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Abstract

Purpose – Digital documentation techniques of tunneling excavations at archaeological sites are becoming more
common. These methods, such as photogrammetry and LiDAR (Light Detection and Ranging), are able to create
precise three-dimensionalmodels of excavations to complement traditional formsof documentationwithmillimeter to
centimeter accuracy. However, these techniques require either expensive pieces of equipment or a long processing
time that canbeprohibitive during short field seasons in remote areas.This article aims to determine the effectiveness
of various low-cost sensors and real-time algorithms to create digital scans of archaeological excavations.
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Design/methodology/approach – The authors used a class of algorithms called SLAM (Simultaneous
Localization and Mapping) along with depth-sensing cameras. While these algorithms have largely improved
over recent years, the accuracy of the results still depends on the scanning conditions. The authors developed a
prototype of a scanning device and collected 3D data at a Maya archaeological site and refined the instrument
in a system of natural caves. This article presents an analysis of the resulting 3D models to determine the
effectiveness of the various sensors and algorithms employed.
Findings –While not as accurate as commercial LiDAR systems, the prototype presented, employing a time-
of-flight depth sensor and using a feature-based SLAM algorithm, is a rapid and effective way to document
archaeological contexts at a fraction of the cost.
Practical implications – The proposed system is easy to deploy, provides real-time results and would be
particularly useful in salvage operations as well as in high-risk areas where cultural heritage is threatened.
Originality/value – This article compares many different low-cost scanning solutions for underground
excavations, along with presenting a prototype that can be easily replicated for documentation purposes.

Keywords Archaeology, Cultural heritage, Documentation, Surveying and recording, Mapping

Paper type Research paper

1. Introduction
Digital metric documentation of cultural heritage is becoming commonplace at archaeological
sites where high-resolution, remotely sensed data provide a more accurate record than
traditional analog recording of excavation contexts, architecture and ancient monuments
(e.g. Garrison et al., 2016). The collection of this data can come at great financial cost, as with
terrestrial LiDAR (light detection and ranging) systems, or be time-consuming during
postprocessing, as with photogrammetry. In some archaeological contexts, these are not
effective solutions for documenting cultural heritage. Landscapes with extensive damage
from looting and other destructive activities require too much field time for sensitive,
expensive instruments, and a lack of real-time results can leave doubt about whether the
sensors effectively documented the targets.

Large-scale aerial LiDAR acquisitions in Belize (Chase et al., 2014) and Guatemala (Canuto
et al., 2018) reveal thousands of previously undetected structures created by the ancientMaya
civilization (1000 BCE–1519 CE), but also illuminate the extent to which unchecked, illicit
looting has damaged this landscape. Ground truthing of aerial LiDAR data would benefit
from the ability to simultaneously acquire 3D documentation of looted contexts to more
accurately quantify damage in cultural heritage management assessments. The recent
wanton destruction of archaeological sites, such as Palmyra, by the Islamic State of Iraq and
Syria (ISIS) presents an extreme case of a high-risk zone where recovery efforts could have
benefited from a real-time, rapid documentation system to provide damage assessment
estimates. Unfortunately, such incidents are not unique, and archaeology would benefit from
a rapid 3D scanning sensor to record damage and plan recovery.

This article presents the details of prototype development and testing for just such a
system. While this new system is not as spatially accurate as more expensive or time-
consuming methods, we believe that there are sufficient examples of extensively looted
archaeological landscapes and zones with high risk for cultural heritage destruction that a
rapid, cost-effective 3D documentation system such as the one presented here would be an
asset in cultural heritage management. The system was tested in ancient Maya
archaeological contexts and refined in mud caves near the University of California, San
Diego, where we developed the prototype.

2. Background
Our prototype is designed to efficiently document underground or other restricted spaces
such as those presented by damaged ancient architecture. There exist multiple ways of
collecting three-dimensional (3D) data to reconstruct a large underground or indoor

JCHMSD



environment, which we can group into three main categories: (1) scans using terrestrial
LiDAR, (2) scans using photogrammetry and (3) scans based on Simultaneous Localization
and Mapping (SLAM) algorithms with lower-cost sensors.

2.1 LiDAR
Terrestrial LiDAR scanners are high-precision devices that can capture the geometry of their
surrounding environment. LiDARs emit lasers in many directions and calculate the distance
to the device bymeasuring the time delay to the reflected signal. These devices are often used
for cultural heritage documentation due to their high accuracy. This type of documentation is
popular inMaya archaeology (Garrison et al., 2016; Cosme et al., 2014), whichmeans that there
is good, high-resolution baseline 3D data to compare against other sensors and methods.
Individual LiDAR scans can generally achieve millimeter accuracy and a few centimeters
accuracy when combined (Grant et al., 2012); however, the process of collecting the data over
extensive excavation sections is very long. Furthermore, the final result is obtained after a
lengthy postprocessing step that cannot be performed directly in the field, preventing a quick
visualization of the current scan. Finally, the cost of high-quality laser scanners is often a
barrier to large-scale deployment or deployment in difficult environments (e.g. narrow, dusty
tunnels) where the equipment is at risk of being damaged.

