IET Radar, Sonar & Navigation lH Journals
The Institution of
Research Article Engineering and Technology

ISSN 1751-8784

Received on 12th May 2020
Revised 24th July 2020
Accepted on 24th August 2020
doi: 10.1049/iet-rsn.2020.0224
www.ietdl.org

Target detection using features for sonar
images

Peter Tueller' =, Ryan Kastner!, Roee Diamant?

"Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
2Department of Marine Technologies, University of Haifa, Haifa 3498838, Israel
= E-mail: ptueller@eng.ucsd.edu

Abstract: Robust object detection in sonar images is an important task for underwater exploration, navigation and mapping.
Current methods make assumptions about the shape, highlight or shadow of an object, which may be invalid for some
environments or targets. We focus on the area of feature extraction-based detection, which does not rely on information about
the shape of the target, towards a robust framework for target detection for a variety of seabed structures and target types. The
proposed framework first estimates the seabed type from the spatial distribution of features to determine the set of optimal
parameters, and then obtains a set of features which are filtered according to intensity and distribution to yield a detection
decision. The proposed method also provides a means to determine the seabed type, and a machine-learning based
methodology to choose the feature detectors' parameters to match the evaluated seabed type. We report the performance of a
variety of feature detectors for a simulated environment and of one feature detector for real sonar images. Results show the
importance of choosing the parameters of the feature extractors based on the current environmental conditions and the

proposed method obtains a favourable tradeoff between detection and false alarm rates.

1 Introduction

Sonar imaging is a valuable tool for analysing the seafloor.
Detecting the presence of sunken ships and archaeological sites on
the seafloor, mapping structures and objects, or performing
pipeline inspection are all extremely useful tasks that are difficult
for divers to accomplish, particularly in areas of significant depth.
Current synthetic aperture sonar (SAS) imaging systems provide
cm-scale resolution at a range of100 m and can be equipped on
autonomous underwater vehicles (AUVs) or vessels that remain on
the surface, such as ships or unmanned surface vehicles. Yet, sonar
images are heterogeneous by nature and the design of a fully
automated system for object detection that is robust to various
seafloor environments and that functions well for different types of
targets is challenging. Fig. 1 shows a sonar image that contains
different seabed structures where Poseidonea, sand and sand
ripples exist in the same image. Each of these has different features
and characteristics that make detection challenging.
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Fig. 1 Sonar image with heterogenous seabed structures — sand, sand
ripples and Posidonea plant life
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There are a number of approaches for the task of detection
objects in a sonar image. One possibility is using a supervised
learning approach that compares regions in the image to previously
known patterns that correspond to objects. Barngrover [1] trains a
Haar-like feature classifier on a large data set of objects for mine
detection. These approaches are prone to false negatives when
there is a mismatch between the template and the actual sonar
image, e.g. due to changes with altitude and angle of the sonar
system with respect to the target. Further, this supervised learning
may only correspond to the case when the shape of the target is
known a priori. Myers and Fawcett [2] suggest an alternative which
segments a sonar image into five classes based on simple
thresholding and compares them with previously established
templates. These templates are generated from a database of targets
at a variety of orientations. Recently, Abu et al. [3] abandons
supervised learning altogether and proposes a statistical detection
approach. Their classifier uses the sonar parameters and on the
expected distribution of the highlight, shadow and background.
The result is a detected region-of-interest based on segmentation of
highlights and shadow, set by a likelihood ratio.

While the above approaches perform well for their application,
they all inherently assume some knowledge about the target, e.g.
the shape of the object in template matching or an assumed
distribution for the highlight or shadow as in statistical detection
methods. Instead, in this work, we focus on the case where such
information is not available. Our method only relies on the
assumption that the object is sufficiently different from its
environment. That is we assume that there exist some features
related only to the object to allow us to separate it from its
environment. As shown in the example in Fig. 2, these objects can
manifest as a bright circle against a sandy background or a shadow
with complex geometry.

Feature detectors lie at the heart of all indirect image processing
techniques. They do not require prior knowledge of the target;
instead, they aim to identify geometry that is highly distinguishable
from the background. As a result, feature detectors fulfil the
robustness requirement for handling multiple sea environments and
sonar images. Yet, although feature detectors have been
successfully applied for the detection of objects in optical images
or videos [4-7], there has been little done to explore their
effectiveness in the sonar realm.



