

as depicted in later in Figure 5. This results in significantly more than

13 pings per mission that we can use to estimate the transmitter

location. During our deployment, we regarded missions measuring

fewer than 20 pings to be marginal with respect to the quality of

data, and often reflect those missions or manually verified the result.

In general, the survey speed is slow enough that we can guarantee

more than four detections in the worst‐case scenario. We can, in

principle, generate solutions for transmitter locations where we only

detect them on one lane if the detection radius is actually smaller than

we estimate. In theory, we can still generate an estimation for the

actual location of the transmitter, but it will have some ambiguity as to

which side of the survey line the transmitter is on. However, this is an

acceptable tradeoff, as transmitters that have decayed to this state

are likely also very difficult for the researchers to detect, and likely

need to be replaced. This method is tolerant of underestimation of the

system's ping detection radius since a detection radius larger than our

estimate guarantees that the transmitter will be heard across at least

two lanes, and provides more data, thus improving the estimate. We

further expand on the way we can recognize degenerate solutions

caused by insufficient data in Section 2.6.

In total, the selected search area is selected based on the nominal

lawnmower pattern to evenly cover the area around the initial guess of

the transmitter location, the nominal survey speed, the total flight en-

durance for the vehicle, and finally, situational routing. This is specific to

each individual area surveyed, and can result in a 100×100m area to a

600×600m area, depending on the launch location, survey area visibi-

lity, prevailing winds, battery performance, desired coverage, local ob-

stacles, survey approach, and procedural constraints around operating

the aircraft. Procedural constraints may include control link range if fully

autonomous flight is not permitted, visual range if beyond visual range

operation is not permitted, airspace restrictions, overflight restrictions,

weather and traffic avoidance.

2.3 | Dipole antenna

Our system uses the change of received signal strength as the drone

moves around the transmitter to determine the location of the trans-

mitter. For this to be effective yet simple, we need an omni‐directional
antenna so that the received signal strength is independent of the or-

ientation of the survey platform.

We elected to use a dipole antenna because of its near omni‐
directional characteristics. In its horizontal orientation, with the nulls

pointed to the horizon, the projected beam pattern on the ground is

nearly circular, which eliminates attenuation of the target signal due

to directionality. This allows us to treat the received power of the

transmit signal as a proxy for the distance between the transmitter

and receiver. This omni‐directionality allows for a much simpler

computational model, and opens up the possibility of using this exact

sensor payload on a fixed‐wing aircraft, where we cannot decouple the

orientation of the antenna from the flight path of the aircraft.

In addition to its omni‐directional characteristics, the dipole was

measured to have a sufficiently wide bandwidth of 2 MHz. During our

field testing, we found that the transmitters came on unique frequencies

separated by as little as 15 kHz, spanning a total of 1 MHz. This is ideal

for our purposes because it allows us to receive a wide variety of signals

without significant losses. Since the radio tags are assigned unique fre-

quencies for identification by the tag manufacturer, this can result in a

significant range of frequencies that need to be received, which is handily

covered by the 2 MHz bandwidth of the dipole antenna.

Additionally, because of the simplicity of the dipole antenna, the

resulting design is lightweight, which permits its integration onto

small drone platforms. This is particularly important due to the re-

quirement that this be operable in field conditions, where the UAV

will often be transported in a vehicle with a lot of additional equip-

ment, or on foot through dense foliage.

2.4 | Radio receiver

To convert the analog RF signal to a digital signal we can process, we

use a SDR. SDRs operate by first amplifying the induced voltage in

the antenna to measurable levels, then shifting the signal from the

center frequency fc to baseband (0 Hz). This signal is then sampled at

a sampling frequency fs in both the real (in‐phase) and complex

(quadrature) components to generate the digital IQ signal that is

then passed to the onboard computer for processing.

We specifically use an SDR as opposed to the conventional

analog receiver that is commonly used in radio‐tracking because the

SDR allows us to receive multiple frequencies simultaneously, al-

lowing for the tracking of multiple transmitters during any given

survey. In addition, the SDR allows us to control the center fre-

quency, sampling rate, gain, and resolution via software commands.

