Scaling the Annotation of Subtidal Marine Habitats
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ABSTRACT

Visually documenting seafloor habitats has the potential to
answer challenging questions in several maritime disciplines
including: ecology, geology, and archaeology. Unfortunately,
the attenuation of visible light underwater limits the imag-
ing footprint of a single image to square meters. This lim-
itation makes representing large habitats, on the order of
hundreds of square meters and beyond, an intensive pro-
cess requiring the collection, storage, processing and anno-
tation of thousands of high resolution images per hundred
square meters of seafloor. This paper describes a pipeline
for dealing with these challenges efficiently and effectively
using visual data of coral reef communities processed into
a three dimensional model. We evaluate the resources and
technological advancements required to scale this problem
to orders of magnitude larger than the current state of the
art and motivate the need for networked underwater data
collection platforms to push the scalability of this method.

1. INTRODUCTION

For many scientific disciplines, image data sets are col-
lected to quantify spatial distributions and dynamic evo-
lution of patterns. For example, aerial and satellite-derived
imagery provide world-changing advances in our understand-
ing of terrestrial systems. Comparable large-scale, tempo-
rally replicated, and high-resolution data sources are not
available for subtidal marine habitats. While single im-
ages of the seafloor have long been used to provide archival
sources of information, it is difficult to understand the en-
tire context of an area without reconstructing the relation-
ship between images. For this reason, photomosaics and
3D point clouds are increasingly used in domain sciences as
succinct representations of image data sets that are intuitive
for the end user to use. While we have come a long way in
building algorithms and methods to construct these repre-
sentations, maritime disciplines are still limited by the scale
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of the data we can collect, process and annotate.

The adoption of image processing techniques has shown
increased efficiency in maritime fields such as archeology
and ecology. In archeology, shipwrecks have been recreated
using images and hand measurements to create an accu-
rate and comprehensive representation in 3D [15, 17, 11,
16, 4]. These photogrammetric techniques have the poten-
tial to replace many of the tedious hand drawings (which
must be performed underwater) that provide archaeologists
with a comprehensive, to scale, visual representation of ship-
wrecks. Photogrammetric models have also been used to un-
derstand marine environments, and recently several authors
have demonstrated the utility of these techniques for habi-
tat classifications, largely in the quantification of substrate
rugosity [23, 6, 10, 12, 7]. Fewer authors have used such
methods in regular ecological monitoring and investigation
of key ecological processes [13, 8, 20, 5]. Despite this, given
the scale and spatially explicit nature of organismal interac-
tions on coral reefs, there is a critical need to expand these
technologies to facilitate ecological inquiry.

Despite the potential of these technologies to enable ground-
breaking insights in coral reef ecology and other maritime
fields, data collection and analyses have been confined to a
modest scale. As a result, our inferences have been con-
strained to processes acting at that scale. Comparisons
among reefs, or within a given reef over time, are made us-
ing composite metrics which cannot detect important demo-
graphic differences in coral communities. To overcome these
limitations, our group has recently begun to implement pho-
tometric technology which offers a dramatic increase in the
spatial scale of imagery without increasing the amount of un-
derwater time required. Once digitized, photometric models
become spatially explicit maps of the benthos which allows
us to build on past efforts and open up novel lines of inquiry
such as: How do changes in the wave environment change the
structure and composition of reef communities? Are there
consistent patterns of co-occurrence in benthic organisms on
coral reefs? Do corals exhibit trade offs in life history and
growth strategies? Human effects? In order to scale up our
efforts to the whole island scale, and make meaningful com-
parisons between islands, we are in need of key innovations
that will allow us to increase the scale of our investigation.