Fig. 2 SAS image of the seafloor with an object appearing prominently in the centre right

Table 1 Comparison of feature detectors

Feature Description Number of parameters, Average Pros Cons
detector number of time per
configurations feature, us
Harris and computes gradient with respectto 5 parameters, 10,000 637.01 distinguishes corners susceptible to scale
Stephens [9] each direction configurations and edges well variance
Shi et al. [10] similar to Harris but uses a 3 parameters, 10,000 682.77 distinguishes corners susceptible to scale
simpler thresholding method configurations and edges well variance
STAR [11] multi-scale detector with no 5 parameters, 1000 1257.68 robust to viewpoint  susceptible to brightness
subsampling base on CenSure configurations changes changes
[12]
FAST [13] computes difference in brightness 3 parameters, 500 16.42 efficient poor noise robustness,
of neighbours in Bresenham circle configurations susceptible to scale and
illumination variance
SIFT [14] computes oriented gradient 4 parameters, 5000 793.94 rotation and scale  computationally expensive,
histograms for patches around a configurations invariant susceptible to blur
point
SUREF [15] a more efficient approximation of 3 parameters, 1000 73.35 faster than SIFT susceptible to viewpoint
SIFT configurations and illumination change
ORB [16] efficient replacement for SIFT that 6 parameters, 15,000 34.84 scale and rotation generally fewer features
builds off of the FAST detector configurations invariant, real-time,

noise resilience

The two main challenges of feature-based target detection are
(1) separating the target from the background and (ii) setting up of
the feature parameters. Regarding the former, the features extracted
from the target and from target-like objects like rocks or ripples are
hard to distinguish especially in a diverse seabed environment.
Regarding the latter, the number of parameters range from 3 to 6
depending on the method used (see Table 1). Yet, the number of
values for each parameter has thousands of possibilities. While the
default parameters have been set to give good performance with
simple images, these default parameters are far from being suitable
in the general case [8] and we show that custom parameters are
necessary for sonar images. Unfortunately, the brute force
exploration of all possible configurations is not feasible. This is
exacerbated by the fact that the performance of the feature
extraction is highly affected by the unique patterns on the seafloor,
such as sand, sand ripples or grass, as seen in Fig. 1.

We introduce a new methodology for feature-based target
detection that addresses these two challenges. Our method accounts
for the expected spatial separation of the target and the type of
background in the sonar image. The method also efficiently
explores the parameter space across the various environment
backgrounds to find the optimal or near-optimal parameter
configuration for a given sonar image background type. Our
method does not guarantee optimal detection, but rather approaches
optimality with low complexity.

Our method fits target identification applications like
simultaneous localisation and mapping (SLAM) or identification of
targets that stand out from their environment, e.g. pipeline
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exploration, archaeological surveys and mine detection. The
algorithm works by first gathering features across a data set of
sonar images and training a classifier to label each feature as object
or non-object. We then modify the parameters of the feature
detectors and find the set of best parameters to fit the evaluated
seabed type using design space exploration. This solves the
problem of needing to hand tune the parameters of the detector, and
manually test tens of thousands of configurations to optimise
performance. Finally, given a set of features generated by the
optimal parameters, we perform target detection by prioritising
detection of distinct features in space to identify the coordinates of
single or multiple targets.
Contributions of the proposed work are as follows:

(1). A method for feature-based target detection on sonar imagery
that takes into account the spatial identification of a target, as well
as the type of background.

(i1). An implementation of an active learning design space
exploration method to optimise feature detector parameters on
sonar imagery.

(iii). A comparison of the relative performances of feature
detectors on a simulated SAS data set.

We explore the performance of our algorithm via a designated
simulator for sonar images, and over a set of sonar images were
obtained using our own AUV platform. This SAS image simulator
[17] has been used previously to train methods that have been
experimentally verified on real SAS images, and thus we can
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Fig. 3 General framework for our feature-based detection algorithm

expect similar reliability. The results show that identifying the
background and utilising a feature detector with parameters
optimised for that background yields the best result. Yet, we also
observe that in the general case where the background is not known
or estimated, utilising parameters trained for all backgrounds
together produces the most reliable performance. Additionally, the
design space exploration yields much higher performance than the
default values for every feature detector. The optimised parameters
for each background also yield different performances,
dramatically so for some feature detectors.

This paper is organised as follows. In Section 2, we describe the
state of the art in target detection on sonar images. Section 3
includes the details of our target detection method. In Section 4 we
show how the feature exploration's parameters are set. Section 5
includes results from synthetic images and from real sonar images.
We conclude in Section 6.

