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Abstract 
 
 

It is challenging for scientists to collect oceanographic data in nearshore environments 
because the high amount of wave energy present in these areas makes it difficult to deploy 
autonomous sensors. To address this issue, scientists at Scripps Institute of Oceanography have 
developed the Smartfin--a surfboard fin with wireless embedded sensors--since the surf zone 
encompasses the same coastal regions that these scientists are interested in studying. However, 
collecting oceanic data with the Smartfin poses new problems, as surfer movement may now 
potentially bias the information being collected. Therefore, this research explores the use of 
robust machine learning algorithms to determine how a surfer is moving on his or her board. 
This research is based on surf sessions recorded around the University of California San Diego’s 
campus, and includes the following locations: La Jolla Shores (La Jolla, CA), Scripps Pier (La 
Jolla, CA), and K-38 (Baja California, Mexico). The machine learning models experimented 
with in this thesis include: logistic regression, multilayer perceptron, and support vector 
machines with linear and non-linear kernels. Through the use of feature engineering on a dataset 
taken from a single surf session, we were able to predict the following classes: floating, paddling, 
and surfing with 86% accuracy. However, our mean classification accuracy drops to 70% when 
training and testing subsets are taken from the combined dataset of all surf sessions, where 
oceanic conditions within the dataset become more variable. Future work will need to be done to 
determine whether this level of classification accuracy is adequate for oceanographers who are 
using the Smartfin to collect data for scientific purposes.  
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Chapter 1: Introduction 

 
1.1 Motivation 
 

Understanding our oceans is incredibly important as our oceans produce most of the 
world’s oxygen, store more carbon dioxide than our atmosphere, and regulate earth’s climate. 
However, our oceans are severely undersampled as we rely on scientific measurements from 
infrequently spaced buoys, piers, and sub-surface moorings. Nearshore environments, like the 
surf zone, are particularly difficult to collect data in because high energy wave dynamics often 
break expensive scientific equipment. In order to increase the spatial density of oceanographic 
measurements, researchers at Scripps Institute of Oceanography have begun developing the 
Smartfin, a surfboard fin with embedded sensors capable of measuring multiple ocean 
parameters in nearshore environments. There are multiple sensors contained within the Smartfin, 
including a temperature sensor, a GPS, and a 9-axis Inertial Measurement Unit (IMU). The IMU 
alone consists of an accelerometer, gyroscope, and magnetometer. This project has the potential 
to vastly increase the spatial density of oceanographic measurements by making ocean data 
collected by the Smartfin’s sensors available to the worldwide scientific community. While the 
Smartfin’s hardware has been thoroughly tested by scientists at Scripps, very little data 
processing has been done. My proposed thesis involves the creation of a processing framework 
for meaningful analysis of data collected by the Smartfin.  
 
 
1.2 Purpose  
 

Specifically, my research project focuses on using machine learning techniques on the 
Smartfin’s IMU data to classify surfer motion. We would like to be able to label sections of 
time-series surfer data as, for example, floating, paddling, or surfing. This is important because 
we only want to capture scientific information about ocean conditions (such as wave height, 
period, frequency, and ocean temperature) when the surfer is floating relatively still and thus 
acting as a buoy. When the surfer is floating relatively still, the IMU can capture more accurate 
information related to how current wave conditions are affecting the surfer, which will allow us 
to analyze current wave conditions and create wave climate models in the future. Additionally, it 
will allow us to record accurate temperature and dissolved oxygen readings in a particular 
location, compared to when the surfer is moving. When a surfer is not stationary, the IMU will 
capture noisy information that we do not necessarily want to include in our wave or ocean 
models, thus we would like to be able to distinguish these movements from each other from our 
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IMU data. Essentially, this will allow us to collect more accurate data about the ocean in such a 
way that surfing does not bias the information that we are collecting. 

 
Another reason why we are interested in classifying surfer motion from IMU data is 

because we would like to encourage surfers to upload their data to the Smartfin website after 
surfing with the Smartfin. If we provide surfers with surf statistics that they care about, for 
example: how many waves were caught during a particular session or the distance paddled 
during a particular session, they may be more likely to upload their Smartfin sensor data. In this 
way, we are attempting to ensure that surfers continue to make Smartfin data available online to 
the worldwide scientific community.  

 
 

1.3 Research Questions 
 

● Can we accurately perform multiclass classification on simple surfer movements using 
the Smartfin’s IMU data?  
 

● Can we accurately perform multiclass classification on more nuanced, or complex, surfer 
movements using the Smartfin’s IMU data?  
 

● Does the inclusion of additional input features via the process of feature engineering on 
our raw input features produce more accurate classification results for our chosen 
models?  

 
● Overall, which of the chosen machine learning models produces the most accurate results 

in classifying surfer motion, and what pre-processing needs to be done to produce that 
accuracy?  

 
 
1.4 Related Work 
 

There is already a large body of research related to using machine learning techniques to 
perform accurate classification on IMU data [1-5]. There is also a growing field of research 
devoted to performing time-motion analysis of athletes in different sports to assess specific 
physiological demands of athletes in their given sport [6-9]. Most of this research concerns itself 
with analyzing training data in order to most closely model a team’s training sessions after the 
competition-style of their given sport, however, there are very few reports that concern 
themselves with analyzing an individual athlete’s personalized data using machine learning 
techniques [10], [11]. In part, this research could be a valuable step in collecting more data 
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related to surfer motion and individual surfer technique, and could help develop a framework for 
processing and accurately classifying static and dynamic surfer movement with little human 
supervision.  
  