This allows us to rapidly reconfigure the system to scan for different

types of transmitters (VHF or UHF) without making any hardware

changes, whereas using a conventional receiver would require a new

receiver for VHF and UHF, and even potentially different receivers

for different frequencies within VHF/UHF ranges, as conventional

receivers are only capable of tuning to a range of frequencies ap-

proximately 4MHz wide.

To ensure that the bandwidth of the SDR covers the frequencies of

the transmitters we are interested in, and to avoid the DC spike char-

acteristic of SDRs, we selected −f = 2 MS ss
1 and f = 172.5 MHzc . The

SDR receives complex signal data, which allows us to determine the sign

of frequencies, so the signal bandwidth is equivalent to the sampling

frequency, thus allowing us to be able to receive frequencies from 171.5

to 173.5 MHz, which is the frequency range of our transmitters.

2.5 | Signal processing

To estimate the location of the transmitter, we need to first identify

and measure the individual pings as received by the SDR. To process

the RF data, we first extract the specific frequencies emitted by the
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transmitters by calculating the Short‐time Fourier Transform. The

Short‐time Fourier Transform is simply sequential Fourier Trans-

forms of length n computed on a longer signal. This is commonly

computed using the Fast Fourier Transforms (FFTs). FFTs of length n

can be treated as a bank of n adjacent band‐pass filters. The ith filter

has a passband centered at ( )f f+c
i
n s with width f

n
s , where i is in

⎡⎣ ⎤⎦
− ,n n
2 2

. We start by running an FFT over the entirety of the data to

convert the time domain signal to a waterfall plot (time vs frequency

vs amplitude), a sample of which is shown in Figure 3. We do an FFT

of 4096 elements, which gives us a frequency resolution of roughly

500 Hz per bin 2. Quantitative tests show that the transmitted signal

has a bandwidth of less than 500 Hz, which results in us being able to

positively identify each ping to the correct frequency. This also al-

lows us to compensate for any frequency drift in the transmitter, as

mentioned earlier. The resulting signal also has a much higher signal‐
to‐noise ratio (SNR) as it is rejecting the remaining frequencies.

∈x i[ ]  (1)

−X k x k k f[ ] = { [4096 : 4096( + 1) 1}[ ]f (2)

−

( )∑E m X k[ ] = 10 log [ ]
k m

m

f
=19

19( +1) 1

10
2

(3)

−P n E n E n[ ] = max{ [37.5 ], …, [37.5( + 1) 1]} × 25 (4)

Once we have the waterfall plot, we accumulate 40 ms of power

information for the frequency we are interested in, as shown in the

right image in Figure 3. This is the measure of the energy in the signal

over the 40 ms window, described by Equation (3). By accumulating

over twice the width of the ping, we can better ensure that the

estimated ping is covered by the window. This makes the pings,

which are otherwise not visible in the left image showing in-

stantaneous power, visible in the right image. Finally, to identify each

ping and measure the average received signal power, we simply

identify the maximum energy in each 1.5 s window, effectively

choosing the most energetic moment in each 1.5 s period

(Equation 4). Since the transmitted signal has a roughly 1.5 s period,

we assume that the loudest signal in the frequency in each 1.5 s

window is the ping, if we heard the signal at all.

To generate an initial estimate of the transmitter location, we

need to determine which of the signal data are actually pings. To do

this, we take each ping and associate it with the nearest GPS mea-

surement in time. To determine whether a ping was actually received

or not, we lay a grid with 100 m spacing over all of the measure-

ments. For each cell in the grid, we calculate the median received

signal power. We then use the highest median received signal power

as a threshold with which to select data to feed into the nonlinear

least squares estimator.

2.6 | Location estimation

Once we identify pings, we fit them to a signal propagation model.