2 Related work

There has been a great deal of interest of non-model-based object
detection in sonar imagery for segmentation and mapping unknown
environments. However, the literature is sparse when it comes to
analysing and optimising feature detection, which is the very first
step of the process.

Feature-based detectors for sonar images have been mostly used
for applications related to subsea navigation. In particular, the main
approaches use feature extraction to identify similar objects within
a set of sonar images. Williams ez al. [18] perform two steps for
such identification: first, they identify areas of constant depth as
those may correspond to real objects. Then they classify pixels
which are of consistent depth and not larger than a specified
threshold as point features and feed them into subsequent feature
matching for navigation. Similarly, the work by Johannsson et al.
[19] utilises a simple computer vision pipeline of smoothing,
gradient thresholding and clustering, which is similar to simple
feature detectors that the work by the evaluates of Harris and
Stephens [9]. They use these features to perform registration on
overlapping frames, which in turn generates motion estimates
between frames for SLAM.

The use of feature extraction for SLAM applications is
common. Ribas et al. [20, 21] used mechanical forward-looking
scanning (FLS) sonar that produces consecutive sonar images
while the underwater vehicle is moving. The movement creates a
warped image since different parts of the image will be observed
from different locations. To remove these distortions, they use a
motion estimate to re-align each pixel to a globally consistent
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frame. After this pre-processing step, they use a simple line
extraction detector for target identification. Similarly, Fallon et al.
[22] proposed a feature-based navigation system to incorporate
features from high-resolution maps of the seafloor and relocate
objects using a lower resolution FLS. To detect features from the
FLS, they first adaptively thresholded each image based on altitude
to remove background noise. Then, they segment the image and
use a gradient-based feature detector with a threshold based on the
average background image level to identify points of highlight and
shadow. They then register these features back against the map and
use them in a SLAM framework. Yet, the results show that
performances are highly dependent on the seabed type.

While the above methods are tested for realistic sonar images,
we identify some major gaps. In particular, the algorithms do not
consider the spatial variation in sonar images. Even more
importantly, the available methods optimise their parameters based
on a small scale of cases, which may not fit the aim of robustness
to various target types and different seabed structures. Specifically,
these methods are missing an analysis of how to optimise the
performance of these detectors in a broader set of environments. In
this paper, we consider these two observations and offer a method
for feature-based target detection that uses spatial information in
target identification, as well as a rigorous methodology of how to
set parameters to match a self-identified seabed type.

3 Feature-based target detection
3.1 System model and key idea

Our system model includes a single sonar image of any type, e.g.
SAS, multibeam or FLS. The sonar image we consider is two
dimensional (2D), although the 3D extension is straightforward.
The sonar image may or may not include a target, but we assume
that if a target is present, it is distinguishable from the seabed
environment. That is it is either isolated compared to similar
objects (e.g. a cluster of rocks) or it has a unique pattern. We do not
assume knowledge about the shape of the target. Our goal is to
identify the existence and location of a target in the given sonar
image. In our scheme, we use knowledge of the seabed
environment type: specifically sand ripples, grass and a mix of
these backgrounds.

Fig. 3 outlines our general approach. We start with an image
(block 1) and setting the parameters (block 2) to a feature detection
algorithm to detect an object in the presence of any typical seafloor
pattern. These default parameters will be the ones that give the best
results across a mix of all backgrounds. The detection algorithm
then returns key points (block 3), which are the pixel coordinates
and calculated intensities associated with a feature. We rank the
intensity of the key points and apply a threshold (block 4) (Note
the threshold is determined as a system parameter and is not user
defined.) to return the best key points and their coordinates. Once
we identify the subset of features and locations (block 5), we
extract the additional feature descriptors (blocks 6, 7) and we make
a decision about the seabed type between four different clusters
(block 8): sand ripple, grass, sand and mix. Then we execute the
feature extraction algorithm again for the set of parameters that
best fits the evaluated seabed environment (blocks 2—7). Finally,
we perform target detection (block 9) based on the joint spatial
spread of the detected features to identify a single or a set of targets
that stand out from their environment either in terms of their
pattern or by being spatially separate.