2.2 Photogrammetry
“Structure-from-motion” photogrammetry is a general technique that uses computer vision
algorithms to reconstruct a 3D shape from a set of 2D pictures (Luhmann et al., 2013). It is a
very accessible solution to scan different types of environments; the user only needs a digital
camera and potentially a good light source. This technique also provides good results for
cultural heritage documentation (Yastikli, 2007; Fassi et al., 2013). The largest drawback is
the computational time required to process the data. Due to this limitation, it can be difficult to
evaluate the results in the field. Additionally, the computation time grows very rapidly with
the number of photos, and that number grows quickly with the size of the area to scan, which
renders the scan of an entire excavation very difficult. The sometimes-cramped conditions of
archaeological contexts with fragile cultural heritage monuments can also be a deterrent to
photogrammetric methods that require the photographer to be in close proximity to sensitive
features for extended periods of time.

2.3 Simultaneous localization and mapping
SLAM algorithms are a class of algorithms – first defined in 1986 (Smith and Cheeseman,
1986) – focused on localizing an agent within an unknown environment while simultaneously
building amap of this environment (Durrant-Whyte andBailey, 2006). The goal of SLAM is to
provide an update of the position and/or a map in real time. The definition of real time varies
with the application, but in our case, we target an update around the same speed as camera
sensors, that is, 30 Hz. We are particularly interested in the use of visual SLAM algorithms,
utilizing visual sensors, but SLAM works with any number and combinations of sensors
(Kohlbrecher et al., 2011; Meyer et al., 2011; Li et al., 2014; Forster et al., 2017; Ibragimov and
Afanasyev, 2017; Mur-Artal and Tard�os, 2017).

In parallel with the development of SLAM algorithms, many low-cost visual and depth
sensors have been commercialized in the past few years. The Microsoft Kinect and the Intel
RealSense are two examples of such sensors, which combine an RGB camera with a depth
sensor that provides geometrical information about the scene.

The combination of SLAM algorithms and low-cost sensors yields a good solution to the
problem of obtaining quick 3D scans of a scene. However, the quality of results is unknown
and can be difficult to assess for multiple reasons. First, there is a wide variety of SLAM
algorithms available, all using different methods to achieve the best quality of results.
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Second, each sensor has its own specificity, and specifically all sensors present a certain
degree of noise that needs to be mitigated by the algorithms. Finally, many algorithms are
developed in a similar, well-lit environment, but few are tested in the field where the
conditions are often less than ideal to maintain a good quality of tracking. We tested our
prototype in Guatemala where archaeological excavations at a Classic Maya (250–1000 CE)
site present a challenging environment due to the lack of good lighting and narrow tunnels
without connecting loops.

Several studies actually compare and evaluate SLAM algorithms. Zennaro and colleagues
(Zennaro et al., 2015) compared two low-cost depth cameras in terms of noise, and Kraft’s team
(Kraft et al., 2017) evaluated these cameras on trajectory estimation. Huletski and colleagues
(Huletski et al., 2015) comparedmultiple SLAMalgorithms on a standard data set. The common
point of these studies is the use of an indoor, office-like environment. Though there has also
been extensive evaluation of SLAM in outdoor environments for autonomous driving (Bresson
et al., 2017). Most of the evaluations are driven by the availability of data, typically through
standard benchmarks with provided ground truth (e.g. (Sturm et al., 2012; Geiger et al., 2012)).

Otherworks study the usage of various handheld or robot-mounted sensors dedicated to the
collection of 3D data in cultural heritage sites. Various studies present the evaluation of a
handheld LiDAR scanning system in different field environments ((Zlot et al., 2014; Farella,
2016; Di Filippo et al., 2018; Nocerino et al., 2017)). This system constitutes an improvement over
larger terrestrial LiDARs in terms of usability, but remains a costly piece of equipment along
with closed-source, commercial software. (Nocerino et al., 2017) and (Masiero et al., 2017) both
evaluated a commercial backpack mapping system, providing a good mobile sensing solution,
but also containing costly sensors. We present a study of multiple SLAM algorithms with
multiple consumer-grade depth cameras, (see (Leingartner et al., 2016) for a similar study), in a
more constrained environment, and compare more recent and complex SLAM algorithms.