We know that the power of a radio signal decays proportional to the

inverse square of distance in a vacuum (Whitaker, 2005). In practice,

the exponent for the path loss can vary depending on the environ-

ment, so we elect to use the model shown in Equation (5), where Ri is

the received signal power for the ith measurement in dB, P is the

transmit power in dB, L is the path loss in dB, n is the path loss

exponent, ∈Di
3 is the position of the ith measurement in m,

F IGURE 3 The High Power Signal Waterfall Plot shows three pings at 172.843MHz, at approximately 0.1, 1.2, and 2.8 s, demonstrating
how well signals can stand out. The red box in the center of the low power received signal waterfall plot of highlights the target frequency for a

transmitter that is very far away. The red boxes in the accumulated ping signal plot identify the ping energy, showing how this technique can be
used to enhance the signal to noise ratio [Color figure can be viewed at wileyonlinelibrary.com]
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∈T 3 is the transmitter location in m, and C represents additional

system losses in dB (Gutierrez, 2008).

− − ∣ − ∣ −R P L P n CD T= = 10 log ( )i i10 (5)

−
k

n
=

1
1 (6)

−
k

P C
n

=2 (7)

∣ − ∣d D T= = 10i i

k Ri k1 + 2
10 (8)

Each measurement consists of the received signal strength Ri

in dB and the drone's location D D DD = ( , , )i x iy izi in meters from

some fixed datum on the ground. Thus, our unknowns are P

(transmit power), n (path loss exponent), T (transmitter position),

and C (additional system losses). To simplify the problem, we

reparameterize Equation (5) with k1 and k2, shown in Equations

(6) and (7). We are then able to calculate di using Equation (8),

which assumes the transmitter location T T( , )x y is on the ground

T( = 0)z , which is a reasonable approximation in mostly flat

terrain.
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2
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2 2 2 2 2
2

x y

k Ri k

1 2

1 + 2
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






(9)

Since we are solving not only for the transmitter location in two

dimensions, but also for the RF signal parameters in k1 and k2, we

have a model with four parameters. To find a solution for these

parameters, we need at least four measurements, more if we wish to

characterize the accuracy of our estimate. We then use a nonlinear

least squares solver (scipy. optimize. least_squares) to find para-

meters that best fit the measurements. This is accomplished by

finding k k T T, , ,x y1 2
  with Equation (9), which finds the minimum mean

squared error estimate of the model parameters.

⎡

⎣
⎢

⎤

⎦
⎥
−
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⎢

⎤

⎦
⎥ ( )( )D

D
T

T
~ 10 , 0.4 × 10

i x

iy

x

y

2k Ri k k Ri k1 + 2
10

1 + 2
10




  
(10)

Once we estimate the model parameters, we still need to pro-

vide a measure of the precision of the estimate. To do this, we

overlay an estimate of the probability of the transmitter position for

each ping. This consists of a normal distribution centered on the

distance calculated by the model parameters for that ping with a SD

of 40% of the distance, rotated around the ping's receive location

(Equation 10). Careful examination of our test results yielded this

estimate as a good estimator of the precision of our path loss model.

The hot spot resulting from the sum of all the pings represents a

measure of the likelihood for the location of the transmitter. These

distributions are shown graphically in Figure 4.

Figure 4 specifically shows an example with only three range esti-

mates. In practice, we find that we have in excess of 10 range estimates

per solution, which results in a much sharper distribution of confidence.

This is a result of more data enforcing the estimated location. We show a

practical example of this in Figure 5, where the estimated location and

confidence distribution uses information from well over 30 measure-

ments, resulting in a very small error distribution.

To generate a confidence interval for the estimate, we then take

the contour of equal likelihood in which there is a 95% likelihood of

containing the estimate, and take the maximum radius of that

contour as the radial confidence interval of the estimated location.

While this dilutes the precision of our estimate, it provides a

conservative estimate of the actual precision of the location.

This graphical display of the precision of the estimate helps us to

identify certain degenerate solutions. Such solutions can occur when

all the data are essentially in a straight line, and there are multiple

spatial solutions to the model. This shows up as two “hot spots” in

the visualization. Another possible degenerate solution occurs when

F IGURE 4 Spatial precision distributions. The left image shows the probability mass distribution of the possible locations from a single ping.
The right image shows the probability mass distribution of the possible estimate locations from three pings. The red triangles denote the
measurement location. The red circles denote the calculated distance for each measurement [Color figure can be viewed at

wileyonlinelibrary.com]
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the estimated range becomes very large with respect to the distance

between measurements, such as when all measurements are spatially

close and have little variance. This manifests as a larger and more

dilute view of the single ping precision distribution. Thus, a valid set

of measurements and calculated estimate looks most like the right-

most image in Figure 4, albeit much smaller and more pronounced.