3.2 Feature extraction

We base our detector on an underlying feature extraction algorithm.
In this work, we do not develop our own feature extracting
algorithm. Rather, we explore a variety of such filters and provide
the framework to include these algorithms for target detection in
sonar images. Non-model-based feature detectors are all
fundamentally based on analysing intensity gradients in an image,
but differ in determining uniqueness based on patterns at a point
(i.e. corner) or within a region surrounding a point (i.e. blob) or
some combination of the two.
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nClasses + 2
kMeanslIterations < 15
¢+ k Means Init Centroids(features,nClasses)
for i = 1: kMeanslterations do
idx + find Closest Centroids(features, c)
¢ « compute Centroids(features, idz,nClasses)
end for
for p € features do
distCentroidl < norm(p — ¢(1))
distCentroid2 < norm(p — ¢(2))
if distCentroidl < distCentroid2 then
distance(p) < distCentroidl
else
distance(p) < distCentroid2
end if
end for

Fig. 5 Algorithm 1: distance to the nearest centroid

Fig. 6 Placement of centroids on simulated sonar images. Features are
displayed as cyan points, and the two centroids are the green plus symbols.
Features associated with an object (left) will on average be closer to a
centroid than features not associated with an object (right)

We compare seven feature extraction algorithms: Harris and
Stephens [9], Shi-Tomasi [10], STAR [11], FAST [13], SIFT [14],
SURF [15] and ORB [16]. All of these are widely used, are
considered for general purpose and are similar to detectors used by
state-of-the-art feature-based navigation methods [19, 22]. Further,
these algorithms are all available in the open-source library
OpenCV [23]. These algorithms act as the detection filter block in
Fig. 3. Given a set of parameters, the feature detector gives
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coordinates for a feature along with a single intensity value. Some
detectors, namely STAR, SIFT, SURF and ORB, return additional
information beyond the single intensity value, such as scale and
orientation of each feature.

The key idea, pros and cons, average running time per feature
and the number of parameters to tune for each of these detectors
are summarised in Table 1. The average running time per feature is
computed using each image in our data set (explained in Section
5.1) and every possible parameter configuration on a 3.2 GHz Intel
Core i5 processor with 16-GB 2400-MHz DDR4 RAM. The
parameters used by each of these detectors affect the performance
in terms of feature detection. For example, SURF's three
parameters affect the threshold at which points are accepted or
rejected and the size and number of octave layers, which are
fundamental components to its operation. These, in turn, affect the
size of features that SURF detects and returns.

3.3 Feature classification

The output of the feature extraction process is a set of pixel
coordinates with associated intensity values, i.e. a set of features.
To decide on the important features out of those that passed the
detection filter by means of classification, we label each feature
with ‘1 if it is related to a target and ‘0’ otherwise. As illustrated
in Fig. 4, for classification we use this set of labelled features to
train a support vector machine (SVM) model via a four-fold
validation process over a radial basis function kernel. SVM was
chosen due to its ability to perform well also for small sets of
training data. The model takes the detectors’ outputs (feature
intensity, and, if relevant, scale and orientation), as well as the
location of the identified features in the image.

Recall we assume that features corresponding to an object in a
sonar image are isolated from other features. Thus, to classify an
object, we use the relative position information to serve as an input
to our SVM model. We avoid setting the absolute position
information as an input, though, as an object may appear at any
position in the image. Instead, we calculate two characteristics that
relate to the feature's density. The first parameter describes any
given feature's distance to the closest of two centroids, which we
calculate given the total distribution of features in a single image.
In images with a single object, numerous features around the object
will create a centroid that is very close to the position of the object.
Therefore, theoretically, features that have smaller distances to
their nearest centroids would be more likely associated with an
object. The pseudocode to set up the distance characteristic is
outlined in Algorithm 1 (see Fig. 5) and a visual representation is
depicted in Fig. 6.

The second parameter is a density index, as related by (1), that
quantifies the relative distance from a single point to all other
points in the image. This way, features that are close to many other
features will have a lower value than features that are isolated in
the image.

These two feature density parameters and the parameters
inherently calculated by the feature detector all make up the ‘key
point descriptors’ in Fig. 4 that are input to the SVM model. After
training, the SVM, for each key point descriptor, will output either
a ‘1’ for ‘object’ or ‘0’ for ‘non-object’. By this method, we
perform feature classification.

3.4 Identifying seabed structure

Once we extract the set of features, &%, we make a decision on the
type of seabed. Information on the seabed type allows us to better
determine the feature extraction algorithm's parameters. We take a
set of images of an unknown seabed and compute the number of
features, the distribution of features within images, and feature
descriptors. These criteria are compared to averages of the same
criteria computed from a representative data set of three
environments. If the criteria from % matches one of these
environments within a predetermined threshold, we make a
decision on the type of seabed and apply the optimal parameters for
that seabed. In Fig. 7, we distinguish between seagrass, sand and
sand ripples. We use mix and its corresponding optimal parameters
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Fig. 7 Simulated sonar images with grass (left), ripple (middle), and sand
(right) seabeds

(a) Example simulated sonar images, (b) Distribution of SURF features on the
simulated seabeds. The location of a feature is represented by a green plus symbol and
the scale associated with that feature is represented by a green circle around it

for a seabed environment that is not well distinguished by the
above criteria. Then, once we properly set these parameters, we
execute the feature extraction algorithm again so that we can glean
the most accurate set of features possible.