2.3.1 Loop closure. All SLAM algorithms are subject to drift. Drift is introduced by the
accumulation of small errors during the reconstruction process and is usually the main
reason of low accuracy in the resulting 3D models. For this reason, tracking is an important
step for SLAM algorithms, along with loop closure. Loop closure enables a global
optimization of the map when the user creates a loop in the scanning trajectory and revisits a
place previously scanned. Our methodology takes loop closure into account and our results
present the difference between performing a loop closure and not performing it.

3. Methodology overview
Our goal was to evaluate the digital reconstruction accuracy of SLAM algorithms, using
multiple combinations of sensor hardware and application software. In order to achieve this
goal, we chose data collection sites with conditions representative of the typical sites that our
system is targeting (underground environments). We created 3D models of these sites by
collecting data with 1) multiple SLAM-based scanning techniques and 2) LiDAR scans. The
LiDAR scans were collected to provide a reference for the various 3D models. These scans
were taken with ample overlap (around 1m between scans) to allow for a precise point-based
registration, thus providing us with ground-truthed 3D models, which can be compared
against the results of the real-time SLAM-based 3D scanning. Section 4 describes our data
acquisition setup and methodology, along with the chosen sites, and Section 5 describes the
data processing methods that we applied to compare the SLAM results to the LiDAR results.

4. Data acquisition
Our goal was to measure the performance of SLAM-based scanning techniques in a realistic
scenario. We selected the hardware and software based on a set of requirements aimed at
providing archaeologists with a usable system in the field. These requirements consist of
designing a system that is lightweight, simple, handled by a single user and is easily
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manipulated inside a tight and dark tunnel environment. In addition, the system must
provide its own power, be self-contained (no external connection) and can be transported to
and operated in a difficult environment (hot, humid, dusty, etc.). We also wanted to build a
device based on readily available and low-cost components and materials and design
software tools that are open source. Additionally, we wanted to test this device in field
conditions, identical or similar to the conditions found in typical archaeological excavations.

4.1 Hardware setup
Our prototype consists of a backpack containing a laptop and an external tablet with a light
panel and 3D sensors, as shown in Plate 1. The laptop is the most expensive component, in
order to run the real-time software needed for the scanning.

The first part of this prototype consists of a backpackmodified with a solid frame that can
handle a large laptop while keeping a good airflow to prevent overheating. In the same
backpack, we keep several lithium polymer (LiPo) batteries to let the computer run for several
hours and provide power to the sensors and lights. The second part of the device is a custom
frame supporting a tablet facing the user, a light panel facing forward and a mount for a 3D
sensor facing forward. The frame possesses handles for better manipulation in difficult areas
and to give the user flexibility to scan at different angles. The tablet provides feedback from
the laptop and can display the status of the scanning operation. The light panel is designed to
provide enough brightness in a completely dark tunnel area, while limiting the creation of
hard shadows that can cause issues with the SLAM algorithms. It consists of several strips
of small LEDs that emit a bright white and diffuse light, sufficient to cover the field of view of
our cameras. The sensor mount is designed to easily swap the sensor in use. Both parts of our
hardware design are described in more details in our repository [1].

SLAM algorithms are optimized for a certain set of sensors. A very popular solution is to
use RBG cameras as they are generally low-cost, light and small. However, while simple RGB
cameras are good for tracking the position of a device, for example, a drone or robot, for 3D

Plate 1.
Scanning backpack

prototype. On top is the
handheld device,
containing a light

panel, a sensor mount
and a tablet for

visualization (photos
byQ. Gautier, 2019). On
the bottom left is the

backpack containing a
laptop and a metal

frame for better cooling
(photo by Q. Gautier,

2019). The bottom right
picture illustrates the
use of the backpack
inside the excavation
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reconstruction purpose, we chose to use RBG-D cameras. RGB-D cameras are active or
passive cameras that also generate 3D depth information alongside the regular RGB feed. To
this purpose, they employ different technologies: structured light, time-of-flight or stereo
vision. In our case, we tested RGB-D cameras covering these three types of technologies, all
based on a near-infrared spectrum of light. The cameras that we use are summarized in
Table 1. Two of these cameras can potentially operate in daylight, while the others only work
in an indoor or underground environment only.

4.2 Software setup
For the 3D reconstruction in real time, we need software that can process the data from the
RGB-D camera to create a 3Dmap of the environment, while providing visual feedback to the
user. The visual feedback is important to track the status of the algorithms running, for
example, whether the algorithm has lost track of its previous trajectory, in which case the
user needs to come back to a previous position to restart the scanning. It is also useful to
determine how much area has been scanned and take a decision on the next area to process.

The research literature is abundant on the topic of camera-based SLAM algorithms, but
not all provide an end-to-end application that meets our requirements. We chose a few
popular open-source systems that can easily be set up and used with the hardware described
earlier. We chose the following algorithms:

(1) RTAB-Map (Labb�e and Michaud, 2011, 2013, 2014). RTAB-Map is a SLAM
framework that provides a dense 3D reconstruction of the environment from different
possible types of sensors. The framework presents many features and parameters to
adjust the speed and accuracy of the scan. The total number of parameters is very
high, and testing all the possible options is extremely time-consuming and not
feasible on the field with limited time and resources. The software comes with a good
default set of parameters that we use in our experiments. This algorithm possesses a
loop-closure feature to improve accuracy.