While other systems have used Bayesian estimation to solve for

their estimate, we use a nonlinear least‐squares solver to keep the

system simpler and lighter. Bayesian estimation requires a prior

characterization of the noise in the system, which can be impractical.

In general, it is also more computationally expensive, requiring faster

and more expensive computational hardware, thus increasing the

overall cost of the system.

Our localization method assumes that the target is stationary

during the measurements. However, this is not always true, as the

subject animal may be moving around. Because we are using a least‐
squares solver, we are finding the location that has the highest

likelihood of being the location that would have generated the re-

corded measurements. With a moving target, this effectively be-

comes a form of the mean location of the target during the recorded

measurements. Given that our overall objective is to track the target

animals moving over several days/weeks, this is an acceptable out-

come, as we are still able to generate a track of gross movement.

2.7 | Visualization

We can visualize the data as GIS data, plotting the measurement lo-

cations by their respective signal strengths, a heatmap of all probable

locations, as well as the most probable location. This is provided as a

GeoTIFF image containing the probability map, and an ESRI Shapefile

containing the most probable location and measurement points. This

visualization and data format provides a nearly seamless method for

scientists to incorporate our measurements into their work. An ex-

ample of the resulting data visualization is shown in Figure 5.

Figure 5 provides the following information: flight path, measured

signal strength, final estimate, and estimate precision. The flight path

is marked by the dotted paths—the drone took off from the parking

area in the northwest corner of the map, flew the lawnmower pattern,

then returned directly home from the northeast corner of the search

area. Each dot represents a location that the drone measured the

signal strength at. Because our system at the time did not reject signal

strength measurements from below the noise floor, the system does

attempt to measure the signal strength of the noise. This is later

rejected when selecting the data from which to generate the final

estimate. Each signal strength measurement is colored according to its

amplitude; we can see a hot spot where the red and orange dots are,

which is intuitively where the transmitter is located. The final estimate

is marked by the red X, and the likelihood map of that estimate is

represented by the grey heatmap. Note that this heatmap is much

sharper than the heatmap presented in Figure 4—this is because the

heatmap in Figure 5 uses information from over 30 measurements to

generate the final estimate, resulting in a much higher confidence.

3 | IMPLEMENTATION OVERVIEW

The system as described in Section 2 can be placed on any vehicle, so

long as the platform has the appropriate payload capacity and man-

euverability. In this section, we present the specific implementation of

the system (Figure 1) as deployed on Little Cayman in 2017.

3.1 | Flight hardware

We elected to use the 3DR Solo2 due to the clean user interface and

small learning curve for operational use. The 3DR Solo eliminates any

possibility of placing the aircraft into a non‐GPS controlled mode,

and minimizes the number of switches and buttons relevant to the

mission. In conjunction with the 3DR Solo, we use a MacBook Air

with a Windows install to run Mission Planner3 as our primary

mission control ground station and mission planning software. We

selected Mission Planner as it is the most mature mission control and

planning software available for the ArduPilot family of UAV autop-

ilots. The ground station connects to the 3DR Solo via the 3DR Solo's

WiFi link, which is hosted on the 3DR Solo Controller.

Fundamentally, this system can be integrated with any flight plat-

form capable of lifting the ≈300 g payload. Previous iterations of this

system were deployed on platforms such as a DJI S800 and Tarot Ir-

onman 650. In principle, so long as the vehicle can autonomously fly a

preprogrammed flight pattern and lift the payload, this system ought to

function, since the flight pattern can be modified to ensure that the

aircraft spends enough time in the area of interest to gather enough

signal measurements to produce a satisfactory estimate.