We base our decision regarding the type of seabed on fixed
thresholds on the distribution, the number of the features extracted
and descriptors from the feature detector. We learn these thresholds
from a simulator built by the definitions from Abu and Diamant
[17] for the different three seabeds in Fig. 7, while normalising by
the number of pixels in the sonar image.

To quantify the spatial spread of the features, we project the 2D
location space of each feature f; into a closeness index. Let r; be
the 2D location of the ith feature and d; ; be the Euclidean distance
between features 7 and j. We choose the closeness index to be

(ri —ro)(rj — re)

By = i T
T M1 oy 1

1
k,k;éij,j;éi,k(

which for a point i iterates through each feature & and compares it
to every pair of feature i, j. If i is far from most other features, and
those features are relatively close to each other compared to 7, then
the equation will evaluate to a relatively large value. Thus, A;
measures how isolated feature i is relative to the other features,
such that the higher 4; is, the more isolated feature i is. Then, we
compare the mean of 4; Vi together with the number of extracted
features by the above logic to determine if the current seabed is
composed of a few/large number of isolated/dense features, and
then identify the seabed environment.

3.5 Target detection

Once we identify the seabed, the feature classification step is run
with the detector parameters tuned for that specific seabed type.
This yields a set of features that we can now analyse to identify the
coordinates of a single or a set number of targets within an image.
We use three methods for identifying a target. The first method
sorts the features by the intensity and applies a simple threshold to
label the n features with the highest intensities as n targets in the
image. This is the method that is typically used, as by design a
higher intensity indicates a ‘stronger’ feature.

The second method calculates weights for each feature using
(1). The weights are then normalised by calculating

W= )
1 Z] hj E

and then the weight w; of each feature is multiplied by its intensity
Vi

Vi = W;. (3)
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The intuition here is that intensity is not the only quality of a
feature indicating it can correspond to an object. The spatial
relationship between one feature and all other features can also hint
at the existence of an object. Combining this information will
theoretically lead to a more robust target detection.

The third method utilises the same weights w and multiplies by
the intensity of a feature normalised with a fixed window:

N Vi
Wi o N o 4
A/S; DX es,vi “)

Vi=

where S; is the set of features within a 5x5 pixel window
surrounding feature j. Features corresponding to objects will
theoretically be more different than their immediately surrounding
features in comparison to the difference between features
corresponding to noise or backgrounds. However, this method
relies on the window size being larger than the objects in the image
so that the intensity differences are more significant.

Finally, similar to the first method, a threshold is set for the
sorted values of v and v to identify the » targets within the image.

4 Design space exploration

One of the main challenges in our feature-based target detection is
how to determine the optimal set of parameters for each feature
detection algorithm to obtain a favourable trade-off between the
true positive rate and the false positive rate. While each of the
algorithms we consider may only have four or five parameters, the
number of possible combinations quickly builds up as the
granularity of the sampling for each parameter increases.

To illustrate this, consider an algorithm with only five
parameters each having only four possible values. Then, the total
number of designs is 1024. Now consider an evaluation process for
a single design that lasts for 10 min. The result would be
approximately 1 week of continuous computing to fully explore the
design space. Naturally, this duration compounds when several
seabed environments and target types are explored. Clearly, a
method to reduce the computing time while still achieving a good
approximation of the set of optimal designs is required. While for
optic images the default parameters supplied with the feature
extractors are designed to be suitable, to the best of our knowledge,
how to set the parameters for sonar images has not been explored.

4.1 Exploring the space of parameters

We propose a parameter-tuning methodology based on active
learning. While there exists several options for parameter
exploration via active learning, e.g. [24-26], we adopt previous
design space exploration work known as ATNE [27] that we have
modified for our application, which works by sampling design
based on whether it guesses that the results will either further
explore the design space or get closer to the optimal edge. Instead
of brute-force exploring the whole sample domain, ATNE covers a
subset sufficient to estimate the pareto-optimal front for even very
complicated non-linear design spaces. It marks an improvement on
previous active learning papers by requiring fewer initial random
samples: 6 compared to 3000 [26]. Additionally, it can handle
complex design spaces of a variety of sizes and retain similar
prediction quality. By running ATNE on each detector for each data
set of seabed environments (200 images for grass, ripple and sand
and all 600 images for the mix data set), we can generate a set of
feature detector parameters. The result is decreased by 70% in the
exploration time of the best set of parameters. Each design can take
up to 8 min to evaluate on an Intel Core i15-6500 Skylake Quad 3.2

GHz with 16 GB of memory and a Sapphire Radeon Nitro R7 370
4 GB GPU. Thus, with a feature detector with 500 possible
designs, it saves about 47 h of processing time.