1.5 Scope and Limitations 
 

Since it is not feasible to cover every digital filter and every machine learning model in 
this thesis, the scope of this project is limited to the choice of two digital filters and four 
supervised machine learning models. This allows us to explore each implementation in detail, 
and fully discuss the results of the thesis. Additionally, the models will be trained on two distinct 
sets of labelled data in order to compare their performance. These sets will be denoted the 
“simple” set and the “complex” set. In the simple set, there are three possible labelled motions 
that can occur. These labels are: {surfing, paddling, floating}. In the “complex” set, there are 
more specific labels attributed to certain surfer motions. These labels are discussed later in more 
detail in Chapter 3.2 (Class Label Descriptions). Again, a limitation of this work is that it is not 
possible to capture every possible surfer motion that can occur, and thus a subset of all possible 
surfer motions is chosen to explore in depth. Only complex surfer motions that were contained 
within this dataset with a large enough number of samples will be included in the “complex 
motion” dataset to be used for prediction. Another main limitation is that this analysis can only 
be performed on the surf sessions contained on the Smartfin website which were recorded with a 
camera during the time of surfing. Therefore, this analysis will only be performed on eight surf 
sessions, taken from two surfers.  
 
 
1.6 Thesis Overview 
 

In this thesis, we will explore supervised machine learning techniques to determine the 
best approach for classifying surfer motion based on data received from the IMU sensor within 
the Smartfin. The thesis proceeds as follows: a brief theoretical overview of the filtering 
algorithms and machine learning models will be given in Chapter 2. Chapter 3 will describe the 
methodology, including the data collection process and all data pre-processing steps taken. 
Chapter 4 will present the results of the machine learning models, and Chapter 5 will discuss the 
results. Finally, Chapter 6 will conclude with a summary of what was found, in addition to 
describing possible future research work that can expand on this topic.  
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Chapter 2: Theoretical Background 
 

2.1 Supervised Machine Learning  
 

The main goal of this research project is to explore different machine learning models 
and compare them against one another in order to determine which most accurately classifies the 
data in a given dataset. Machine learning is a method of data analysis based on the principle that 
a system can learn to recognize patterns from data. Two main types of machine learning models 
include supervised learning and unsupervised learning. In supervised learning, a large set of 
input data and a ground truth label is fed to the model, and in this manner the supervised model 
is trained to find a pattern in the data to correctly map input data to its corresponding output 
label. On the other hand, unsupervised learning attempts to learn the intrinsic structure of the 
dataset without using provided labels. In this thesis, we will focus on the use of supervised 
machine learning techniques since we are trying to optimize the amount of correct predictions for 
surfer motion, given the corresponding motion’s observed IMU signals.  
 
 
2.2 Chosen Machine Learning Models  

 
The supervised machine learning models used in this experiment include: Logistic 

Regression (LR), Multi-Layer Perceptron (MLP), a Support Vector Machines (SVM) with a 
linear kernel and an SVM with a non-linear kernel. We focused on these four models with the 
aim of determining which model yields the highest classification accuracy when trained and 
tested on our Smartfin IMU data. A high level overview of each model is explained below.  

 
The logistic regression model is seen as a simple machine learning model which uses the 

sigmoid function to linearly separate input data into binary classes. In order to use this model, we 
must turn our classification problem into a series of simpler binary classifications for each surfer 
motion that we have labelled and are trying to predict. Probability estimates for each surfer 
movement will be computed under each of these binary models, and then the class with the 
largest probability estimate will be chosen as the prediction. This process is known as maximum 
likelihood estimation. In this way, a multinomial logistic regression model can be created from a 
series of binary logistic regression models.  

 
The multi-layer perceptron model is an artificial neural network which transforms input 

data using a series of learned non-linear transformations. The purpose of these transformations is 
to project the input data onto a space where it then becomes linearly separable. These non-linear 
transformations are performed in intermediate layers known as hidden layers. The sigmoid 
function (also known as the logistic function) is a common activation function used by MLP 
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hidden layers; therefore some MLP models can be viewed as logistic regression classifiers after 
performing non-linear transformations.  

 
 

 
Figure 1. Illustration of a multi-layer perceptron model, taken from [12]. 

 
 

Support vector machines attempt to find the optimal hyperplane that best separates the 
labelled classes in an n-dimensional space, where n is the number of features. The hyperplane is 
computed from the data point classes in the training set, and is used to determine the class of 
each instance in the test set. While the logistic regression model optimizes the log likelihood 
function, SVM’s optimal hyperplane tries to find the maximal separation between classes. An 
SVM model with a linear kernel generally performs comparably to the logistic regression model, 
but is less susceptible to outliers. Therefore, we will use both an SVM model with a non-linear 
kernel in addition to an SVM with a linear kernel. The difference between the linear kernel and 
the non-linear kernel is that a non-linear kernel, like a Radial Basis Function (RBF) performs 
better when the data is not linearly separable.  
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Figure 2. Example of a SVM model linearly separating a dataset into two classes, with 

their separation margins highlighted, taken from [12].  
 

 
 
2.3 Evaluation of Models 
 

Each machine learning model that is implemented will be evaluated based on its 
prediction performance. One method of determining prediction performance is to compute the 
classification accuracy of the model. Classification accuracy is defined as the number of correct 
predictions divided by the total number of predictions made. However, if 90% of the labels are 
“floating” and 10% of the labels are “not floating” in our dataset, our classifier could simply 
predict “floating” every time and be 90% correct. Therefore, this metric gives us a false sense of 
accuracy in the case of imbalanced datasets. In order to combat this, our datasets are balanced 
using both oversampling and downsampling techniques, which are discussed in Chapter 3.3.  
 

The simplest way to compute classification accuracy is to split the entire dataset into two 
subsets: training and testing subsets. The training set is used to compute the parameters of the 
classifier, while the testing set is used to determine how well the classifier performs on unseen 
data. Another technique, known as k-fold cross validation, can be used to generalize the 
estimated classification accuracy of the model in practice. K-fold cross validation is easy to 
implement, and generally has lower bias than other ways of determining a model’s prediction 
performance. This technique partitions the dataset into k sets, and uses k-1 of those sets for 
training the model and the remaining set for validating the model. This process is performed k 
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times, such that the model is evaluated on each partition of the data. The resulting validation 
scores are then averaged in order to give a better estimate of the model’s overall performance. 
This provides a more accurate estimation of the model’s prediction performance than the method 
described earlier, and will be used to evaluate each of our models in the subsequent experiments. 
 