F IGURE 5 Mission 70 results, August 23, 2017 [Color figure can
be viewed at wileyonlinelibrary.com]

2Discontinued in 2016.

3http://ardupilot.org/planner/
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3.2 | Software defined radio

We elected to use the USRP B200mini,4 which is a 1 × 1 SDR in a

83.3 × 50.8 × 8.4 mm form factor. This provides a high‐performance

SDR in a small and lightweight package, which is ideal for use on

UAVs. This is combined with an LNA4ALL5 LNA, which provides

22 dB of gain in the VHF band, and helps provide the onboard

computer with a high‐quality radio signal.

3.3 | On‐board computer

We elected to use the Intel Joule,6 which is a compact x86 single‐board
computer, as the onboard computer. The Intel Joule comes with a

breakout board that exposes USB 3.0, hardware serial, general‐purpose
input/output (GPIO), and external storage. This allowed us to interface

directly with the USRP, GPS unit, and external storage. In addition, the

GPIO allowed us to interface with a custom user interface (UI) board,

which provided a way for the user to signal the computer to start re-

cording and to check the status of the various systems on board.

The Joule is configured to start a suite of monitoring software on

boot, which allows it to monitor and manage the status of the various

sensors and subsystems and display those on the UI board. This

software suite is also responsible for starting the recording software

and marshaling the data into the appropriate locations on an external

storage device.

The Joule receives complex RF signal data from the USRP via the

USRP Hardware Driver library. This is subsequently unpacked and

stored to disk as sequential complex integers. It also receives GPS

data from a UBlox M8N GPS module. All of this data is timestamped

and recorded, along with metadata such as the SDR's sampling rate,

center frequency, and amplifier gain. Signal processing and estima-

tion is conducted postflight on a dedicated processing laptop.

4 | PERFORMANCE

In 2016 and 2017, we deployed the prototype drone tracking system

on the island of Little Cayman, Cayman Islands in partnership with a

team of iguana researchers from Mississippi State University and

SDZICR to evaluate and demonstrate the capabilities of the system.

For the 2017 deployment, we conducted near‐continuous tracking

operations for 2 weeks, tracking 22 individual transmitters with an

average of 11 tracks per day.

These tracks were compared to triangulation methods where

possible, and conducted in cooperation with the field researchers.

We were able to generate a total of 152 scientific tracks, accruing a

total of 13.5 h of flight time.

4.1 | Ground truth

In 2016, we deployed the prototype drone tracking system without

the position estimation implementation to track known adult iguana

locations (primarily iguanas on the side of the road, stationary in

clearing, or in known burrows). These data showed that the signal

amplitude heatmaps were a very good indicator of the transmitter

location, and we and the researchers were able to pick out the

transmitter location by eye. We were able to use this recorded data

to develop and test the position estimation implementation, which

showed that the estimates generated were within GPS accu-

racy (5–10m).

In 2017, we were not able to gather as much ground truth data,

due to the increased number of subjects to track, and because we

were focusing on tracking iguana hatchlings. These hatchlings tended

to travel through heavily brushed areas, thus inhibiting our ability to

actually locate the animal and get a GPS reading on its location.

However, on a couple of occasions, we were able to verify a few

estimates using GPS, because the subject animals had moved to lo-

cations easily accessible from the roadside.

4.2 | Field utility

The overarching scientific goal of the radio‐tracking study on Little

Cayman was to characterize a poorly understood process in the life

history of a critically endangered iguana species—natal dispersal

(Moss et al., 2020). This would contribute to an improved under-

standing among conservation researchers of this cryptic early life

stage, including how the behaviors exhibited by hatchlings may ul-

timately shape patterns of recruitment and admixture in otherwise

stable adult populations. The principal investigators ambitiously

aimed to track 28 hatchlings—14 brother–sister pairs—each for a

period of approximately 4 weeks. A minimum of one transmitter

location per day was desired to track animal movement patterns.

Because hatchling iguanas are small and previous studies have

shown that they are capable of rapid movements when dispersing

(Knapp et al., 2010; Pérez‐Buitrago & Sabat, 2007), tracking this

many animals over a relatively short period was anticipated to pre-

sent a unique challenge in the undeveloped and thickly vegetated,

karst landscape of Little Cayman.