To demonstrate the operation of ATNE, Fig. 8 shows that a 30%
sampling of the design space with the predicted best configurations
in black, compared to the true optimal (brute forced) pareto front in
red. Additionally, the sampled designs are shown with a magenta
dot, and the full-space of designs is shown simply as blue circles. It
is clear that ATNE, though sampling only a portion of the designs,
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essentially reconstructs the space and estimates a pareto-optimal
set of designs that are close to the ground truth optimal set. We
measure the closeness to ground truth using the average minimum
distance from reference set (ADRS) [27, 28] and ATNE. ADRS is
defined as

ADRS(Pgu Ppred) = min d(pgb ppred)7 (5)

where Pprq and Py are the sets of points in the predicted pareto
front and the ground truth pareto front, and the function
d(Pgi> Pprea) Tepresents the distance between a point in the ground
truth set and a point in the predicted set.

4.2 Utilisation function for parameter exploration

As any reinforcement learning technique, ATNE requires an
objective function or space to converge to. Since our aim is target
detection, we choose the receiver operator characteristic (ROC)
which compares the number of correctly classified object features
against the number of incorrectly classified non-object features.
One alternative is the precision—recall curve, which is used in cases
where there is an abundance of one class over another. Although
there is an imbalance in our case (there are far fewer object pixels
than background pixels), the ROC is a better choice because it is
more important to us that the object as a whole is identified
robustly in comparison with the background, rather than every
single object pixel be identified. The ROC is a common way of
choosing parameters for detections; yet, ROCs can also be used to
compare detectors. In that context, we recall that a desired detector
would yield a better false positive—true positive trade off in most of
the cases compared to other options. If we use a graphical
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explanation (see for example Fig. 9), the best detector would be the
one obtaining the far left curve of the ROC. Utilising this
observation, as a utility function, we feed ATNE with
approximations of the ROC by sampling three true positive—false
positive pairs on the curve.

Our procedure works as follows. For each feature detector
design and parameter configuration, we execute our detection and
classification workflow (see Section 3) to obtain a list of features
labelled as object. This list is then compared with ground truth
information to yield a precision—recall pair for each parameter
configuration. Once ATNE tests one design and configuration, it
decides which design to sample next, based on its updated estimate
of the design space. After sampling 30% of the space, we can then
reasonably say that ATNE has recreated the pareto-optimal front of
the design space. The pareto-optimal front will consist of the points
that are on the edge of the scatter plot with the fewest false
positives and most true positives.

5 Results

In this section, we explore the performance of our feature-based
target detection scheme. Our data set comprises 600 simulated
sonar images to determine the parameter space of each feature
extraction algorithm. In addition, we explore the performance for
some genuine sonar images that we gathered in multiple sea
experiments. This data set includes sonar images from a SAS
mounted on our Eca-robotics Alister A18 AUV and we gather
multibeam images using a surface ship-mounted multibeam. We
start by exploring the set of parameters based on our simulator and
then provide sea trial results for target detection.

5.1 Simulations

The simulated SAS images depict a single target on one of three
backgrounds: grass, sand ripple or sand. An example of all three
environments is shown in Fig. 7. The backgrounds have equal
representation in the data set, such that there are 200 grass-, 200
ripple- and 200 sand-based sonar images. We obtain this data set
from a distribution function tailored to each of these seabed
environments (see [17] for further details).

