J. Parallel Distrib. Comput. 73 (2013) 677-685

Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

A software-based dynamic-warp scheduling approach for
load-balancing the Viola-Jones face detection algorithm on GPUs

CrossMark

®

Tan Nguyen *, Daniel Hefenbrock, Jason Oberg, Ryan Kastner, Scott Baden
Department of Computer Science and Engineering, University of California, San Diego, 9500 Gilman Drive MC:0404, La Jolla, CA 92093-0404, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 29 June 2012

Received in revised form

22 November 2012

Accepted 22 January 2013
Available online 29 January 2013

Keywords:
Viola-Jones
GPUs

SIMD

Face detection is a key component in applications such as security surveillance and human-computer
interaction systems, and real-time recognition is essential in many scenarios. The Viola-Jones algorithm
is an attractive means of meeting the real time requirement, and has been widely implemented on
custom hardware, FPGAs and GPUs. We demonstrate a GPU implementation that achieves competitive
performance, but with low development costs. Our solution treats the irregularity inherent to the
algorithm using a novel dynamic warp scheduling approach that eliminates thread divergence. This
new scheme also employs a thread pool mechanism, which significantly alleviates the cost of creating,
switching, and terminating threads. Compared to static thread scheduling, our dynamic warp scheduling
approach reduces the execution time by a factor of 3. To maximize detection throughput, we also run on
multiple GPUs, realizing 95.6 FPS on 5 Fermi GPUs.

Dynamic warp scheduling

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Face detection is a major component in many applications
such as security surveillance and human-computer interaction
systems, and real-time recognition is essential in many scenarios.
Prior work has employed various approaches [16,17] including
the well-known Viola-Jones algorithm [22,21], which can provide
quick and robust face detection. This algorithm has been widely
implemented and deployed on diverse architectural platforms.

Conventional multicore implementations are the most conve-
nient approaches; however, they deliver limited frame rates that
do not meet the real-time requirement [6,14]. Application-specific
hardware designs can provide much higher performance. Unfortu-
nately, a custom design is expensive since even a minor change re-
quires the device to be re-fabricated. Reconfigurable devices, such
as Field Programmable Gate Arrays (FPGAs), are more cost effective
since the programmer may reconfigure the device in software yet
still realize hardware performance [2,1]. However, even an FPGA
design requires a significant engineering effort, due to the com-
plexity of correctly synthesizing a register-transfer level design
that meets area and timing constraints.

Recently, it has been shown that implementing the Viola-Jones
face detection algorithm on Graphics Processing Units (GPUs) is
a more cost effective solution than FPGAs [7,18,8]. In particular,
the Single Instruction Multiple Data (SIMD) execution model

* Corresponding author.
E-mail addresses: nnguyenthanh@eng.ucsd.edu, nnguyent@ucsd.edu
(T. Nguyen), dhefenbr@ucsd.edu (D. Hefenbrock), jkoberg@ucsd.edu (J. Oberg),
kastner@ucsd.edu (R. Kastner), baden@ucsd.edu (S. Baden).

0743-7315/$ - see front matter © 2013 Elsevier Inc. All rights reserved.
doi:10.1016/j,jpdc.2013.01.012

exploited on the streaming processors of a GPU supports a
large amount of data parallelism inherent to the Viola—Jones
algorithm. Once SIMD instructions can run efficiently, GPUs deliver
better performance than conventional MIMD (Multiple Instruction
Multiple Data) multicore processors given a particular power and
density budget [9]. In terms of programmability, the high level
APIs supported by GPU programming environments, e.g. CUDA and
OpenCL, afford greater flexibility than that of dedicated devices
and FPGAs. However, the GPU programming model is complicated
by the need to be aware of the underlying thread scheduler. For
example, CUDA groups scalar threads into warps, each is a set of 32
threads executing identical instructions on a SIMD pipeline. Thus,
control-flow divergence within a warp should be avoided since it
serializes thread execution, drastically penalizing performance.

The Viola-Jones face detection algorithm exhibits parallelism
in image regions called search windows. Thus, threads can
concurrently operate on these windows independently [18,7]. To
avoid control-flow divergence, each thread is statically assigned
a fixed window to work on. Unfortunately, this straightforward
design does not adequately support the irregular load distribution
of the Viola-Jones face detection algorithm. In particular, the
amount of work greatly varies among threads, since windows
that are not likely to have a face require much less computation
time than the others. The result is a heavy load imbalance among
threads that are co-scheduled to execute SIMD instructions. Also,
many virtualized threads are spawned to work for very short
durations, introducing heavy scheduling overheads.