We were able to operate our system for the first 2 weeks. Un-

fortunately, a problem with the mechanical reliability of the tracking

system led to a grounding of the system for the remainder of the

field season. This did provide opportunity to not only evaluate our

system during the first 2 weeks, but also directly compare the drone

tracking system methodology and the manual tracking methodology

in terms of effort and man‐hours, as well as operational efficiency.

We show the breakdown of transmitters tracked using the drone

versus triangulation in Figure 6, where we can see that using the

drone tracking system, we are able to hit a higher number of tracks

per day as well as a higher average number of tracks per day (shown

by the positive Y values). We were unable to sustain this pace (as

4http://www.ettus.com/all-products/usrp-b200mini/

5http://lna4all.blogspot.com

6https://ark.intel.com/content/www/us/en/ark/products/96421/intel-joule-550x-compute-

module.html
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shown by the negative X values occurring on August 27 and after

August 31) due to mechanical failures with the tracking system.

During the period between August 18 and 31, scientists released

20 of the study's 28 tracking subjects. Following the initial release,

accurate transmitter locations (estimated to within 200m; n = 189)

were obtained every 0.49–1.35 days. The vast majority of these co-

ordinates (81.5%) were obtained from UAV flights, and the mean

precision of coordinates approximated by this method was

25.9 ± 25.25 m . During the period when the scientists were solely

dependent on triangulation to estimate transmitter locations

(September 1–24), estimates were significantly less precise (mean

precision = −n p e49.73 ± 49.8 m ; = 209; = 2.6 06) and were ob-

tained significantly less frequently (every 0.17–2.67 days;

− −t p e= 5.63; = 1.04 07). These results support the assertion that

use of a UAV in a biological field study can help increase daily data

collection and quality by reducing time requirements and increasing

precision for the location of transmittered animals. Despite the clear

advantages of UAV tracking over traditional methods, the scientists

faced challenges with the technology. These included limitations that

were shared with triangulation. For example, when animals moved

outside the range at which an antenna could detect them, which oc-

curred at distances as short as ≈200 m from the roadside in some

areas of thick mangrove, narrowing the search area to the maximum

grid size allowable by the UAV was not possible. Thus, many data

points were lost when animals cut across the interior of the island.

It is important to note that this field deployment was not solely

focused on testing the drone tracking system, but also on gathering

scientific data. During this field season, new insights into patterns of

natal dispersal were gleaned from the combination of drone‐based
tracking and manual triangulation. For instance the greater fre-

quency and precision of tracking facilitated by the UAV early in the

season helped to illustrate that patterns of movement can vary re-

markably among neonates even over short time frames (Moss et al.,

2020). Characterizing fine‐scale behavioral variation among neo-

nates dispersing through different habitat types is of conservation

importance because increased time spent in habitat such as man-

grove has been shown to correlate with increased probability of

survivorship (Knapp et al., 2010).

4.3 | Performance validation

We have discussed our system in detail and its performance in an actual

field study. Finally, we would like to compare our system's performance

in field tests with the performance reported by Nguyen, Dressel, and

Cliff, as shown in Table 1. Note that these systems were not evaluated in

actual field studies. Nevertheless, we want to compare the performance

of our system side‐by‐side to provide context. While our system falls

short of achieving the most precise estimates or the best flight time, it

maintains a high level of performance throughout many trials, demon-

strating robustness through field tests. In this comparison, we define

flight time to be the time from takeoff to landing, or as reported by the

authors, and mission time to be the time from takeoff to delivery of an

estimate. For real‐time systems, flight time and mission time are typically

very similar, and differ only by the time needed for the operator to

realize that the vehicle has reported an estimate, take control, and land

the aircraft. For our data, we have averaged the data over all tracking

missions flown during the 2017 Cayman Islands deployment.