Additionally, Confusion matrices can be used to visually evaluate how well each of the 
models predicts a specific class, with respect to other classes. Specifically, they give us a sense 
of which classes the model is confusing for other classes, and the extent to which that confusion 
occurs. Confusion matrices for each of the models will be included in the appendix section for 
some of the experiments.  
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Chapter 3: Methodology 

 
3.1 Data Collection 
 

Experimental data is collected in the same way that it would be collected by users of the 
Smartfin; the Smartfin captures information related to both the ocean environment and surfer 
motion while surfing. The surfer in this experiment is using a 9’ longboard. In order to create 
ground-truth labels for the Smartfin’s IMU signals, a waterproof sports camera is attached to the 
nose of the surfboard, facing the surfer. The Smartfin used in this experiment records data from 
the ocean environment at a rate of 5 Hz. After the surf session, the data is downloaded from the 
Smartfin via bluetooth and synced with the labelled video footage. Portions of the video footage 
are labelled in one second increments and the labels from the video footage are then applied to 
the corresponding IMU data from the Smartfin.  
 
 

 
Figure 3. Dataframe produced by the data collection process, the surfer is floating in the first six 

instances of this dataframe. 
 
 

3.2 Class Label Descriptions 
 

We are experimenting with two different sets of labels. The first set of labels we will 
denote as the “simple” labels; they include the following surfer motions: {surfing, paddling, 
floating}. The second set of labels will be denoted as the “complex” labels. They include the 
following surfer motions, listed in the table below. For the “complex” labels, we decided to label 
basic surfer motions that we could easily determine from our surf session footage. A description 
of each class label is included below to familiarize the reader with our class label choices. 
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Table 1. Class label descriptions. 

Class Label Description 

Floating Surfer is sitting still on surfboard, floating in water. 

Paddling into waves Surfer is paddling directly into the waves, away from shore, towards the 
line-up.  

Paddling for a wave Surfer is paddling for a wave, attempting to catch it.  

Paddling for position Surfer is paddling to change their position in the line-up (but not paddling 
for a wave or into waves).  

Surfing Surfer has caught a wave and is standing up on their surfboard.  

Turning Left While the surfer is floating and turning left.  

Turning Right While the surfer is floating and turning right.  

Wipe-out Denotes that a wave unexpectedly knocked the surfer off of their surfboard 
while they were surfing.  

Pop-up Surfer motion that occurs between paddling for a wave and actually 
surfing. The surfer moves quickly from the paddling position, to a push-up 
position, to standing on their surfboard.  

Push-off Denotes that the surfer was walking in the water alongside their surfboard, 
and then pushed off the ocean floor before beginning to paddle into waves. 

Pull-back leash The surfer pulls back on the surfboard leash to retrieve their surfboard.  

Walking in water The surfer is walking in the water with their surfboard.  

Sit-up Surfer motion that occurs between paddling and floating. The surfer moves 
from a position where they are laying on the surfboard to one where they 
are sitting up on the surfboard.  

Lay-down Surfer motion that occurs between floating and paddling. The surfer moves 
from a position where they are sitting on the surfboard to one where they 
are laying down on the surfboard.  

Step-off Denotes that the surfer was surfing, then stepped off of their surfboard to 
safely dismount from the wave that was being caught.  

Sit-back Denotes that the surfer was paddling for a wave, decided they were not in a 
good position to catch the wave, and sat back on their surfboard so that the 
wave would not carry them forwards.  

Off-board Denotes that the surfer is no longer on their board. 
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3.3 Pre-processing and Balancing Datasets 
 

The data is pre-processed so that any one time only one label is true. For example, when 
a surfer is both floating and turning, the surfer motion is labelled as “turning” until the surfer 
stops their turn. Once the turn stops, the “floating” label resumes. Data from the very beginning 
of the surf session, before the Smartfin and camera are synced, is deleted from the dataset. 
Similarly, data from the end of the surf session, when the surfer is exiting the water and after the 
surfer has exited the water, is deleted from the dataset. For some models (such as our SVM and 
MLP models) the input features are scaled from raw units to standard normally distributed data. 
This is performed by removing the mean value from each feature, then scaling by dividing 
non-constant features by their standard deviation. This is a common requirement for many 
machine learning estimators.  
 

When the class labels in our datasets are not evenly distributed, it becomes necessary to 
balance our dataset. If the dataset was left imbalanced, than our machine learning models would 
likely be biased towards overwhelmingly predicting the majority class. As we noted before, in a 
regular surf session it is much more likely that a surfer is floating than paddling, and more likely 
paddling than surfing. This same trend occurs in our experimental surf sessions, where instances 
of the floating class occur overwhelmingly more than the paddling class, and instances of the 
surfing class occur very infrequently. A distribution of the data for each of the experiments is 
included in the appendix section.  
 