(2) ORB-SLAM (Mur-Artal and Tard�os, 2017). ORB-SLAM is another popular open-
source SLAM algorithm. The open-source version of ORB-SLAM 2 provides a real-
time tracking based on a camera input with optional depth sensing. The application

Technology Notes

Microsoft Kinect v1 Structured light
Microsoft Kinect v2 Time-of-flight Global shutter
Intel RealSense ZR300 Active stereo Works outdoors
Intel RealSense D435 Active stereo Works outdoors

ORB-SLAM RTAB-map InfiniTAM v2/v3

Kinect v1 Mud caves Mud caves Mud caves
El Zotz El Zotz El Zotz

Kinect v2 Mud caves Mud caves Mud caves
El Zotz El Zotz El Zotz

RealSense D435 Mud caves Mud caves Mud caves
RealSense ZR300 El Zotz El Zotz El Zotz
Two Kinect v1 Mud caves

Note(s): Note that while we performed experiments with the RealSense ZR300, the results were too noisy to be
analyzed properly

Table 1.
RGB-D cameras used
in our experiments

Table 2.
Summary of the
hardware/software
combinations used in
our SLAMexperiments
at different sites
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has very little parameters and focuses on delivering an out-of-the-box functional
tracking solution. The drawback of this algorithm is that it only saves a sparsemap of
the environment. In order to create a full 3D reconstruction, we need to apply some
postprocessing to the output data. It does, however, perform a loop-closure
optimization during the scanning procedure.

(3) InfiniTAM v2 and InfiniTAM v3 (Kahler et al., 2015; K€ahler et al., 2016). InfiniTAM is
an application that focuses on RGB-D-based 3D reconstruction. It creates a densemap
of the environment in real time by leveraging the GPU compute capabilities of the
computer to accelerate the scanning. The difference between the two versions is
mainly a loop-closure feature introduced in v3 that provides a global consistency to
the map, but sometimes at the cost of stability in our experiments.

Our repository contains the scripts used to run these algorithmswith their default parameters
and process the output data in the case of ORB-SLAM.

4.3 Data collection sites
We evaluated our prototype inside active excavation tunnels at the Maya archaeological site
of El Zotz, Guatemala (Plate 2). At this site, we collected data in the Pyramid of the Wooden
Lintel (Structure M7-1, see Figure 1), an approximately 20-m tall structure that was
extensively looted in the 1970s before archaeologists began extending the existing tunnels in
2012 to salvage information from the structure (Garrison et al., 2012; Houston et al., 2015).
This excavation is large enough to create a good test environment and has been thoroughly
scanned by LiDAR. Furthermore, the looted section of the tunnel can be considered
representative of the types of contexts where our prototype scanner would be most useful.

We performed a second set of experiments in the Arroyo Tapiado Mud Caves system
(Holler, 2019) located within the Anza-Borrego State Park near San Diego, California. These
mud caves provided a controlled environment in a local context where we could run multiple
similar scans without the constraints of an active excavation or the expense of working
through developmental trial and error in an international field context where some resources
are limited. While these natural caves are generally larger than a typical archaeological
tunnel, they still present a similar setup in terms of scanning challenges. We particularly
chose to operate our system in locationswith sharp turns to emulate the shape of excavations.

4.4 Acquisition methodology
In all our experiments, we used the backpack system described in Section 4.1 and collected
data with all the cameras available at the time of the experiment. For each of the experiments,
we ran one of the SLAM algorithms described in Section 4.2, but we also recorded all the

Plate 2.
Map of the area around

the Maya
archaeological site of
El Zotz, Guatemala

(map by
T. Garrison, 2019)
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sensor data on the computer drive. This setup allowed us to replay the collected data through
other algorithms in a very similar condition as the field experiment.

The first data collection at the El Zotz archaeological site happened in 2014, when we
extensively scanned multiple excavations using a FARO Focus3D 120 LiDAR scanner
(Garrison et al., 2016). We use these LiDAR scans as ground truth reference models. In 2016,
we started to run our SLAM experiments with various combinations of sensors and
algorithms. The main results that we analyze in Section 6 were generated from large-scale
scans covering about 45 m of the excavation tunnel in the Pyramid of theWooden Lintel (Str.
M7-1). We used the Kinect v1, Kinect v2 and ZR300 cameras and ran the ORB-SLAM
algorithm.Most of these results start from the entrance of the tunnel, proceed to the end of the
active excavation, turn around to reach the entrance again and turn around one last time to
force the algorithm to perform a loop closure. This path goes through a series of steep
architectural tiers from one of the earlier pyramidal substructures, including small ladders to
transverse them. This renders the scans difficult in that area, but it is representative of the
difficult field conditions that may be encountered during cultural heritage documentation.