Within each background, there are many different target,
shadow and background intensities, so that there is sufficient
variety represented in the data set. As the data set is split into three
backgrounds, there are four experiments that we can run: one for
each background and one for a mix of all backgrounds. This allows
us to test the suitability of various feature detectors for particular
backgrounds in comparison to each other. This is done by
measuring the number of true positives and false positives that
each detector generates with a specific design, where the number of
true positives corresponds to all the features that are within the
bounding box of the object, and the number of false positives
corresponds to all other features which are outside that bounding
box. We relate these with (6) and (7) for true positives and false
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positives, respectively. We measure the true positive performance
by dividing the number of true positives, Ny, by the number of
pixels that should have been detected but were not (i.e. false
negatives), Np,, plus the number of true positives. This
denominator corresponds to the number of pixels that correspond
to the object in the image. We measure the false positive
performance by dividing the number of false positives, Ny, by the
number of pixels that were correctly not identified (i.e. true
negatives), N, plus the number of false positives. This
denominator corresponds to the number of pixels that correspond
to the background of the image:

Pp= (6)
P Np+ N’
__Nw
Po = N Mo M

5.2 Classification results

Table 2 illustrates the performance of each of the seven feature
detectors on each of the four data sets.

We plot the optimal set of designs for each data set for a given
feature detector for comparison, with the true positive rate on the y-
axis calculated by (6) and the false positive rate on the x-axis
calculated by (7). With Fig. 10 we show the performance of the
grass, ripple, sand and mix optimal designs for each of the four
data sets. In each plot, there is a line of best fit for each of the
optimal design sets to obtain an estimate of the pareto-optimal
curve. For example, in the Harris grass plot, there are five sets of
designs that we test on the grass data set. As expected, the designs
that are optimised for the grass data set perform the best, as the red
dotted line is the closest to the top left corner. The designs

Table 2 ROC curves

optimised for the other data sets are shown as well: ripple in
magenta, sand in green, mix in blue and the default designs with no
optimisations in black. In this particular instance, the sand designs
appear closest to the most optimal set of designs.

We calculate the distance between each curve on a single plot
using ADRS as defined in (5). Table 3 shows the ADRS values for
each plot. ADRS gives a measure of how far the results are from
the optimal results, so lower is better. An ADRS of 0 indicates that
the sets exactly match. We calculate ADRS based off of the
number of true positives and false positives for each point, rather
than the performance metrics in (6) and (7). Since all the images in
the data set contain the same number of pixels, this will represent
the same relative performance as the plots in Fig. 10. For example,
the Harris grass plot in Fig. 10 corresponds to the optimal grass
row in the Harris sub-table in Table 3. In this particular case, as we
already assumed from the plot, designs trained on the sand data set
and tested on the grass data set are the closest to the grass optimal
front, with an ADRS value of 1.47. This means that if we substitute
the parameters in Harris plots which have been optimised for the
sand data set, we will get a similar performance as if we used grass
parameters, which are optimised for the actual data set that is being
tested.

In all cases, as the plots illustrate, all optimised designs (even
the ones trained and tested on mismatched data sets) perform better
than the designs with default parameters. Additionally, in most of
the combinations, using the designs optimised for the particular
background that is being viewed will dramatically improve
performance compared to using a mismatched training data set.

We would expect that there be a consensus of which set of
optimal designs would be best to use without any knowledge of the
background that is being tested. In other words, that a single
column in each of the subtables in Table 3 will contain a majority
of bold values, such as is the case for the Shi-Tomasi table, where
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Table 3 ADRS values for each feature detector
Harris Grass Ripple Sand Mix Shi-Tomasi Grass Ripple Sand Mix
optimal grass 0 9.14 1.47 512 optimal grass 0 9.01 5.12 7.78
optimal ripple 9.24 0 24.15 16.19 optimal ripple 5.02 0 7.44 0.50
optimal sand 13.35 34.23 0 12.41 optimal sand 7.37 6.24 0 2.36
optimal mix 86.16 56.76 142.80 0 optimal mix 28.17 19.31 28.59 0
SIFT Grass Ripple Sand Mix SURF Grass Ripple Sand Mix
optimal grass 0 2.30 6.94 6.62 optimal grass 0 10.06 20.50 10.17
optimal ripple 79.96 0 93.25 50.41 optimal ripple 5.23 0 17.32 3.91
optimal sand 28.65 19.50 0 18.04 optimal sand 18.22 9.45 0 7.79
optimal mix 22.32 11.90 25.16 0 optimal mix 32.59 1.82 39.08 0

the designs optimised for the mix data set are always second best in
each of the individual data sets.

5.3 Comparing feature extraction algorithms

While is not our main aim, our method provides an efficient way to
compare the performance of the seven feature extraction
algorithms used. We base our comparison on the ROC performance
of the seven methods in Fig. 10 and Table 3.