In order to avoid biased models, we use a synthetic minority over-sampling technique 
known as SMOTE to balance our training set. A trivial way of balancing our dataset would be to 
duplicate all instances of our surfing and paddling data, so that there are the same number of 
instances in each class. However, this is problematic because the machine learning models’ 
testing data may become contaminated with duplicated data from the training dataset. Using 
SMOTE allows us to synthetically create new data samples from real ones. This allows us to 
equally distribute our data samples across the labelled classes, without biasing or contaminating 
our testing set. SMOTE oversampling is only performed on the training sets, while the testing 
sets are kept clean and untampered with. In some cases, we will need to downsample to the 
minority class, rather than upsample to the majority class, in order to ensure that our models are 
still computationally efficient and do not take too long to run. Details on the specific 
downsampling method used are included in the appendix sections. 
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3.4 Additional Features 
 

The raw signal obtained by the Smartfin’s IMU only contains accelerometer, gyroscope, 
and magnetometer data. Therefore, without feature engineering, our models are only given 
information related to acceleration, angular velocity, and compass heading. However, we can 
integrate the acceleration data in order to produce an estimate for the instantaneous velocity at a 
given time. We believe that the inclusion of velocity as an additional feature will improve our 
models’ prediction performance because it will help each model separate classes. For example, 
we can generally expect to have a higher instantaneous velocity when surfing, compared to 
paddling or floating. The same argument cannot be made for the acceleration feature. 

 
Since there is no perfect technique for capturing information about the world around us, 

there will naturally be noise present in addition to the true underlying signal in the IMU data that 
we have collected. The two main sources of this noise are: errors introduced by measurement 
tools, and random errors introduced by the data collection process. We would like to mitigate as 
much random noise as possible in our data so that when we later perform inference on our 
dataset, it mainly consists of the true signal that we are trying to classify. The Butterworth Filter 
is commonly used for this purpose; hence, we would also like to experiment with its use on our 
accelerometer data as an additional feature in our dataset. In a similar fashion, we will perform a 
moving window average filter in order to reduce noise present in the gyroscope data.  
 
3.5 Parameter Tuning 

 
Parameter tuning is the process of optimizing model parameters and hyperparameters in 

order to improve the model’s prediction performance. While the LR model will not need to 
undergo a parameter tuning process, the MLP and SVM models will generally benefit from 
having their parameters tuned. Parameter tuning is thus performed on the MLP and SVM models 
in our experiments when there is sufficient computational resources to handle the parameter 
tuning process on the given experimental dataset. More information regarding the specific 
parameter tuning process used on a given model in a given experiment will be included in the 
appendix. 
 
3.6 Overview of Experiments 
 

The following experiments will allow us to determine an accurate way of using machine 
learning techniques to determine surfer motion from the Smartfin’s IMU data. The Smartfin IMU 
data for these experiments is collected in a realistic way that mimics how surfers will actually be 
using the Smartfin in real-world conditions. Eight surf sessions are conducted over the months of 
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October-March at two beach breaks in San Diego: Scripps and La Jolla Shores, and one point 
break in Mexico: K-38. The average wave heights reported for these surf sessions range from 2-5 
ft. tall.  
 

In the first experiment (Results Section 4.1), we are interested in how accurately a simple 
machine learning model predicts each of the individual classes that we have labelled. Therefore, 
multiple binary logistic regression models will be used to determine whether we believe that the 
individual classes that we have initially chosen to label would be good classes to continue with in 
further experiments.  In the case of these binary models, we are interested in how accurately each 
machine learning model predicts an individual feature. Hence the model will be given a positive 
value for the class that is trying to predict, and a negative value for all other classes. This will 
give us an idea of how much the features for that individual class differs from the features of all 
other classes, i.e. how unique the features of that class is. This is often described as a one-vs-all 
type of machine learning classification task. If the binary machine learning model is able to 
predict each of the labels in the one-vs-all sense accurately well, we can be more confident that it 
will accurately predict those labels in the multinomial case. 

 
Our next experiments compare the results of our four different multinomial machine 

learning models to determine which model performs best in a given scenario. In the first scenario 
(Results Section 4.2) we are testing how well each model performs when given only the raw 
IMU signal as input, and is tested on a single surf session using the “simple” classes consisting 
of {floating, paddling, surfing}. Using only the raw IMU signal gives us a baseline which we 
will try to improve in subsequent experiments via a process of feature engineering. Using a 
single surf session allows us to examine how well we can predict the motions from the “simple” 
dataset when oceanic conditions are held somewhat constant (i.e. surfing in the same spot while 
tide/wind/wave conditions do not change drastically).  

 
As previously mentioned, feature engineering is performed (Results Section 4.3) to 

determine how the inclusion of additional input features, which are derived from our raw input 
features, may improve our classification accuracy. In particular, we examine how the inclusion 
of the following six features: instantaneous velocity in the x, y, and z directions and average 
change in angular velocity over a window of past data points in the x, y, and z directions affects 
the classification accuracy of each model. The same experimental set up from the previous 
experiment is used: a single surf session using the {floating, paddling, surfing} classes to be 
predicted.  
 

The next three experiments (Results Section 4.4, 4.5, and 4.6) similarly use additional 
features present the previous experiment (instantaneous velocity and change in angular velocity), 
but now uses  multiple surf sessions to learn from, rather than one. This allows us to test the 
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robustness of our models; given multiple surf sessions which were taken from multiple locations 
at different times throughout the year, where oceanic conditions are now much more variable. 
The main difference between the experiments in Sections 4.4 and 4.5 is the way that the dataset 
is balanced; in Section 4.4 it is balanced using an upsampling technique (as before) while in 
Section 4.5 it is downsampled (as it is in Section 4.6). Additionally, the experiment in Results 
Section 4.4 is performed with and without the use of a Butterworth Filter .  1

 
The results from the experiments in Sections 4.4 and 4.5 will illuminate how well our 

models perform when predicting the “simple” motion classes (Results Section 4.5) versus the 
“complex” motion classes (Results Section 4.6) with the aforementioned experimental set ups.  
  