Outside of the field seasons, from2016 to 2018,we chose theArroyoTapiadoMudCaves site
as a control site to refine our prototype. We selected a section of the Carrey cave, presenting
several sharp turns.We scanned thiswhole sectionwithmultiple hardware/software setups, by
using a very similar scanning walking pattern each time. We experimented with both Kinect
cameras, the ZR300 and D435 cameras, and used ORB-SLAM and RTAB-Map. We also
provided an experimental setup with two Kinect cameras simultaneously scanning the
environmentwith theRTAB-Map framework. On each experiment, we also recorded the sensor
data to possibly be replayed later through other algorithms.

5. Data processing
Our goal was to measure the quality of results of various combinations of sensors and
algorithms. In this context, the quality of the result corresponds to the difference between

Figure 1.
The pyramid of the
wooden lintel
(structure M7-1),
highlighted within the
archaeological site of
El Zotz (map by
T. Garrison, 2019)
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each sensor and algorithm combination as compared against a reference ground truth model,
which is considered more accurate. In this case, we consider the LiDAR models to be
sufficiently accurate for digital metric surveys, as they consist of dozens of 360 degrees scans
carefully registered together (Garrison et al., 2016). However, quantifying the difference
between our experiment models and the ground truth reference can be challenging due to
multiple factors affecting the output: sensor noise/accuracy, algorithm noise/accuracy,
resolution of the output and so on. We chose to measure model quality with two different
methods: one comparing the 3D models directly and the other comparing the trajectory path
of our data collection sensors.

5.1 Measuring point cloud difference
The most obvious method to evaluate 3D scanning output against an available reference
model is to overlay them together and observe the difference. However, a manual overlay can
be difficult and introduce further error that is not related to the scanning method. We solve
this problem by aligning the point clouds through rigid registration, solving for translation
and rotation only (all ourmodels are at scale).We use the iterative closest point (ICP) (Besl and
McKay, 1992) method from the CloudCompare (Girardeau-Montaut, 2011) software to find the
best alignment between each SLAM result and the ground truth LiDAR scan. From these
aligned models, we can compute a point-to-point difference (Cignoni et al., 1998) and use it to
colorize the points. This colored model highlights the area with high difference compared to
the reference. While the colored model can provide valuable information, it requires a visual
inspection. We also summarize all the point-to-point differences by calculating the root mean
squared error (RMSE), which provides the average residual error between points. The RMSE
can be used as a metric for a quick comparison between results.

This method suffers from one major issue: all the types of error are averaged. First, the
registration provides the best alignment that minimized the sum of squared errors over all
points. This means that the location of areas with high error is not always accurate (larger
error tends to appear on edges of the model). The statistics (min, max, RMSE, etc.) are still
meaningful; however, they include multiple types of error, including sensor errors and
software errors. This is why a visual inspection and a second quality metric are needed.

5.2 Measuring trajectory difference
When evaluating and comparing SLAM algorithms, most of the literature focuses on
comparing the trajectories (Sturm et al., 2012; Duarte et al., 2016; Geiger et al., 2012; Burgard
et al., 2009). A trajectory is defined as the position and rotation of the camera center at each
scan (or at each key scan, depending on the algorithm) in the 3D space. The trajectory is
generally considered as the most important output of the SLAM algorithm. If this output is
accurate, then sensor 3D data can be joined together into a coherent model. Sensor noise can
be reduced or averaged by using techniques that rely on an accurate estimate of the camera
positioning. Several metrics exist to evaluate the quality of the trajectory with respect to a
ground truth.

In our experiments, however, we do not possess a ground-truth trajectory. Instead, we
recover a reference trajectory by using the LiDAR data. We incrementally register each
camera scan to the reference LiDAR model and consider the resulting trajectory as a ground
truth for comparison purposes. The process starts by a manual alignment of the first scan,
which is followed by a fine-tuned alignment from an ICP algorithm. Each following scan is
then aligned using ICP as well. We reduce the amount of sensor error by removing data past
3 m of the camera (as the error generally increases with the distance). We monitor most of the
process visually and by reporting the RMSE of the registration at each step. The average
RMSE of all the registered scans is generally on the order of 1 cm. We also reconstruct a 3D
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model from the recovered ground-truth trajectory and the camera scans to verify that the
output is similar to the LiDAR model.

From each pair of SLAM trajectory and recovered ground-truth trajectory, we provide
statistics on the absolute trajectory error (ATE), which measures the difference between each
SLAM pose and its corresponding reference pose, and the relative pose error (RPE) that
quantifies the error on pose deltas (the error over a certain distance; in this case, per
one meter).