In this paper, we present a dynamic, software-managed thread
allocation strategy based on warp scheduling that we call dynamic
warp scheduling. This approach dynamically assigns windows in

http://dx.doi.org/10.1016/j.jpdc.2013.01.012
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jpdc.2013.01.012&domain=pdf
mailto:nnguyenthanh@eng.ucsd.edu
mailto:nnguyent@ucsd.edu
mailto:dhefenbr@ucsd.edu
mailto:jkoberg@ucsd.edu
mailto:kastner@ucsd.edu
mailto:baden@ucsd.edu
http://dx.doi.org/10.1016/j.jpdc.2013.01.012

678 T. Nguyen et al. /]. Parallel Distrib. Comput. 73 (2013) 677-685

units of a warp. Threads within a warp that do not find a face in
a window can be reused to work on another window. This design
offers three important advantages over the static approach. First,
it eliminates load imbalance by dynamically distributing windows
to available computing resources. Second, it avoids control-flow
divergence by letting threads within a warp work on common
windows in lockstep. Third, it significantly reduces the cost of
creating, switching, and terminating threads since it uses a smaller
number of reusable threads.

We implemented the dynamic warp scheduling approach
with the CUDA programming model on NVIDIA GPU platforms,
though we believe that this technique is also applicable to similar
programming models such as OpenCL on other SIMD architectures
such as AMD Radeon GPUs. Experimental results demonstrated
that the dynamic warp scheduling design greatly outperforms the
static thread scheduling approach. In particular, on single NVIDIA
Tesla C1060 and C2050 GPUs, the dynamic warp scheduling
variant is, respectively, 3.1 and 2.6 times faster than an optimized
implementation of the static approach.

We improved detection throughput still further by running
with multiple devices, each located on a different host, that
communicate by passing messages. With 5 Fermi GPUs, our
implementation realizes a 4.6 times speedup, and runs at 95.6 FPS.
These results include the cost to send the initial data to the device,
to copy the detected faces back to the host, and to gather the partial
results to the root host node.

The remainder of this paper proceeds as follows. Section 2
presents prior work in accelerating face and object detection. Sec-
tion 3 describes the Viola-Jones Face Detection algorithm. In Sec-
tion 4 we briefly present the GPU architecture, and we analyze
different approaches to parallelize the algorithm. We provide de-
tails of our GPU implementations in Section 5. Section 6 compares
the results of different implementations. Finally, Section 7 con-
cludes the paper.

2. Related work

Conventional multicore implementations of the Viola-Jones
face detection algorithm obtain limited frame rates: 1.78 FPS
with OpenCV 1.1 on VGA image sizes [6]. Much work has been
done to increase performance through an application specific
hardware design. Theocharides et al. [19] presented an ASIC
architecture that heavily exploits parallelism of the AdaBoost face
recognition technique by parallelizing accesses of image data. They
demonstrated a computation rate of 2 FPS but the image sizes
were unknown. Wei et al. [23] presented a FPGA architecture
that simulates only a small section of the entire algorithm. This
simulation achieved rates up to 15 FPS for small images (120 x
120). Nair et al. [11] developed a people detection embedded
system using a softcore processor from Xilinx called Microblaze
and achieved about 2.5 FPS for images of size 216 x 288. Gao
et al. [5] proposed a FPGA design focused on feature classifier
calculation. In this system, the host handles display and necessary
pre-processing; the entire design was not implemented on a FPGA.
The frame rate was 98 FPS on images of size 256 x 192. Cho
et al. [2] proposed an architecture that performed all aspects
of the algorithm on the FPGA, using special frame grabbers and
buffers to accelerate the calculations. This hardware design, even
with the serial portions of the implementation, is substantially
faster than conventional multicore processor implementations,
operating at 6.55 FPS for VGA images, versus 0.31 FPS for single core
implementations [2]. This particular implementation computed 3
features in parallel. Most recent highly parallelized versions on
FPGAs can achieve up to 16.08 FPS [1] by calculating up to 8 feature
classifiers in parallel.

Table 1

Previous accelerated versions of the Viola-Jones algorithm.
Design/Author Image size FPS
[19] Unknown 52.00
[23] 120 x 120 15.00
[11] 216 x 288 2.50
[5] 256 x 192 98.00
[2] 640 x 480 6.55
[1] 640 x 480 16.08
[6] 627 x 441 4.30
[71 640 x 480 15.02
[18] 640 x 480 46.00
[8] 696 x 510 10.80

With the advent of GPU computing, the face detector has been
accelerated significantly. Harvey reported a face detection rate of
2.8 FPS on a single NVIDIA GTX 285 GPU and 4.3 FPS on 2 NVIDIA
GTX 295 GPUs with VGA sized images [6]. In previous work [7], we
presented a multi-GPU implementation that achieved 15.02 FPS
on 4 T C1060 GPUs using static thread scheduling. Sharma et al.
realized 46 FPS on a GTX285 [18].