IET Radar Sonar Navig.
© The Institution of Engineering and Technology 2020



STAR Grass Ripple Sand Mix FAST Grass Ripple Sand Mix
optimal grass 0 20.00 13.36 33.35 optimal grass 0 2.95 0 9.77
optimal ripple 45.27 0 35.73 25.60 optimal ripple 46.33 0 52.87 35.41
optimal sand 4.56 7.60 0 25.35 optimal sand 0 0.24 0 3.68
optimal mix 71 10.77 9.46 0 optimal mix 20.22 0 17.49 0
ORB Grass Ripple Sand Mix
optimal grass 0 3.65 213 1.71
optimal ripple 60.22 0 289.55 140.56
optimal sand 19.24 26.60 0 12.20
optimal mix 25.52 9.58 5.70 0

The data set with the designs closest to each optimal front is in bold. This is a numerical representation of the plots in Fig. 10 and support the conclusions drawn from visual analysis.

Original Method 1

Method 2 Method 3

Object: 5 | Non-Object: 4

Obiject: 4 | Non-Object: 16

s

Obiject: 6 | Non-Object: 14

Obiject: 48 | Non-Object: 2

Object: 8 | Non-Object: 1 Object: 8 | Non-Object: 1

Obiject: 8 | Non-Object: 12

Object: 15 | Non-Object: 5

Object: 16x | Non-Object: 4

Object: 50 | Non-Object: 0 Object: 50 | Non-Object: 0

Fig. 10 Target detection methods on real sonar images with the SURF detector

From the plots, and verifying with the ADRS values, the Shi-
Tomasi, SURF and ORB designs optimised for the data set
containing a mix of all backgrounds performs consistently well in
comparison to the other feature detectors in all categories. These
are the most robust of the seven-feature detectors that were tested
and would function better than the others in environments with a
variety of seabeds if there was no ability to detect the type of
seabed.

Harris is interesting in that each set of designs trained on the
individual data sets perform very close to optimally when tested on
the data sets all together, but the designs trained on the data sets all
together only perform averagely when tested on individual data
sets. FAST is also unique in that it has a smaller design space and a
number of the designs have identical performance. This yields a
situation where the designs trained on grass and sand are
identically optimal when testing on grass and sand data sets, but
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have different ADRS values when testing on the ripple or mix data
sets.

5.4 Real sonar images

Fig. 10 shows the performance of the target detection step on real
sonar images. The first two images are from a surface ship-
mounted multibeam sonar. The first image contains multiple
prominent rocks on a non-homogeneous seafloor. The second
image contains three targets, deliberately placed on the seafloor but
is not as prominent against the background. The third and fourth
images are from our AUV mounted SAS, and each contains a
single target: a simple pipe and a complex shipwreck, respectively.
For the first two images, which contain multiple targets, we expect
that Method 1, a simple threshold filter, will identify the single
most prominent target. We also expect that Methods 2 and 3, which

9



take the distribution of features into account, will identify other
targets in the image as well. Additionally, for all images we expect
that features with high intensities that correspond to the seafloor
will be eliminated by Methods 2 and 3.

We show results for the SURF feature extraction algorithm, and
note that the results are similar in trends for the other feature
extraction algorithms. The images each have at least one target,
outlined in the first column. The methods we test are outlined in
Section 3.5 here Method 1 corresponds to the simple feature
intensity thresholding, Method 2 corresponds to (3) and Method 3
corresponds to (4).

We observe that Methods 2 and 3 present a clear improvement
over Method 1. In particular, separate targets are identified more
strongly in the first and second images, and in the first and third
images the vast majority of false detections on the background are
eliminated. The fourth image depicts a single, large, complex
feature, and as such it is easily identifiable by all methods.

6 Conclusion

In this paper, we presented a feature extraction-based method to
detect targets in sonar imagery. Our method does not require prior
knowledge of the shape or distribution of the target, and is capable
of target detection for multiple seabed environments and sonar
types. We described the framework of our detector, and showed
how it exploits the spatial diversity of the extracted features.
Further, we described our methodology for exploring the parameter
space across the various environment backgrounds to determine the
parameters of the feature extraction algorithms. We demonstrated
the applicability of our approach over a simulated data set and
examined it on genuine sonar imagery of different sonar types. The
results showed that optimised parameters yield much higher
performances than default parameters. Further work will combine
the positives of all feature extraction algorithms to yield a better
and more robust detection rate. Additionally, the use of neural
networks may illuminate additional optimisations that the SVMs
we used could not, and presents an interesting opportunity for
future research. This could be paired with additional research into a
more robust sonar image simulator. The one used in this paper has
limited dimensionality, and as such generating additional images to
use a neural network runs the risk of overfitting [29].
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