1 For consistency (and to avoid confusion) in the experimental setups the results of the Butterworth Filter 
are not included in the table in Results Section 4.4 but are included in the Appendix.  
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Chapter 4: Results 

Figure 4. Acceleration in the forward/backward direction is projected onto the y-axis with m/s2 

units, time is projected on the x-axis in milliseconds, and class labels are color coded. 
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4.1 Results: Binary Logistic Regression 
 

Table 2. One-vs-All Binary Logistic Regression Classification Accuracies   2

Class Label Classification Accuracy 

Floating 83.97% 

Paddling into waves 69.27% 

Paddling for a wave 69.65% 

Paddling for position 81.20% 

Surfing 62.54% 

Turning Left 69.64% 

Turning Right 70.27% 

Wipe-out 68.03% 

Pop-up 68.93% 

Push-off 68.22% 

Pull-back leash 78.67% 

Walking in water 67.01% 

Sit-up 68.86% 

Lay-down 65.81% 

Step-off 66.03% 

Sit-back 81.00% 

Off-board 62.99% 

 
The above experimental results only included raw input features from the raw 9-axis 

IMU data.  

2 The distribution of each class label in the single surf session used in this experiment (and the subsequent 
single surf session experiments) can be found in the appendix. Each class was balanced using the SMOTE 
technique to equal the majority class, which consisted of the number of labels not in that class. Classes 
that were labelled (and may be present in Figure 1) but which did not have a representative sample were 
removed from the table and were not used in subsequent experiments.  
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4.2 Results: Raw Signal on “Simple” Classes from Single Surf Session 
 

The following  experimental results only included raw input features from the raw 9-axis 
IMU data, and attempted to predict the classes: {floating, paddling, surfing}.  
 

Table 3. A summary of the mean classification accuracy scores produced by performing a 
10-Fold Cross Validation on each model in experiment 2. 

Model Mean Classification 
Accuracy Percentage 

Mean Accuracy Score 
 ± Standard Deviation 

Multinomial LR  70% 0.708 ± 0.030 

Multinomial MLP  70% 0.698 ± 0.15 

Multinomial Linear SVM  70% 0.697 ± 0.136 

Multinomial Non-Linear SVM 68% 0.682 ± 0.138 

 
 
4.3 Results: Additional Features on “Simple” Classes from Single Surf Session 
 

The following experimental results included six additional input features calculated from 
the raw 9-axis IMU data (in addition to the raw input features), which were: instantaneous 
velocity in the x, y, and z directions and average change in angular velocity over a window of 
past data points in the x, y, and z directions. This experiment attempted to predict the classes: 
{floating, paddling, surfing}. This experiment has the same class distribution as the experiment 
in Results Section 4.2 (Figure XX).  
 

Table 4. A summary of the mean classification accuracy scores produced by performing a 
10-Fold Cross Validation on each model in experiment 3. 

Model Mean Classification 
Accuracy Percentage 

Mean Accuracy Score ± 
 Standard Deviation 

Multinomial LR  86% 0.857 ± 0.031 

Multinomial MLP  82% 0.818 ± 0.098 

Multinomial Linear SVM  82% 0.817 ± 0.155 

Multinomial Non-Linear SVM 80% 0.799 ± 0.120 
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4.4 Results:  
Upsampled Additional Features on “Simple” Classes from Multiple Surf Sessions 
 

The main difference between this experiment and the previous experiment (in section 
4.3) is that we are now using multiple surf sessions, rather than a single surf session. This 
experiment attempted to predict the classes: {floating, paddling, surfing}. 
 

Table 5. A summary of the mean classification accuracy scores produced by performing a 
10-Fold Cross Validation on each model in experiment 4. 

Model Mean Accuracy Percentage Mean Accuracy Score ± 
 Standard Deviation 

Multinomial LR  70% 0.705 ± 0.009 

Multinomial MLP  63% 0.629 ± 0.070 

Multinomial Linear SVM  58%  3 0.581 ± 0.062 

Multinomial Non-Linear SVM N/A  4 N/A 

 
 

  

3 Calculated by taking the mean of the 3-fold cross validation scores rather than a 10-fold cross validation 
scores.  
4 We were unable to calculate the multinomial non-linear SVM for this dataset due to limitations in time 
and computing resources that it took for this algorithm to run.  
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4.5 Results: 
 Downsampled Additional Features on “Simple” Classes from Multiple Surf Sessions 
 

This is the same experiment as the previous experiment (in section 4.4), except the data is 
randomly downsampled to the minority class, rather than upsampled to the majority class. We 
also experimented with the use of a Butterworth Filter as an additional feature in Experiment 
4.4.2, but it did not significantly affect our results (<1% absolute change in mean accuracy 
percentage for each model).  
 

Table 6. A summary of the mean classification accuracy scores produced by performing a 
10-Fold Cross Validation on each model in experiment 5. 

Model Mean Accuracy Percentage Mean Accuracy Score ± 
 Standard Deviation 

Multinomial LR  59% 0.585 ± 0.095 

Multinomial MLP  69% 0.687 ± 0.024 

Multinomial Linear SVM  59% 0.589 ± 0.038 

Multinomial Non-Linear SVM 57% 0.572 ± 0.012 
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4.6 Results:  
Downsampled Additional Features on “Complex” Classes from Multiple Surf Sessions 
 

This experiment is similar to the previous experiment in section 4.4.2 in that it utilizes 
multiple surf sessions and uses a downsampling method. The main difference between this 
experiment and the previous experiment is that we are predicting the “complex” class labels 
rather than just the “simple” class labels. This experiment attempted to predict the following 
classes: {push-off, paddling into waves, sit-up, floating, turning to surfer’s left, lay-down, 
paddling for a wave, sit-back, pop-up, surfing, wipe-out, turning to surfer’s right, pull-back 
leash, paddling for position, step-off}. 
 

Table 7. A summary of the mean classification accuracy scores produced by performing a 
10-Fold Cross Validation on each model in experiment 6. 