Table 1 summarizes the performance of all designs cited in
this paper. There are two difficulties in comparing the designs in
Table 1. First, not all the designs work with VGA images. Since
the processing rate roughly scales linearly with the number of
image pixels, many of the rates would in fact be far lower if they
could be applied to VGA images. Second, not all results were based
on the same serial face detection kernel. The performance of the
Viola-Jones face detection algorithm depends on the number of
feature classifiers, the number of cascades, the number of scale
factors, and the overlapping density of search windows in the
base scale factor. For example, Sharma et al.’s 46 FPS frame rate
was obtained with the help of a kernel that made simplifying
assumptions to reduce the operation count on a single core. The
kernel used in an OpenCV implementation [14] has a number of
configuration parameters that can be tuned to improve the base
rate of the serial kernel. By default, the OpenCV implementation
discards the smallest window scale (20 x 20), speeding up the
computation considerably. There are additional configurations that
allow larger scaling factors to be used (resulting in fewer search
windows) or skip adjacent windows if a face is not found in
the current search window. Both of these variations speed up
the algorithm at a cost of introducing errors. By comparison our
implementation is based on the worst case and performs all
computations of the algorithm without taking shortcuts.

All previous GPU implementations of Viola-Jones employed a
static schema to assign detection work to CUDA threads. In this
paper, we show that this approach can lead to a serious load
imbalance due to the stage cascade. To evaluate our dynamic
design, we used an optimized implementation of the static
approach as the baseline.

Before discussing the details of our dynamic load balancing
design, we next discuss the salient details of the Viola-Jones
algorithm. The next section describes how the algorithm typically
operates on serial software platforms.

3. The face detection algorithm

At a high level, the Viola—Jones face detection algorithm scans
an image with a window looking for features of a human face. If
enough of these features are found, then the particular window
of the image is determined to be a face. To account for different
sized faces, the window is scaled and the process is repeated. Each
window scale progresses through the algorithm independently
of the other scales. To reduce the number of features that each
window needs to check, the window passes through a number
of different stages. Early stages have fewer features to check and

T. Nguyen et al. / J. Parallel Distrib. Comput. 73 (2013) 677-685 679

Fig. 1. Example of a simple feature: a person’s forehead is lighter than their eyes.
This is an example of a 2 rectangle feature.

are easier to pass whereas later stages have more features and
are more selective. At each stage, the calculations of features for
that stage are accumulated and, if this accumulated value does not
pass the threshold, the stage is failed and the current window is
considered to not contain a face. In this way, windows that look
nothing like a face will not be overly scrutinized.

To more thoroughly understand the algorithm, some specifics
need to be defined including features, a special representation of
the image known as the Integral Image, and a stage cascade.

3.1. Features

Haar feature classifiers are used in the Viola-Jones algorithm
to detect particular features of a face. Haar features are commonly
used in the computer vision community to classify the intensity
of pixels of a region in a tractable manner. The Haar features are
represented as rectangles (rectangle regions of the image) and the
particular classifiers we use are composed of 2 and 3 rectangle
features. Windows are continuously scanned for these features,
with the number of features depending on the particular stage the
window is in. Fig. 1 shows a simple example of a Haar feature. For
more background on the construction of these features, we refer
readers to [15] and the original work by Viola and Jones [21].

To compute the value of a feature, we first compute the sum of
all pixels contained in each of the rectangles making up the feature.
Once calculated, each sum is multiplied by the corresponding
rectangle’s weight and the result is accumulated for all the
rectangles in the feature. (The weights and sizes of the rectangles
for each feature are obtained from OpenCV training data [22,14].)
If the accumulated value meets a threshold constraint, then the
feature has been found in the window under consideration. As the
window is scaled, the number of windows drastically decreases.
Since each window searches for the same features and larger
scaling factors have fewer windows, the total work within a scale
factor decreases. The result is a workload imbalance between
scales that we discuss further in Section 4.3.

3.2. The Integral Image

To avoid computing rectangle sums redundantly, we compute
the Integral Image (II) as a pre-processing step. The Integral Image
atlocation (x, y) contains the sum of the pixels above and to the left
of (x, y). Eq. (1) shows how the Integral Image is defined, where I
represents the Integral Image and Image is the original Image.

l(x,y) = Image(x,y) +1(x — 1,y)
+Hx,y—1)—lIx—1,y—1). (1)

II(x — 1,y — 1) is subtracted off since it already included in the
sums II(x — 1, y) and II(x, y — 1). This is shown in Fig. 2.

Using the Integral Image, features can be calculated in constant
time since we can compute the sum of the pixels in the constituent
rectangles in constant time. Fig. 3 shows how this process takes
place.

11| 2 1| 2] 3
1|11 |:> 2|l a]e
11| 2 3 (6] o9

Fig. 2. A3 x 3image and its corresponding Integral Image.

Fig. 3. Method of calculating the value of a feature using the Integral Image.

Window Pass| Pass Pass Pass Face
—

Stage 0 > Stage 1 > Stage 2 > 0o > Stage 21 >

Fail Fail Fail Fail

Fig. 4. Windows enter the algorithm at stage 0 and propagate through the stages.
Earlier stages are passed more easily than later stages, which are more selective.