6. Results
6.1 Arroyo Tapiado Mud Caves
We performed a controlled set of experiments at the Arroyo TapiadoMud Caves site near the
University of California, San Diego. This location was the best option for replicating the
archaeological conditions in Guatemala in a local settingwhere all of the laboratory resources
would be available during prototype development. First, we defined an area of approximately
50 m in length and scanned this area with the same FARO LiDAR system that was used to
scan the El Zotz excavations. Then, we ran a series of scans using our SLAM scanning
solution with three different sensors: Kinect v1, Kinect v2, RealSense D435 and two different
algorithms: ORB-SLAM, RTAB-MAP. All the scans were performed by the same operator
and followed a similar trajectory and scanning pattern. Additionally, we recorded all sensor
data and replayed them through the InfiniTAM v2 algorithm afterward.

Herewe present the results of comparing the output data from the SLAMalgorithms to the
LiDAR 3D model.

6.1.1 Cloud-to-cloud difference. Plate 3 shows an example of the cloud-to-cloud difference
between a SLAM scan and a LiDAR scan. On top is the LiDAR scan of the mud caves site

Plate 3.
From top to bottom:
The LiDAR scan of the
mud cave, the SLAM
scan using RTAB-
MAP and Kinect v2
and the same SLAM
scan with point-to-
point error with the
LiDAR scan
highlighted (darker
shade of red 5 larger
error). The scale
indicates the error in
meters, and the relative
distribution is
presented on the right
side of the scale. Scans
created by Q. Gautier
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where we have focused our experiments. In the middle is the point cloud obtained from
scanning the cave with the Kinect v2 and the RTAB-MAP algorithm. First, we aligned these
models globally using ICP. Then, for each point in the SLAM point cloud, we computed the
distance to the nearest neighbor in the reference LiDAR scan. The bottommodel shows these
point-to-point distances colored on a color scale from white (small distance) to red (large
distance). In general, we notice more errors accumulated where the cave presents a turn. This
is mainly due to two reasons. First, more drift is accumulated in areas with less visibility
because the sensor has a more limited view of environment features. The other reason is that
turns are places where sensor noise tends to accumulate. The depth quality of RGB-D
cameras decreases with the distance; therefore, distant obstacles can accumulate the noise
from multiple scans.

We summarize the cloud-to-cloud differences for each combination of algorithm and
sensor by computing the RMSE over the entire point cloud. The results are presented in
Figure 2. We can observe a similar error in multiple models using Kinect v1 and v2 on ORB-
SLAM and RTAB-MAP. InfiniTAM v2 tends to give a larger error, as expected from an
algorithm without loop closure detection. The RealSense camera tends to show a less
consistent, larger error. This is due to the technology employed to generate depth data. Stereo
matching can be noisier, especially as distance from the sensor increases. Intel provides
several software filtering options for this camera, and we can expect better results when fine-
tuning the process for this specific application. We also compare the results to a setup using
two Kinect v1 cameras with RTAB-MAP. The model in this case presents a better RMSE as
the software can utilize more sensor data to refine its trajectory calculation.
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6.1.2 Trajectory difference. For each trajectory output from the SLAM algorithms, we
recovered the corresponding ground-truth trajectory using the LiDAR data. We measured
the ATE between the two outputs in two different ways: (1) by aligning the first pose of each
trajectory – this gives an idea of how much error the algorithm accumulates with respect to
the starting position, and (2) by aligning the whole trajectory to minimize the average error –
this informs about the average error over the entire scan.

Figure 3 shows an example of theATEbetween a trajectory fromRTAB-MAPwithKinect
v1 and the reference output, with respect to the starting position.We summarize the results in
Table 3. The InfiniTAM results with the RealSense camera are not included, as they are too
noisy to provide a good reconstruction. Generally, the results from the Kinect cameras are
similar. Despite possessing a global shutter camera, the Kinect v2 does not show a consistent
improvement; however, we believe that it is possible to improve the results by using a higher
resolution than the default used in most algorithms. The RealSense camera creates more
noise, and this translates to a less accurate trajectory. The InfiniTAM algorithm accumulates
a lot of error over time as its tracking is based on depth data only. This is clearly reflected by a

ORB-SLAM RTAB-Map InfiniTAM v2
ATE (aligned) RPE ATE (aligned) RPE ATE (aligned) RPE

Kinect v1 0.64 (0.26) 0.04 0.98 (0.33) 0.05 2.10 (0.59) 0.05
Kinect v2 1.08 (0.36) 0.08 0.70 (0.31) 0.06 1.21 (0.56) 0.10
RealSense (D435) 5.24 (2.20) 0.25 1.49 (0.32) 0.11 – –
Two Kinect v1 – – 0.87 (0.25) 0.07 – –