Model Mean Accuracy Percentage Mean Accuracy Score ± 
 Standard Deviation 

Multinomial LR  19% 0.192  ± 0.040 

Multinomial MLP  32% 0.323  ± 0.026 

Multinomial Linear SVM  25%  5 0.254 ± 0.007 

Multinomial Non-Linear SVM 45%  6 0.455 ± 0.027 

 
 

 
 

  

5 Calculated by taking the mean of the 3-fold cross validation scores rather than a 10-fold cross validation 
scores.  
6 Same as above. 
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Chapter 5: Evaluation and Discussion 
 

The first experiment (Results Section 4.1) gives us an indication of the prediction 
performance of a one-vs-all logistic regression model on each of the classes in a completely 
labelled dataset, given a single surf session. The results of this experiment show that when given 
all labelled classes, the model is best able to predict the floating class but is least able to predict 
the surfing class. This means that it was most able to distinguish instances of the floating class 
from all other labelled classes in the dataset, but was unable to perform this task well for the 
surfing class.  
 

The second and third experiments (Results Sections 4.2 and 4.3) demonstrate how well 
each multinomial model (LR, MLP, SVMs) performs on the “simple” dataset when given a 
single surf session to learn from. The third experiment shows us that the models perform 
significantly better, achieving improvements of 12-16% in their mean classification accuracy 
scores, when additional input features (computed from the raw input features) are included in the 
dataset. While each model performed comparably in the second experiment, the LR model 
performed notably better (86% mean classification accuracy) than the SVM model (80% mean 
classification accuracy). Therefore, it is likely that classes within the dataset became more 
linearly separable when given the additional input features, and that the instantaneous velocity 
and average rate of change of angular velocity were good indicators of when a surfer was 
floating, paddling, or surfing.  
 

The fourth experiment (Results Section 4.4) depicts a reduction in prediction 
performances in each of the tested models , when compared to the third experiment. The 7

difference between the third and fourth experiments was that the third experiment tested a 
dataset taken from a single surf session, while the fourth experiment tested a dataset taken from 
multiple surf sessions. This leads us to believe that the variability of oceanic conditions between 
different surf sessions has an overall effect on each model’s prediction performance. Overall, 
mean classification accuracy scores for each model dropped by 16-24% for each model in the 
fourth experiment, when compared to the results of the third experiment.  
 

The only difference between the fifth experiment (Results Section 4.5) and the fourth 
experiment is that the dataset in the fifth experiment is downsampled rather than upsampled as it 
was in the fourth experiment. This difference in the way the dataset was balanced significantly 
altered the results of the fourth and fifth experiments. While the LR model performed best in the 

7  The results of the SVM model with a non-linear kernel were unable to be calculated due to constraints 
in computational resources but was assumed to be poorer than in the third experiment based on the other 
models’ results. 
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fourth experiment (70% mean classification accuracy), the MLP model performed best in the 
fifth experiment (69% mean classification accuracy). A possible explanation for this is that the 
MLP and SVM models improve slightly when dealing with less data because they do not overfit 
to the training data, while the LR model is not at risk of overfitting, and therefore its prediction 
performance decreases slightly when given less data to learn from.  
 

The sixth and final experiment (Results Section 4.6) only differs from the fifth 
experiment in that it is trained and tested on the “complex” dataset, rather than the “simple” 
dataset. There are a total of 15 labels in this dataset. Here, the SVM model with a non-linear 
kernel performs overwhelmingly better (45% mean classification accuracy) than all other models 
that were tested. The LR model which had performed the best in most of the other experiments, 
for example, performed the worst in this experiment (19% mean classification accuracy). These 
results support the idea that the “complex” dataset is not linearly separated, which is why the 
SVM model with a non-linear kernel performs best.  
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Chapter 6: Conclusion and Future Work 

 
In this thesis, we have analyzed the prediction performance of various machine learning 

models (logistic regression, multilayer perceptron, and support vector machines with linear and 
non-linear kernels) in predicting different classes of surfer motion from the Smartfin’s IMU data. 
We have found through experimentation that our models’ prediction performance is optimal 
when our training and validation datasets are taken from a single surf session. Our results were 
improved when feature engineering was performed to include instantaneous velocity as well as a 
moving window average of the gyroscope data on data taken from the single surf session. The 
fact that the logistic regression model performed best in this case leads us to believe that our data 
becomes more linearly separated after performing feature engineering and that the MLP and 
SVM models are potentially overfitting to the training set. We believe that our accuracy 
decreases when training and testing our models on a dataset taken from a combination of eight 
recorded surf sessions because oceanic conditions are highly variable when looking at multiple 
surf sessions which were taken from multiple surfers and locations over various months.  
 

Future work will need to be done to determine whether this level of classification 
accuracy is adequate for oceanographers who are using the Smartfin to collect data for scientific 
purposes. If not, additional work will need to be done to determine whether it is possible to 
achieve a higher prediction performance with other additional input features, filters, or machine 
learning models. Further investigation could also reveal the quantitative effects that different 
surfers (surfing styles), locations, or times of year have on our models’ prediction performances.  
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Appendix A 

Additional Experiment 4.1 Notes and Results 
 

Table 8: Distribution of all labelled classes used in Experiment 4.1  8

Class Label Distribution in Dataset 

Floating 46.89% 

Paddling for position 0.52% 

Sit-back 0.30% 

Pull-back leash 1.54% 

Turning to surfer’s right 3.95% 

Paddling for a wave 4.20% 

Turning to surfer’s left 4.38% 

Paddling into waves 18.86% 

Pop-up 0.90% 

Sit-up 0.93% 

Push-off 0.89% 

Wipe-out 0.14% 

Walking in water 7.16% 

Step-off 0.52% 

Lay-down 1.34% 

Off-board 2.49% 

Surfing 1.95% 

 
 
 

8 Classes that were labelled in this experiment, but which were not used in any of the experiments (ex: “board upside 
down”) do not appear in the table. Classes were not used in experiments if they were not consistently labelled across 
all surf sessions. 
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Figure 5. Results of one-vs-all binary logistic regression experiment, sorted in decreasing order 
by the model’s prediction (classification) accuracy.  
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Appendix B 
Additional Experiment 4.2 Notes and Results 

 
 

Table 9: Distribution of “Simple” labelled classes used in Experiments 4.2 and 4.3 

Class Label Distribution in Dataset Total # of Samples 

Floating 71.88% 3517 

Paddling 26.57% 1300 

Surfing 1.55% 76 

 
 

 

 
Figure 6. Visualization of the “simple” dataset in 3 dimensions, with respect to the 

Smartfin’s raw accelerometer values in the x, y, and z directions.  
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Figure 7. Visualization of the “simple” dataset in 3 dimensions, with respect to the 

Smartfin’s raw gyroscope values in the x, y, and z directions.  
 