Specifically, if the sum of the pixels in rectangle D is required,
we perform the following calculation using the Integral Images at
the four corners:

Sump = I(L4) — II(L3) — II(L2) + II(L1).

We add back L1 because II(L1) has been subtracted off twice; L3
and L2 both contain the region covered by L1. Although the features
can be calculated in constant time, excessive work would be done if
a particular window region looks nothing like a face. The algorithm
uses over 2000 features and it would be inefficient to calculate all of
these features unnecessarily. To avoid this problem the algorithm
uses a stage cascade to divide up the number of features and
eliminate windows quickly when it has been determined that they
do not contain a face.

3.3. The stage cascade

The stage cascade keeps windows that look nothing like a face
from being analyzed unnecessarily. It labels a window as “not a
face” when the window fails a particular stage. The implementa-
tion we use contains 22 stages with early stages containing fewer
features and later stages containing more detailed features. In gen-
eral, earlier stages are passed more frequently with later stages
being more selective. Thus, the amount of work at each particular
stage varies greatly. This process is shown in Fig. 4.

In Fig. 4, it can be seen that a window enters the stage cascade
at stage 0. If all the features of this particular stage are found
in the window, the stage is said to have passed. The window is
propagated to the next stage and is again scanned for features. If
the window passes all stages, then it is said to be a face and the
next window is then processed in the same manner.

The Viola-Jones face detection algorithm is computationally
intensive. It entails computing thousands of features over many
window scales, all of which are independent. Such a workload is
inherently well-suited to SIMD architecture.

680 T. Nguyen et al. /]. Parallel Distrib. Comput. 73 (2013) 677-685

SIMD Engine 1 SIMD Engine n

| Processor core 1 | | Processor core 1 |

| Processor core 2 | | Processor core 2 |

| Processor core k | | Processor core k |

Scratchpad) Scratchpad .
Memory & L1 Register Memory & L1 Register
File File
Cache Cache

| Uniform L2 Cache |

| Device Memory |

Fig. 5. Simplified GPU architecture.
4. GPU platform and parallel approaches

In this section, we present the GPU hardware architecture
and CUDA programming challenges associated with the SIMD
execution model. We then analyze promising mappings of the
Viola-Jones face detection parallelism to processing elements of
a GPU.

4.1. GPU architecture and the CUDA programming model

Fig. 5 shows a simplified view of a generic GPU (AKA device),
which applies to the NVIDIA GPU and the AMD Radeon. The
device comprises many simple processor cores organized into
vector processors. To conserve power and space, GPUs have fewer
functional units per core and operate at a slower clock rate
compared to conventional multicore processors. For example,
an NVIDIA Tesla C2050 GPU consists of 448 processor cores
running at 1.15 GHz, but comprises only 448 fused multiply-
adders, 448 multipliers and other arithmetic units in a few
special function units. The 448 cores are organized into 14
SIMD engines called Streaming Multiprocessors (SMs). Each SM
executes SIMD instructions with operands read from the register
file. A GPU includes a cache hierarchy to fill the latency gap
between register and device memory. Each SIMD engine in modern
GPU architectures may include a software-managed scratchpad
memory (e.g. shared memory in NVIDIA Tesla), a configurable or
fixed L1 cache (NVIDIA Fermi Tesla and AMD Radeon, respectively),
and an shared L2 cache that may not be configured (NVIDIA Fermi
Tesla).

We programmed with CUDA [12], an extension to the C
programming language. A CUDA program executes sequences of
kernels, functions that run under the Single Instruction Multiple
Threads (SIMT) model. Each CUDA kernel runs a virtualized set of
threads which are hierarchically organized into three-dimensional
thread blocks. The programming model conceptually partitions
these thread blocks into a two-dimensional grid which can be
seen in the left side of Fig. 6. CUDA dynamically assigns each
thread block to a single streaming multiprocessor. A thread block
is further broken down into a collection of multiple warps, each
a group of scalar threads that execute in SIMD fashion (right side
of Fig. 6). This implicit SIMD model can reduce the programming
complexity and improve the code maintainability. However, this
model may limit the instruction throughput on SIMD vector units
since warp formation is statically determined.

CUDA dictates a couple of principles that must be adhered to
in order to fully leverage the GPU resources. Although many of
those principles have been applied in prior implementations of the
Viola-Jones face detection algorithm [7,18], e.g. avoiding branches
and using shared memory to store frequently accessed data, the
performance issue associated with the implicit SIMD execution
model has not been resolved. We next discuss the challenges and
promising solutions for the issue.

Host Device | SM instruction scheduler |
Grid 0 L1l L1111l
Warp 0, instruction m
Block | Block [Block | Block | Block T
KernelO 0,0] 010,21 0,3)] (0,4 VYVYVY = VYVYVYY

L1111
Warp 3, instruction n

I |
222222 12222

1 i Ll

Block | Block | Block]Block | Block L1111

(1,0 (1,1) | (1,9] (1,3) | (@2}

Grid 1

Block (1,3)

Kernell Block]Biod Warp 0, instruction p |
00 0] VYVYVY - vVVvhY
\ ']
32 threads performing
CUDA threads SIMD instructions

Fig. 6. CUDA thread organization and execution.