Note(s): ATE compares the trajectories aligned on the first pose only. ATE (aligned) compares trajectories
globally aligned. RPE measures the relative error per 1m segments. All values are expressed in meters and
averaged over the entire trajectory

Table 3.
Absolute trajectory
error (ATE) and
relative position error
(RPE) on different
combinations of
sensors and algorithms

Figure 4.
Comparison of
trajectories with and
without loop closure
using RTAB-Map with
Kinect v1. The
trajectory is plotted in
meters for each axis
(the z axis is aligned to
gravity) against time,
represented by
numbered camera
frames (index)

JCHMSD



much worse ATE (large global error), but still keeping a similar RPE as other algorithms
(good local consistency).

6.1.3 Loop closure analysis.While loop closure is a crucial step of most SLAM algorithms
in order to increase the accuracy and reduce the drift, loops are very rare in tunnels and
excavations. In this type of environment, one possible way to trigger a loop closure is to turn
around, travel back to a previous point in the trajectory and turn around again. This last turn
around allows the algorithm to recognize a visited place by matching similar visual features.
We analyze the difference between closing the loop and not closing it. We run the sensor data
through the ORB-SLAM algorithm, once keeping the loop closure and once stopping before
backtracking. Figure 4 shows the profiles of the trajectories with and without loop closure
and the recovered ground truth. Both SLAM trajectories present a small drift over time with
respect to the ground truth, but the drift is clearly higher without loop closure.

6.2 El Zotz archaeological site
We tested our scanning setup in a cultural heritage context at the archaeological site of El
Zotz, Guatemala, and report our results here. Due to various constraints of the field, not all our
experiments were executed in the exact same conditions. For this reason, we replayed the
saved camera data through the different algorithms to increase the consistency. We collected
data with the Kinect v1 and v2 cameras. Due to algorithm failure, the Kinect v2 data do not
perform any loop closure. We also collected data with a RealSense ZR300 camera; however,
the results are too noisy to be properly analyzed here.

We also compared the SLAM models to a LiDAR scan taken at a previous time, and
therefore, the models can differ at certain specific areas since excavation conditions changed
as archaeologists expanded new tunnels and backfilled other branches. The cloud-to-cloud
difference is higher for this reason and can only be used as a comparison metric between
SLAM algorithms and sensors. The trajectory reconstruction has been manually adjusted to
ignore the areas with differences.

Plate 4.
Point-to-point

difference between the
point cloud from ORB-
SLAM with Kinect v1
and the LiDAR point
cloud. We show the

SLAM cloud with the
difference colored on

each point. Darker red
corresponds to a larger
error, which happens in

areas with
concentrated sensor

noise and areas where
the twomodels differ in
geometry. Scan created

by Q. Gautier
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6.2.1 Cloud-to-cloud difference. Plate 4 shows an error plot of a SLAM model against the
LiDARmodel on which we performed a visual inspection. We observed areas with high error
and manually inspected the models to analyze the source. These areas mostly correspond to
the differences between the scans. Otherwise we notice a similar trend with the mud caves
models, where certain walls accumulate noise from sensor. This is more noticeable with ORB-
SLAM as the sensor data are simply merged together without any kind of filtering.

Figure 5 shows the summary of RMSE for the two cameras. ORB-SLAM with Kinect v2
fails to reconstruct, but otherwise presents better results for Kinect v1. In this case, the Kinect
v2 gives better results even though there is no loop closure. This environment is more
difficult, and scans are very shaky, which can be handled better by the global shutter camera.

6.2.2 Trajectory difference.We recovered a reference trajectory based on the LiDAR data
for our camera scans. Figure 6 shows the trajectory errors fromORB-SLAMand RTAB-MAP
withKinect v1. In this case, the RTAB-MAP algorithm has accumulatedmore drift thanORB-
SLAM. We summarize the trajectory metrics in Table 4. The results are similar to what we
measured in the mud caves environment, with InfiniTAM results being worse in global
consistency compared to the image-based tracking algorithms.

7. Analysis and discussion
In this section, we discuss high-level trends and directions to take tomaximize the accuracy of
SLAM-based scanning, based on the results presented in Section 6 and our observations in
the field.

7.1 Sensors
The RBG-D cameras that we used are broadly divided into two categories: active depth
sensing (Kinect v1 and v2) and passive depth sensing (RealSense). Both our results and our
observations confirm that active sensing produces the best results in terms of 3D scans. The
difference in technology for active sensing (structured light with Kinect v1 and time-of-flight
with Kinect v2) has a less significant impact on the result, although there tends to be a slight
global improvement with the time-of-flight sensor. Stereo-based sensors produce depth maps
that tend to be spatially and temporally noisy, which increases the drift in SLAM algorithms
and increases the frequency of tracking loss during data collection. The ZR300 camera
produced results too noisy to be analyzed in Section 6.2. However, it is important to note that
the active sensors can only operate indoors and would not be suitable to scan the exteriors of
sites. Additionally, the stereo sensors can be improved in software through the fine-tuning of
filters, although this increases the complexity of the scanning system.