In 2018, Nguyen tested a range‐based particle filter system on a

3DR Iris7 and conducted a series of 16 flights to validate tracking per-

formance. These flights were conducted in a search area of 75m by

300m on two humans carrying wildlife radio transmitters, launching

from the southernmost corner of their search area. Their system re-

ported a best root mean square estimate error of 22.7 ± 13.9 m in

about 2.3min (Nguyen et al., 2019).While our systems overall are similar,

our overall mission times are typically longer. We attribute this to our

mission times including time to transit to the survey area, postprocessing,

and more in‐depth data gathering. This a key difference between field

tests and demonstrations—in the field, missions often take longer

F IGURE 6 Cumulative number of transmitter localizations
yielding coordinates with mean error <200m between August 18
and September 24 on Little Cayman. The y‐intercept differentiates
points obtained by triangulation (Triang.) versus unmanned aerial
vehicle. Different colors in the bars represent different transmitter
channels in the data set. The mirrored line indicates the total number
of transmitters for which tracking was actively being attempted on
each tracking day [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 1 Comparison of approaches

System Platform

Avg.

precision (m)

Avg. mission

time (s)

No. of

trials

Nguyen 3DR Iris 22.7 135 16

Dressel DJI M‐100 5 37 3

Cliff AT Falcon 8 51.47 600 8

Our System 3DR Solo 25.9 600 152
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because the drone may need to start from a position well outside the

payload's detection range of the target. In particular, the drone may need

to start without being able to detect the target during launch.

In 2018, Dressel tested a bearing‐based histogram filter system

on a DJI M‐1008 and conducted a series of flights to validate tracking

performance. These flights were conducted in a search area of 400m

by 400m on various RF sources, again starting from within the search

area, and thus within detection range of the RF sources. Their system

reported a fix when a 5m by 5m cell contained 50% confidence of

estimation, which occurred in 37 s (Dressel & Kochenderfer, 2018). It

is difficult to compare the estimated error, as we do not know the

distribution of their estimation error, but Dressel does claim a faster

time to estimate. Again, this can be attributed to our mission times

including time to transit to the survey area. Our system is also sig-

nificantly smaller, which enhances its applicability in the field.

Lastly, in 2018, Cliff field‐tested a range‐ and bearing‐based grid

filter system on an Ascending Technologies Falcon 8,9 and conducted a

series of eight flights to validate tracking performance on tagged swift

parrots, also starting from within detection range. Their system reported

a best estimate precision of 55m in 10min (Cliff et al., 2018). Our ap-

proach is able to generate a far more precise estimate in a similar overall

time, with a much smaller airframe, however, the precision of Cliff's

system may be worse due to their subject animals moving during their

tests.

5 | CONCLUSION AND FUTURE WORK

As our collaboration with the SDZICR progresses, we anticipate adding

features that will continue to make this system as efficient, accurate,

reliable, and cost‐effective as possible. Some of these features include

online detection and estimation, intelligent path planning, and flight

platform upgrades. In addition, we are redesigning the physical system

to be more robust, so that it can stand up to field conditions. This will

improve the usability of the system by further developing the auto-

mation and training for this system, and continuing to generate vali-

dation data to ensure that the estimation is robust.

Some specific changes we have already implemented and are

currently testing are: new signal processing chain, new on‐board
computer, and real‐time localization. As we continue to reanalyze the

2017 season data with the new signal processing chain, we are gaining

a better understanding of the potential performance of this system.

We deployed an updated and improved system to Big Ambergris Cay

in the Turks and Caicos Islands during the summer of 2019, with

promising improvements. We are looking to continue improvements

on this system as new opportunities to test and deploy arrive.

We are continuing to redesign the flight system and physical payload

for increased reliability against vibration, mishandling, and general wear

and tear, as these were the major factors that contributed to the inability

of the system to sustain operations beyond 2 weeks. We are also re-

designing the software architecture in the payload and ground control

station to be able to recognize and handle failures while maintaining data

integrity, so as to maximize the utility and reliability of the system, as

these contributed to some of the decreases in our ability to track

transmitters. Finally, we are continuing to improve the way that scientists

interact with and utilize our system, which will permit increases in the

amount of data that scientists can successfully gather in future

deployments.
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