I
I [
H N .:.

(b) Features.

(a) Windows. (a) Scales.

Fig. 7. Approaches to parallelization.
4.2. Challenges associated with the implicit SIMD model

Due the heavy penalty incurred by branch serialization, with all
branch paths taken, branching should be reduced to a minimum.
This constraint limits the work distribution design in many
applications to a static approach. Some warp reconvergence
mechanisms at the hardware level have been proposed to mitigate
the impact of branching, which occurs quite often in scientific
applications. For example, Skadron et al. presented a dynamic warp
subdivision approach that can break warps into smaller subsets
on branching and reconverge them by grouping threads running
identical instructions [9]. However, the overhead of subdividing
and reconverging on the fly has not been resolved. In this paper,
we present a software-based thread scheduling mechanism that
effectively handles the warp serialization problem without the
need for hardware support for warp reconvergence. Our technique
not only applies to high-end GPUs, but also works for other
SIMD architectures that are based on scalar thread scheduling,
i.e. implicit SIMD. Before discussing our scheduling approach, we
next present different mappings of the face detection parallelism
to processor cores of a GPU.

4.3. Parallelization strategies

The Viola-Jones face detection algorithm described in Sec-
tion 3 contains several computational tasks. We examine three ap-
proaches for parallelizing those tasks and discuss how well each
approach suits the requirements of current GPU hardware. Fig. 7
depicts the three approaches conceptually.

4.3.1. Parallelize across windows

The first solution is to run the algorithm on multiple search
windows simultaneously. This is a promising approach because
it effectively divides the search space. However, load imbalance
can occur among threads due to stage cascade. As previously
mentioned, threads that do not find a face will fail quickly, whereas
the others need to perform many more calculations on windows
that contain a face.

4.3.2. Parallelize within a window

In this approach, each thread computes all features of all
stages for a particular window simultaneously. Unfortunately, this
approach may force threads to perform wasteful calculations.

T. Nguyen et al. / J. Parallel Distrib. Comput. 73 (2013) 677-685 681

Specifically, threads working on windows that would otherwise
fail in earlier stages will perform calculations for later stages
unnecessarily.

4.3.3. Parallelize by scale

Parallelizing different window scaling factors is another ap-
proach, and allows threads to work on different size windows at
the same time. However, the search windows for larger scaling fac-
tors are much sparser than those of the smaller scaling factors, re-
sulting in fewer windows for larger scaling factors. Since windows
compute the same number of features, larger scaling factors sim-
ply have fewer windows and thus fewer features to compute. As a
result, this approach would assign much more work to the smaller
scaling factors resulting in an unbalanced distribution.

4.4. Static versus dynamic work-partitioning schemes

An approach that parallelizes across windows appears to be the
most promising approach for exploiting the large amounts of data
parallelism present in the Viola-Jones algorithm. Therefore, we
will use window partitioning to illustrate the difference between
the static and dynamic work-partitioning schemes.

4.4.1. Static work partitioning

Static work partitioning is a common scheme used to distribute
windows to threads and this is the technique we adopted in our
past work on accelerating the Viola-Jones algorithm [7]. Since
each thread is assigned a fixed window, the advantage of static
partitioning is that it can avoid thread divergence, since all threads
perform the same instructions. Unfortunately, a significant load
imbalance will occur among threads. Recall that threads within a
warp must execute the same instruction at the same time. As a
consequence, threads that failed earlier due to the stage cascade
need to execute NOP instructions while the others are running the
face detector. We can remedy this situation by statically assigning
each window to a warp. However, the window search space is
huge, resulting in a large number of spawned threads. In addition,
many threads live for a only a short time since the windows
that they work on do not contain a face. As a consequence, the
small amount useful computation cannot amortize the overheads
of creating, operating, and terminating threads.

4.4.2. Dynamic work partitioning

A dynamic-work partitioning scheme, on the other hand, as-
signs windows dynamically based on thread availability. Therefore,
the load imbalance among threads can be fully eliminated. This ap-
proach, however, results in a considerable control-flow divergence
among threads of a warp that may be working on different phases
of the algorithm simultaneously. Such thread divergence serializes
the warp execution severely, such that only one instruction is ex-
ecuted at a time.