7.2 Algorithms
The algorithms can also be divided in two categories: feature-based tracking (ORB-SLAM
and RTAB-MAP) and registration-based tracking (InfiniTAM). Feature-based algorithms
mostly rely on image features and therefore, can more easily recover from tracking failure.
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However, these algorithms cannot recognize the same tunnel viewed from a different point of
view (e.g. after turning around) and must rely on loop closure to create a consistent model in
that case. Registration-based algorithms rely on depth data only and as such can recognize an
environment based on its geometry only. These algorithms tend to be less stable in terms of
tracking as they rely primarily on frame-to-frame alignment. InfiniTAM v3 is a good
compromise, but our experiments failed to properly scan on long distances. While InfiniTAM
v2 can be used for scanningwithout much tweaking, InfiniTAMv3would require more tuning
to be useable in these conditions. Feature-based algorithms worked better in our experiments,
but they did require a particular attention to the lighting of the scene. Our scanning system is
equipped with a light panel emitting diffuse light, which minimizes the negative effects on the
SLAM algorithm; however, a strong, static light is recommended whenever possible.

7.3 Scanning procedure
In Section 6, we highlight the importance of creating a loop closure, even when the
environment presents no obvious such loop. This procedure applies to feature-based
algorithms, or algorithms capable of handling loop closure, but is still useful in all cases
simply to add new points of view of the scene and increase the number of details. However,
due to the nature of these real-time algorithms, finding a loop closure can sometimes lead to a
tracking failure, which forces the user to start over. Techniques for recovering the tracking in
real time are improving and the next generation of algorithms might solve this problem.

There are also several good practices that we have noted during our experiments. First,
each depth sensor has its own specifications in terms of sensing range and field of view.
These limitations are very important for the user to keep in mind, as they generally make the
difference between a failed scan and a good scan. Typically, there should always be a
recognizably distinctive portion of the scene (containing visual features and geometric
features) within the nominal range of the sensor (especially above the minimum range).
Second, the scanning speed is important. While generally faster than other techniques,
SLAM-based scanning is sensitive to fast motion, which introduces errors from: motion blur,
lens distortion from rolling shutter cameras (minimized by using a global shutter camera
such as Kinect v2), more distance between frames (minimized by using higher-frequency
cameras such as the RealSense D435) or simply breaking the small motion assumption made
by registration-based algorithms.

8. Conclusion
We have analyzed multiple hardware and software solutions to help with the documentation
of cultural heritage within restricted spaces. Through multiple experiments in the field, we
have established an accuracy value for different combinations of sensors and algorithms in
these low-light conditions. In terms of software, image-based tracking algorithms tend to
perform better for large-scale area scanning but may offer a sparser 3D model without
postprocessing. Dense SLAM algorithms relying on depth tracking offer a good solution for
small areas but do not scale well, unless implemented with loop-closure solutions. In terms of
sensors, active depth sensing solutions targeted at indoor use perform better than stereo-
based cameras in an underground environment. We have found that on average, the best
performing combination of sensor and algorithm for our prototype scanning system is a

ORB-SLAM RTAB-MAP InfiniTAM v2
ATE (aligned) RPE ATE (aligned) RPE ATE (aligned) RPE

Kinect v1 0.21 (0.19) 3.32* 0.47 (0.29) 0.06 2.27 (2.49) 0.08
Kinect v2 – – 0.93 (0.17) 0.08 1.10 (0.47) 0.10

Note(s): *The trajectory has a large discontinuity causing a very large value for RPE

Table 4.
ATE and RPE in
meters, on the M7-1
excavation
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Kinect v2 with RTAB-MAP. This result can be generalized to new generations of cameras
with similar technology (global shutter with a time-of-flight depth sensor), which, when
running a feature-based SLAM algorithm, are likely to perform better.

SLAM algorithms provide a low-cost alternative to LiDAR and a fast alternative to
photogrammetry methods. They are generally limited in the quality of results: in the
presented use case of documenting archaeological underground excavations, the best system
can produce about 20 cm of error in average after alignment and up to 50 cm in some cases.
The proposed system is nevertheless a good solution for the rapid documentation of areas
with extensive damage from looting where having an expensive instrument in difficult field
conditions is impractical. Likewise, such a system has cultural heritage documentation
applications in high-risk areas where archaeological sites are damaged or threatened in order
to make rapid assessments of impacts and resource requirements.

Note

1. https://github.com/UCSD-E4E/maya-archaeology
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