Our efforts to find answers to some of these large eco-
logical questions have inspired two research initiatives that
we plan to undertake over the next couple of years. The
first, coined the ‘100 Island Challenge’, is focused on elu-
cidating spatial patterns across a variety of environmental



and anthropogenic contexts. Over the course of three years,
image datasets will be collected from 6-8 replicated 100m?>
plots from 100 different coral islands in regions around the
world. Each island will be visited twice to compare evolv-
ing dynamics of spatial patterns to help unravel the effects of
different regional context’s contributions to differences in ob-
served patterns and processes. This comparative approach
will unlock answers to many community ecology questions.
In addition to the direct goals of the 100 island challenge,
we plan to leverage long term collaborations with govern-
mental and other monitoring agencies, such as the national
oceanographic and atmospheric administration’s coral reef
ecosystem division, to encourage the use of our methodology
and approach to many more regional contexts and eventu-
ally reach a greater global representation.

The second challenge, dubbed the ‘Vostok Challenge’, is
an ambitious interdisciplinary project to map the entire is-
land of Vostok, Republic of Kiribati. A nearly exhaus-
tive sampling design focused on imaging from the small-
est (molecule) to the largest (island) scale will allow us to
produce the most complete coral reef dataset ever, repre-
senting an almost limitless platform for ecological inquiry.
The extreme isolation of Vostok presents an almost unprece-
dented opportunity for real time communication of expedi-
tion progress and live data feeds, with few comparisons be-
yond the space program. These two initiatives will expand
our knowledge about coral reef communities and push engi-
neering capacity to collect, store and manage this amount of
data. Ultimately, we hope to combine the ‘100 Island Chal-
lenge’ framework for island comparisons with the technolog-
ical advancements achieved during the ‘Vostok Challenge’ to
create the capability to process the next order of magnitude
- mapping the entirety of 100 islands.

Our current pipeline requires high end computing as well
as significant human data collection and annotation. The
end result is typically a three dimensional model of coral
reefs covering a 10m by 10m footprint. Starting with the
data collection, it takes a team of two divers 1 hour to gather
the 2500 images. It takes about 2 days to process the im-
ages into a 500 million point representation on a high end
computer (2 Xeon Processors, 128Gb RAM, 4 GeForce GTX
980 GPUs). The annotation takes 60 hours on a two dimen-
sional representation of the 3D geometry of the 100m? reef
with up to 250+ different species to classify, depending on
the location. Given our current pipeline, estimates of the
person hours and processing time is summarized in Table 1
for different orders of magnitude.

Table 1: Table of Effort per Scale

Collection Processing Annotation
(man Hr) | (Compute Hr) | (man Hr)
10x10m plot 1 50 60
100 Islands 8 400 480
Vostok
(250,000 sqm) 2,500 125,000 150,000
100 Islands 250,000 1,250,000 1,500,00

Our data pipeline has allowed us to collect unique data
sets, pushing our understanding of coral ecology past what
was previously possible. Yet Table 1 points out the limita-
tions and inconveniences of this method. Even for a 10m
by 10m plot there is significant computational and human

resources that goes into a finished representation. As we
consider larger datasets, it is clear that our current pipeline
represents a critical bottleneck that must be overcome.

Networked vehicles are key to pushing this method to the
next order of magnitude by significantly reducing the time
required for the first two stages of the data pipeline. In ad-
dition to the added benefit of switching from ‘person power’
to ‘compute power’ in the data collection stage (which has
more endurance per day and can be less costly), networked
vehicles can evaluate their coverage and coordinate trajecto-
ries during data collection more effectively than their human
counterparts. This will increase the efficiency of the data
collection process. Also, vehicles can provide accurate es-
timates of the pose and orientation as metadata which can
increase the efficiency and accuracy of the technical post
processing. Importantly, networked vehicles will free us of
the limitations of SCUBA, allowing greater spatial coverage
and will be able to access a wider (eg deeper) range of habi-
tats without the risks associated with divers operating on
SCUBA.

The remainder of this paper is focused on first describing
our image pipeline for analyzing coral reefs followed by a
description of technological advancements that are needed to
scale these methods to a point where they are more effective.