4.4.3. Dynamic work partitioning with warp scheduling

A promising solution to the thread divergence problem is to
dynamically assign windows in units of a warp. In particular, warps
are workers that assigned themselves windows until there are no
more unchecked windows. Thus, we can keep all warps busy and
the workload imbalance small by spawning a small number of
warps compared to the available windows. Another advantage of
this approach, therefore, is to reduce warp scheduling overhead.
Recall that each CUDA warp consists of 32 threads running in
lockstep. Thus, we can then employ these threads to parallelize
another computational task within the face detection kernel,
e.g., the feature calculation. This hierarchical approach enables us
to exploit finer-grained parallelism in the Viola-Jones algorithm.
We call our work partitioning scheme dynamic warp scheduling. We
will discuss the implementation details of the static and dynamic
warp scheduling in the next section.

o00eooo0o0

@ @ O E Atomically update
® OOOOEO o0 leoe@ \:/whenafacelsfound
oo ofojlee oo @000 [x=2 [v=1 [scale] ... |
00000000 (000 Global face list
0000|0000 000
O O O O O Block (0,0) ; Block (0,1)

Fig. 8. Data partitioning: each thread block covers a region of pixels, containing
multiple overlapping windows. Each window appears as a square outline.

Table 2
Scaling factors and resulting grid sizes.

Kernel launch Scale factor Grid size Number of blocks
1 1.00 40 x 30 1200
2 1.20 40 x 30 1200
3 1.44 40 x 30 1200
4 173 40 x 30 1200
5 2.07 20 x 15 300
14 10.70 4x3 12
18 22.19 1x1 1

5. Implementation

We compare four different implementation strategies, includ-
ing static and dynamic scheduling, enhancing reuse via shared
memory and a multi-GPU work assignment. We refer to the static
work partitioning strategy as static thread scheduling and the dy-
namic work strategy as dynamic warp scheduling.

5.1. Static thread scheduling with a basic implementation

The static thread scheduling scheme employs a fixed data par-
titioning as shown in the left side of Fig. 8. The image is di-
vided into rectangular regions, each conceptually governed by a
CUDA thread block. Each thread in a thread block works on exactly
one window and scans through all stages and all features of each
stage until either it terminates because a stage threshold is not met,
or it successfully passes the last stage. In the latter case, the thread
considers the window as a face, which it adds to the global face list
residing in device memory (right side of Fig. 8). The thread uses
atomic operations to register the coordinates and the scale of the
detected face.

It can be seen from Fig. 8 that windows may overlap. As a result,
in the worst case, the number of windows can equal the number
of pixels in the image (with VGA, there are 640 x 480 pixels). As
windows scale up, the density of the window overlap diminishes,
resulting in a drop in the number of required threads. We tried out
different thread block sizes and found a 16 x 16 thread block to
be optimal. At the initial scale factor, the number of thread blocks
is, therefore, 640 x 480 divided by 16 x 16 = 40 x 30. However,
as the scale factor grows, fewer threads are needed, resulting in a
smaller number of thread blocks. Table 2 shows scale factors and
the resultant grid sizes.

Since the grid size decreases, we have to re-launch the CUDA
kernel for each scale factor, adjusting the grid size accordingly.
The downside of this parallelization strategy becomes apparent:
the total number of thread blocks drops from an initial 1200 to a
final value of 1, reducing the parallelism available to hide memory
latency and also leaving some SMs un-utilized. For example, at a
scale factor of 14, there are more SMs available on the GPU than
there are thread blocks. However, our results indicate that later
scales consume only a small fraction of the total runtime which
somewhat mitigates this problem.

682 T. Nguyen et al. /]. Parallel Distrib. Comput. 73 (2013) 677-685

Feature 2

|W16|‘”n|w22| | | | |

Feature 1

Iwul‘”nl | |

Global memory ...

Shared memory [walwe | T T TJwelwalwa] [[T 1

Fig. 9. Threads t; .. .t, loading features from global to shared memory.

So far, the implementation we have presented is straightfor-
ward and does not fully harness the capabilities of the GPU. All
data — Integral Image and features — resides in slow global mem-
ory, which needs to be loaded for every search window, resulting
in suboptimal performance. One way to better utilize the GPU is to
move frequently accessed data into SM’s shared memory. We next
explain how we optimized the basic implementation by loading
features onto shared memory instead.

5.2. Static thread scheduling with shared memory

Due to the way that the GPU implementation accesses and
stores features, we can use shared memory to cache the features,
reducing the amount of global memory accesses considerably.
The rationale is as follows. First, each thread accesses features
sequentially, and all threads in a thread block access the same
features in the same order. Second, since very few threads will
actually reach the more selective later stages, the earlier stages
account for the majority of the accesses to feature data. Hence, they
generate most of the loads from global memory. Lastly, the total
amount of storage consumed by all features is 50 kB—exceeding
the capacity of shared memory—but no stage consumes more than
3 kB.

With these characteristics in mind, our shared memory imple-
mentation loads all features of a stage into shared memory before
starting to work on the stage. This scheme greatly improves fea-
ture access times through reuse because once loaded into shared
memory, all 256 (16 x 16) threads in the thread block can subse-
quently access the feature without having to go to global memory.
Furthermore, all threads that execute in parallel can load features
simultaneously, using the broadcast capability of shared memory
banks [12]. Once a stage completes, the cached data is no longer
needed and we can load the features for the next stage.