 
 

 
Figure 8. Visualization of the “simple” dataset in 3 dimensions, with respect to the 

Smartfin’s raw magnetometer values in the x, y, and z directions.  
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Multinomial Logistic Regression Model in Experiment 4.2: 
 

The logistic regression model being used in this experiment is imported from the sklearn 
linear_model library, with the parameters set up as: multi_class='multinomial' and 
solver='newton-cg'). Here, we focus on an analysis of the model’s prediction performance on the 
“simple” dataset of {floating, paddling, surfing}. The following confusion matrices depict the 
model’s classification accuracy for each label, with the true label on the y-axis and the predicted 
label on the x-axis. The figure on the left gives a better idea of the number of instances being 
labelled for each class, while the figure on the right uses normalization to portray classification 
accuracy more clearly.  

 
 

Table 10. The 10-Fold Cross Validation report from the LR model produced the 
following array of accuracy scores in experiment 4.2. 

Iteration # 1 2 3 4 5 6 7 8 9 10 

Score: 0.70588 0.67647 0.67647 0.67647 0.71642 0.76119 0.74242 0.68182 0.73846 0.70769 

 
 

 

 
Figure 9. The confusion matrices, original (left) and normalized (right) produced by the 

LR model in experiment 4.2. 
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Multinomial Multilayer Perceptron Model in experiment 4.2: 
 

The MLP model being used in this experiment is the MLPClassifier imported from the 
Python sklearn library. Unlike the logistic regression model, the MLP model must undergo a 
parameter tuning process in order to determine the best parameters to achieve the highest mean 
accuracy on this dataset. This was done using the GridSearchCV function from Python’s sklearn 
“model_selection” library. The grid space that was searched consisted of the following 
parameters: {'solver': ['lbfgs'], 'max_iter': [100,200,1000,1500,2000], 'alpha': [1e-5, 0.001, 0.1, 
10.0, 1000.0], 'hidden_layer_sizes':[(10,10), (15,15), (100,100), (5,5), (15, 3,15), (10,15)], 
'random_state':[0,1,2]}. The GridSearchCV function found that the best parameters for this grid 
space were: {'alpha': 10.0, 'hidden_layer_sizes': (100, 100), 'max_iter': 100, 'random_state': 2, 
'solver': 'lbfgs'}.  
 
 

Table 11. The 10-Fold Cross Validation report from the LR model produced the 
following array of accuracy scores in experiment 4.2. 

Iteration # 1 2 3 4 5 6 7 8 9 10 

Score: 0.64925 0.90149 0.68311 0.78326 0.79970 0.75486 0.78593 0.76347 0.40868 0.45359 

 
 
 

   
Figure 10. The confusion matrices, original (left) and normalized (right) produced by the 

MLP model in experiment 4.2. 
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Multinomial Support Vector Machines Models in experiment 4.2: 
 

We perform the same experiment again with the multinomial SVM model. The SVM 
model used here is imported from the sklearn.svm SVC library. Similar to the MLP model, the 
SVM model needs to undergo a parameter tuning process to determine the best parameters to be 
used. Additionally, the SVM model was tested using two different kernels, the ‘linear’ kernel 
and the non-linear ‘rbf’ kernel, to determine which type of kernel would lead to better 
performance. Again, the tuning parameters were determined by the GridSearchCV function, with 
the following grid search space: {‘C’: [0.001, 0.01, 0.1, 1, 10], ‘gamma’:[0.001, 0.01, 0.1, 1]}. 
This produced the following ‘linear’ kernel parameters: {'C': 10, 'gamma': 0.001} and produced 
the following ‘rbf’ kernel parameters: {'C': 0.1, 'gamma': 0.001}. 
 
 

Table 12. The 10-Fold Cross Validation report from the SVM model with a linear kernel 
produced the following array of accuracy scores in experiment 4.2. 

Iteration # 1 2 3 4 5 6 7 8 9 10 

Score: 0.67761 0.83731 0.72347 0.75486 0.80717 0.76981 0.74401 0.77246 0.50749 0.38323 

 
 

 
Figure 11. The normalized confusion matrix produced by the linear SVM model in 

experiment 4.2. 
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Table 13. The 10-Fold Cross Validation report from the SVM model with a non-linear 
‘rbf’ kernel produced the following array of accuracy scores in experiment 4.2. 

Iteration # 1 2 3 4 5 6 7 8 9 10 

Score: 0.60149 0.88507 0.63528 0.67713 0.80568 0.72347 0.78144 0.79192 0.42964 0.48802 

 
 
 
 

 
Figure 12. The normalized confusion matrix produced by the non-linear SVM model in 

experiment 4.2. 
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Appendix C 
Additional Experiment 4.3 Notes and Results 

 
The distribution of this dataset was the same as in experiment 4.2 (Figure XX).  

 
Multinomial Logistic Regression Model in experiment 4.3:  
 

We use a multiclass Logistic Regression model from the sklearn linear_model library 
with the following parameters specified: (multi_class='multinomial', solver='newton-cg') and 
balance the dataset with an upsampling technique known as SMOTE.  
 