2. CURRENT METHODOLOGY

Our data processing work flow involves three major com-
ponents. The first component is data collection in the field,
followed by technical post-processing of raw imagery into
a complete photometric model. Models are then ecologi-
cally post-processed by expert biologists to derive informa-
tion that is useful for coral biology.

2.1 Data Collection

The collection of overlapping digital images is a straight-
forward process that requires little special equipment or dive
operations[13]. The camera system consists of two SLR
Nikon D7000 cameras and a single GoPro video camera
mounted to a custom frame (Figure 1 A). One camera uses
a wide-angle lens to ensure high overlap among adjacent
images. The other camera uses a longer focal length lens
to capture images with sub-cm spatial resolution. The ex-
treme wide angle GoPro video camera is used in the rare
event of missing imagery for a given portion of the reef.
Images are captured every second from both cameras simul-
taneously, with mounted lasers to provide scale (Figure 1
B). The diver operating the camera system swims a double
lawnmower (i.e. zigzag, see Figure 1 C) pattern at a speed
sufficient to maintain maximum overlap between adjacent
images to obtain continuous coverage of the reef floor in a
plot of up to 100m? in a single dive. Depending on local
conditions, a single data set will take 30-45 minutes to col-
lect and consist of approx. 1200-2500 individual images per
camera. A detailed series of measurements is taken between
fixed markers visible in the imagery to aid in image calibra-
tion (see highlights in Figure 1 D).

2.2 Data Processing

Our current data processing stage employs a technique
called Structure from Motion (SfM). SfM compares multi-
ple camera views to estimate the 3D geometry of an object
in the form of a point cloud. Each point in a point cloud
is generated from pixels in an image. At a high level, SfTM



Figure 1: (A) Schematic of the diver rig with cam-
eras of different focal lengths and laser pointers for
scale (B) Photo of a diver swimming transects (C)
representation of the path swam by the diver to in-
sure adequate coverage (D) end result of the photo-
metric model with markers highlighted

starts by picking out thousands of salient points in each im-
age. It then finds matches of salient points between images,
determining which images have overlap. With information
of point matches the software estimates the relative position
and orientation of each frame. Finally, the 3D location of
the points in the image can be deduced through triangula-
tion and refined by a process called bundle adjustment. In
general, STM provides a geometrically accurate representa-
tion of a scene, with the caveat that there is no scale. When
using a single camera, it is ambiguous whether a camera is
moving a small distance around a small object or a large
distance around a large object. For this reason, some scale
must be defined by using known distances or dimensions of
one or more objects. In other words, physical measurements
of an object are still crucial to provide a correct scale. There
are multiple implementations of SIM software, both free (Vi-
sualSfM [22], Autodesks 123D Catch[1], Bundler[21]) and for
sale (Agisoft[14]). In this study we chose to use Agisoft be-
cause we have found that it is the most comprehensive.

In order to define a scale we insert ground control points
(GCP) in the scene we are focused on so that we have known
distances in our model. In our case we have rebar markers
in the coral structure. To establish coordinates we measure
the distances between the markers with a tape measure and
collect the depth at the marker with a pressure gauge. With
this information we can solve for a relative location of the
markers that minimizes the discrepancy of each measure-
ment in the least squares sense. Once a datum is tagged in
the imagery, the coordinates for that datum can be entered,
defining the scale of the final SfM model and helping the
reconstruction accuracy.

2.3 Ecological Post-Processing

Our interest in this whole method is to create taxonomi-
cally classified maps of the seafloor so that detailed analy-
ses of pattern and process can be undertaken. Therefore, a
critical step in the extraction of information lies in ecologi-

cal post-processing where skilled biologists outline and taxo-
nomically identify all individual benthic organisms by hand.
The end result are accurate maps of community structures
between taxa. While this classification step is a time inten-
sive process (requiring approximately 60 man hours), it is
tremendously more efficient and comprehensive than in situ
methodologies which are limited by a diver’s bottom time.
In contrast, photometric models allow for limitless ‘bottom-
time’ for exhaustive searches of large areas of the benthos in
a relatively rapid manner.