As many threads as possible within a thread block participate
in loading the features of a stage. All features in a stage are stored
in a contiguous block of global memory. Since multiple contiguous
32 or 64 word memory writes to shared memory can be coalesced
into a single write, we transfer features in a word-by-word fashion
(from each thread) into shared memory. As depicted in Fig. 9, each
thread loads roughly % words of the total feature data.
This way, a good portion of the latency in loading a feature can be
hidden.

5.3. Dynamic warp scheduling implementation

As discussed in Section 4.4, due to stage cascade, there is a
significant load imbalance among threads within the same warp.
Recall that the face detection process on a search window will
stop early when the likelihood of detecting a face becomes too
small. However, because the 32 threads in a warp must execute
the same instruction (SIMD), any threads that complete quickly
must wait for the slower ones to finish. In the worst case, 31
threads could fail early while the remaining one thread eventually
finds a face. To avoid this problem, we devised and implemented a
dynamic resource allocation schema that we called dynamic warp
scheduling. We used a work pool model. Specifically, windows are
dynamically assigned to a set of workers; each worker comprises
32 threads of a warp. We set the number of threads per CUDA

thread block to 128, a value sufficiently high to hide device
memory latency. The details of this implementation scheme are as
follows.

Each CUDA thread block holds a queue in shared memory.
All windows assigned to a thread block are organized in the
corresponding queue so that when a warp of the thread block
finishes its current window it can pick up the next one from the
queue to work on (left-up corner of Fig. 10(a)). The implementation
for the window queue relies on a counter stored in shared memory.
Each thread block maintains its own counter. When a warp
requires a new window for processing, it atomically updates the
counter for its enclosing thread block using atomicAdd, which will
yield the number of the next window for processing. This process
continues until the counter exceeds the number of windows.

To parallelize face detection within a single window, we
parallelize across features. This strategy is inherently different
from the static approach, which parallelizes across windows. In
dynamic scheduling, each warp must pass through the stages
of the cascade. At each stage the warp accumulates the feature
calculation to determine whether the window meets the stage
threshold. If all stages pass, the warp has detected a face. We let
each thread of a warp compute a part of the stage sum, called
partial stage sum. In order to determine the total stage sum, all
partial stage sums need to be added up across all threads of the
warp. This is done using a parallel reduction in shared memory as
shown in Fig. 10(b).

In the dynamic warp scheduling implementation, we cannot
use the approach taken by the static scheduling variant to store
features in shared memory. The reason is that different warps
may access different stages at the same time. We would like to
load all the features of all stages into shared memory; but this
is not possible because shared memory does not have sufficient
capacity to store all the features. However, as noted earlier, the
earlier stages contribute most of the loads of feature data from
global memory. Thus, with dynamic warp scheduling we used
a pre-fetching strategy for buffering data in shared memory: we
store feature data of the first K stages in shared memory. During
the first K stages, threads access feature data in shared memory;
for later stages they access global memory to load the required
features. Since most windows fail in earlier stages, pre-fetching
the features of a few stages is sufficient. In fact, perhaps just one
thread per block will reach stage K + 1, so using shared memory is
not important for later stages. Note that we have to access global
memory at least once per feature. We determined experimentally
that K = 7 was sufficient, though we were able to fit up to 15 stages
in shared memory. We noted no significant difference in running
times for these different values of 7 < K < 15.

5.4. Multiple-GPU implementation

The Viola-Jones algorithm uses multiple window scales to
detect different sized faces. As mentioned in Section 4.3, it is not
beneficial to use threads to work on different scales due to poor
locality. The face detector can nevertheless work independently
on each window scale. Therefore, different window scales can
be assigned to different GPUs. All of our implementations can be
benefit from this strategy.

Based on our experiments, we noted that the time distribution
depends heavily on the value of the scale rather than the number
of faces in the image. Thus, we can statically assign the window
scales to different GPUs such that the workload is balanced.

We parallelized our computations across multiple GPUs by
running one host process for each GPU. We implemented this
strategy with the Message Passing Interface (MPI) [10]. Each MPI
process runs on the host and executes the GPU Kernel on the
device. The host retrieves results from the device and then sends
the results to the root (host) node. Since larger window scales
require less work than smaller ones, some GPUs have to deal with
more window scales than others.

T. Nguyen et al. / J. Parallel Distrib. Comput. 73 (2013) 677-685 683

Window Queue

I

LIl 111 N

Features in a stage

ol LER Ll

/LI | 32 threads in a warp |

WarpO

Warp 1 | VvV vV

YVVVYYV ... YYVVYVY

T T

(a) Dynamic warp scheduling.

W ==

: Stage sum reduction

(b) Parallelize features.

Fig. 10. Left: dynamically assign windows to warps. Right: parallel features calculation in a stage.