 

Table 14. The 10-Fold Cross Validation report from the LR model produced the 
following array of accuracy scores in experiment 4.3. 

Iteration # 1 2 3 4 5 6 7 8 9 10 

Score: 0.86486 0.91216 0.80405 0.87075 0.82993 0.86986 0.88356 0.81507 0.87671 0.84932 

 
 
 

  
Figure 13. The confusion matrices, original (left) and normalized (right) produced by the 

LR model in experiment 4.3. 
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Multinomial Multilayer Perceptron Model in experiment 4.3: 
 

We performed the same tuning parameter process as was done in Experiment 2 
(Appendix B). The GridSearchCV method produced the following parameters: {'alpha': 0.001, 
'hidden_layer_sizes': (100, 100), 'max_iter': 2000, 'random_state': 6, 'solver': 'lbfgs'}. 
 
 

Table 15. The 10-Fold Cross Validation report from the MLP model produced the 
following array of accuracy scores in experiment 4.3. 

Iteration # 1 2 3 4 5 6 7 8 9 10 

Score: 0.59388 0.91633 0.90408 0.77143 0.69796 0.89184 0.83436 0.87705 0.86680 0.82787 

 
 
 

 
Figure 14. The normalized confusion matrix produced by the MLP model in experiment 

4.3. 
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Multinomial Support Vector Machine Models in experiment 4.3: 
 

We performed the same tuning parameter process as was done in Experiment 2 
(Appendix B). The tuning parameters produced by this process for the linear SVM model were: 
{'C': 1, 'gamma': 0.001} and the tuning parameters for the non-linear SVM model were also: {'C': 
1, 'gamma': 0.001}.  
 
 

Table 16. The 10-Fold Cross Validation report from the SVM model with a linear kernel 
produced the following array of accuracy scores in experiment 4.3. 

Iteration # 1 2 3 4 5 6 7 8 9 10 

Score: 0.38979 0.91837 0.89388 0.91020 0.74898 0.84694 0.76483 0.89959 0.94262 0.85246 

 
 
 

 
Figure 15. The normalized confusion matrix produced by the linear SVM model in 

experiment 4.3. 
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Table 17. The 10-Fold Cross Validation report from the SVM model with a non-linear 
‘rbf’ kernel produced the following array of accuracy scores in experiment 4.3. 

Iteration # 1 2 3 4 5 6 7 8 9 10 

Score: 0.54286 0.91837 0.81224 0.75918 0.62857 0.91633 0.84867 0.92418 0.82788 0.80943 

 
 
 
 

 
Figure 16. The normalized confusion matrix produced by the non-linear SVM model in 

experiment 4.3. 
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Appendix D 
Additional Experiment 4.4 Notes and Results 

 
 

Table 18: Distribution of “Simple” labelled classes used in Experiments 4.4 and 4.5 

Class Label Distribution in Dataset Total # of Samples 

Floating 66.29% 41456 

Paddling 32.96% 20614 

Surfing 0.75% 472 
 

 
Table 19. The 10-Fold Cross Validation report from the LR model produced the 

following array of accuracy scores in experiment 4.4. 

Iteration # 1 2 3 4 5 6 7 8 9 10 

Score: 0.69382 0.70128 0.70964 0.70165 0.72189 0.71002 0.71467 0.69920 0.69440 0.70720 

 
 
 

   
Figure 17. The confusion matrices, original (left) and normalized (right) produced by the 

LR model in experiment 4.4. 
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Table 20. The 10-Fold Cross Validation report from the MLP model produced the 

following array of accuracy scores in experiment 4.4. 

Iteration # 1 2 3 4 5 6 7 8 9 10 

Score: 0.66624 0.66273 0.64860 0.70488 0.55580 0.66293 0.45402 0.63169 0.68447 0.61842 

 
 

 
 

 
Figure 18. The normalized confusion matrix produced by the MLP model in experiment 

4.4. 
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Appendix E 

Additional Experiment 4.5 Notes and Results 
 

 
For brevity, and because the only difference between experiment 4.4 and experiment 4.5 

was the way the dataset was balanced (downsampled rather than upsampled in the latter case), 
the only table included in this section is the summary of each model’s mean accuracy score from 
a 10-Fold Cross Validation the inclusion when Butterworth Filtered data is included as an 
additional feature. The Butterworth Filter was performed on the accelerometer and gyroscope 
data, and the original raw accelerometer and gyroscope data was kept as input features.  
 

Table 21. A summary of the mean classification accuracy scores produced by performing 
a 10-Fold Cross Validation on each model in Experiment 4.4, with the Butterworth Filtered 

accelerometer and gyroscope values included as additional features. 

Model Mean Accuracy Percentage Mean Accuracy Score ± 
 Standard Deviation 

Multinomial LR  58% 0.580 ± 0.101 

Multinomial MLP  69% 0.689 ± 0.032 

Multinomial Linear SVM  60% 0.595 ± 0.029 

Multinomial Non-Linear SVM 57% 0.570 ± 0.009 
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Appendix F 
Additional Experiment 4.6 Notes and Results 

 
Table 22: Distribution of “Complex” labelled classes used in Experiment 4.6 

Class Label Distribution in Dataset Total # of Samples 

Push-off 0.41% 279 

Paddling into waves 28.60% 19294 

Sit-up 1.26% 854 

Floating 61.47% 41456 

Turning to surfer’s left 1.77% 1191 

Lay-down 0.75% 507 

Paddling for a wave 1.76% 1187 

Sit-back 0.30% 201 

Pop-up 0.21% 139 

Surfing 0.70% 472 

Wipe-out 0.42% 284 

Turning to surfer’s right 1.62% 1094 

Pull-back leash 0.22% 147 

Paddling for position 0.20% 133 

Step-off 0.30% 203 
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