The goal is to perform classification and annotation inter-
actively on the derived 3D model with convenient access to
the information needed to do the task reliably. Our basic
annotation paradigm is that of painting: directly marking
or highlighting regions using brushes with a dynamically-
controlled radius. We choose to work directly on the dense
pointcloud, since it is the most detailed reconstructed prod-
uct, from which we can construct other (further filtered /in-
terpolated) models (such as meshes, DEMs, and orthopho-
tos) as needed, and assign annotations per-point, partition-
ing the point cloud according to the classification. Note also
that the derived products of the photometric reconstruction
techniques outlined in the preceding section include not only
an approximate 3D model of the imaged scene, but also pose
and intrinsic camera parameter estimates for the input im-
ages. These estimates permit the source images - together
comprising the primary captured record of the site - to be
consulted efficiently as a part of the 3D classification work-
flow. In particular, we can automatically look up on-demand
and overlay each relevant source image on the pointcloud,
or display it in a separate window as an aid in performing
the classification.

There are some challenges in building software to view
and annotate such 3D representations. The first is dealing
with the size of the 3D datasets involved, which can easily
exceed 500 million points per study region. To visualize the
pointclouds, we apply the point-buffering approach of [19],
and extend it by reordering the points to accelerate spatial
queries. For each point set, we construct a balanced 3D
tree [3] and sort the points within the set such that the tree
structure is implicitly encoded by the point order, thereby
allowing us to store the trees with very low overhead ( 0.4%
on average).

The second challenge is designing and implementing the
tools needed to support an efficient classification and anno-
tation workflow. To this end, we have built into our sys-
tem a run-time scripting framework (currently using the V8
JavaScript engine [9]), allowing us to rapidly implement the
front-end for the annotation workflow, and providing greater
flexibility for developing and testing a variety of annotation
tools. Within the scripting environment, we expose spatial
queries (eg, nearest-neighbor - ‘the set of points within a
certain distance of a given point’, accelerated by the above
mentioned implicitly-stored 3D trees) that serve as building
blocks for more elaborate local geometric operations (such
as flood-fill style 'magic’ brushes).

We implement the remainder of the front-end in a web-app
(that can run in a separate browser window, or on a differ-
ent machine or mobile device) providing control over anno-
tations, allowing the list of classes to be edited, metadata
to be updated, and display parameters to be set (e.g. which
classes are shown, and in what color). Finally, we leverage
the scripting framework to develop analytical tools (mea-



surements, statistics) as well as a flexible means of export-
ing data for further processing (separating points by class,
subsampling /filtering to prepare a point set for meshing).

Figure 2: A 3D model output from SfM of Ant Atoll.
This model represents a typical 10m by 10m plot of
coral. The different colors represent different anno-
tations that we have our software showing.

3. FUTURE DEVELOPMENTS

Our current method for digitally analyzing coral reef com-
munities is an intensive process. Both the number of man
hours and the compute time can become infeasible for large
datasets. As we consider larger scales we will inevitably turn
towards vehicles for the data collection process to extend the
endurance and efficiency of our data collection. As an added
benefit, vehicles also have the potential to increase the ac-
curacy and decrease the processing time by annotating each
image with an estimate of the pose and orientation.

Utilizing a network of vehicles can also improve the effi-
ciency and accuracy of the data collection process past being
able to parallelize the collection. In past work we have shown
that vehicle location estimates can be jointly improved by
collaboratively localizing and communicating position esti-
mates between vehicles [18]. The increase in localization
accuracy will allow higher confidence in our coverage and
will allow less time to be spent collecting redundant data.

3.1 Data Collection

Currently there is no feedback on our data collection pro-
cess. This requires us to be conservative in our data col-
lection and results in redundant coverage. For example, a
minimum of 3 images must include a point in order for the
point to be resolved by SfM software. More than 3 images
can help with the accuracy of the 3D point estimate but
the additional gain in accuracy quickly deteriorates with the
number of images. There is a trade off between how much
one more image will improve the accuracy and the amount
of time it takes to capture that image. In our data sets we
are seeing coverage in excess of 50 images per point. While
we have not determined the optimal coverage for our mod-
els, we believe that most of the information is redundant.
Once we better understand the optimal coverage of images
per point we can design our vehicle surveys to target this
coverage. This is possible because vehicles have an estimate
of their position during data collection and can provide an

estimate of how many images overlap with each point on the
ocean floor.

This problem will be exacerbated once we scale to larger
data sets, such as a whole island where we need to consider
the overlap between deployments as well. In Table 1, we as-
sumed that we could map disjoint 10x10m areas and stitch
them together, but this is not true. We will need the over-
lap both for the accuracy of the model and to insure that
all of the area is accounted for. If we do not know our posi-
tion estimates with confidence then we will be forced to be
conservative in the data collection to insure that we collect
everything that we need. Using vehicles with accurate po-
sition estimates will greatly alleviate this process yet it is
clear that many scales will still be ambitious. We believe
that the scale of the full island will still be time consuming
for the current state of the art of networked vehicles.

3.2 Data Processing

A significant part of the processing time for SfM is deter-
mining which images have overlap. In the naive case this
step scales quadratically with the number of input images,
as we check each image with every other image for overlap.
With some of our larger datasets we have seen that this step
can take over 40% of the processing time. With the localiza-
tion estimates that vehicles provide we will be able to deter-
mine which images have overlap a priori and we can reduce
the processing time by almost half. Additionally, utilizing
different sensors will alleviate the need to define a geome-
try in our photometric models, which is currently the only
part which requires human intervention. Since each image
will already have metadata of location to a real world scale,
we will be able to utilize this data to accurately scale these
models. Likewise, if two networked vehicles collect disjoint
image sets, we will be able to construct the relative position
between the photometric models without knowledge of the
missing data.

3.3 Ecological Post Processing

The most daunting part of our pipeline moving forward is
the annotation of different coral species in each of the models
we create. The ecological analysis requires high classification
rates of hundreds of different coral species. Stringent anno-
tation requirements are needed to detect subtleties in com-
munity structure of the coral ecosystems. Recent advance-
ments in computer aided classification may soon expedite
this process. Due to the complexity of coral reef habitats
and the lack of existing training data sets, accuracy levels
of existing technologies are still insufficiently low [2]. Af-
ter enough time spent on the annotation we will eventually
have a comprehensive data set that we can use to generate
classification algorithms to do most of the classification au-
tomatically. We have done some preliminary studies where
we have achieved >90% classification accuracy for certain
subsets of locations and species. Eventually we can get to a
point where we are simply checking the output of the classi-
fication algorithms instead of doing the whole classification
ourselves. This will significantly speed up our classification
throughput on the classification side and allow us to under-
stand ecological patterns across large swaths of data.

4. CONCLUSION

We are working on understanding coral reef and other
maritime habitats on a scale that has not been studied be-



fore. The methods to work on this scale are intensive in
compute time and in manual labor from SCUBA divers and
biologists. However, these methods are orders of magni-
tude more comprehensive than performing the analysis in
situ. There is great opportunity for increased efficiency and
much of this efficiency will come from utilizing underwater
vehicle platforms that work in teams to increase localiza-
tion accuracy and efficiently collect data. These advances
are much needed for measuring human impacts, identifying
key metrics of healthy sub-tidal habitats and constructing
conservation plans to keep oceans healthy. An additional
benefit of this work will arise through the volumes of human
classified data and subsequent innovations in automated an-
notations. The progress made in this sector will likely have
far reaching commercial applications in the fields of remote
environmental sensing and robotics.
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