FACES DETECTED: 64
0.X=76, Y=186, 5=2.07
1.X=78, Y=186, 5=2.07
2.X=80, Y=186, 5=2.07
3.X=74, Y=188, 5=2.07
4.%=76, Y=188, 5=2.07
5.X=78, Y=188, 5=2.07
6.X=80, Y=188, $=2.07
7.X=74, Y=190, 5=2.07
8.X=76, Y=190, 5=2.07
9. X=78, Y=190, 5=2.07
10. X=80, Y=190, $=2.07
11.X=516, Y=194, 5=2.07
12.X=518, Y=194, 5=2.07
13.X=514, Y=196, 5=2.07
14.X=516, Y=196, 5=2.07

(a) An image in the testing set with detected faces. (b) Faces.

Fig. 11. Applying the face detector in an image of the testing set.
6. Experimental results

6.1. Testbed

Our experimental testbed was a cluster, named Dirac, located
at the National Energy Research Scientific Computing Center
(NERSC). Dirac includes NVIDIA Tesla GPUs connected with QDR
InfiniBand switches. 44 nodes of Dirac are equipped with a C2050
(Fermi, device capability 2.0), and 4 other nodes consist of a C1060
(device capability 1.3). We used both types of devices in our
experiments. The SMs on the C2050 contain 32 cores and the device
memory bandwidth is 144 GB/sec. The SMs on the C1060 contain
8 cores and device memory bandwidth is 102 GB/s. Each Dirac
node also contains 2 Intel E5530 Quad-core Nehalem processors
(2.4 GHz, 8 MB cache) sharing 24 GB host memory. For further
details about Dirac, see system specifications [4]. We used version
4.0 of the CUDA SDK, and all CUDA codes were compiled withnvcc
version 4.0. C/C++codes were compiled with PGI's C compiler,
pgcc version 10.8. Optimization-03 was enabled when using both
compilers. MPI codes were compiled by openMPT 1.4.2.

We verified correctness by comparing the coordinates and
scales of the detected faces with the results of a serial reference
implementation [2]. All tests and measurements were run on a
collection of 9 VGA black-and-white images containing between
1 and 20 faces [2,7]. Fig. 11 displays a verification using an image
from the test collection. Note that each face usually gets detected
several times by the algorithm due to overlap of search windows
and different scaling factors.

6.2. Results

6.2.1. Single-GPU implementation

Since the speed of the face detector depends only slightly on
the input image, we report the average of the frame rate over
several runs. Fig. 12 compares the performance of our different
implementations. The results are presented for both the C2050

25

€1060 20.91
20
C2050
n 15
o
(N8

10

Static thread scheduling -
GPU basic

Static thread scheduling -
Shared memory

Dynamic warp scheduling

Fig. 12. Performance of implementations on the different tested architectures.
C1060 and C2050 are Tesla GPUs using the pre- and post-Fermi architectures
respectively.

and C1060, and grouped into the basic GPU implementation of
the static scheduling design (static thread scheduling-GPU basic),
the improved variant of the static approach using shared memory
for features (static thread scheduling-shared memory), and the
implementation of the dynamic warp scheduling design (dynamic
warp scheduling). The results include the time required for
computing the Integral Image and the cost to send data to the device
as well as to copy the detected faces back to the host.

Since our objective is to compare dynamic vs static thread
scheduling, we used the most heavily optimized variant of each
approach. For static thread scheduling, we cache features using
shared memory, which enables an additional improvement that
we will discuss later on. For the dynamic approach, we used
warp-based scheduling to take advantage of SIMD execution;
we also used shared memory to pre-fetch a portion of the
features, as discussed previously. Fig. 12 shows that dynamic
scheduling delivers a strong improvement in performance over the
static approach. Specifically, the dynamic warp scheduling variant
operates at 11.11 FPS and 20.91 FPS on the C1060 and C2050,
respectively, corresponding to a 3.1 and 2.6 times speedup over
the static thread scheduling-shared memory variant.

For static thread scheduling, we note that shared memory
caching realized a significant performance benefit on the C1060-
24%—but only a modest benefit-2%—on the Fermi device. We
attribute this difference to the ability of the Fermi L1 and L2 caches
to capture the locality inherent to the simple memory access
patterns of the Viola-Jones algorithm. Unat et al. [20] have also
observed this phenomenon on stencil methods.

6.2.2. Multi-GPU implementation

We further parallelized our dynamic warp scheduling variant,
our fastest variant, using multiple C2050 devices. Fig. 13 shows
the performance of this multi-GPU implementation as the number
of devices varies. It can be seen that the detection rate increases
steadily on up to 5 GPUs. At 6 GPUs, performance saturates at 98.2
FPS. This is not a result of the use of a static distribution, but rather
an issue concerning the computation’s critical path. Although

684 T. Nguyen et al. /]. Parallel Distrib. Comput. 73 (2013) 677-685

FPS
= N w B w
o o o o o

90
80
70
60
3 I I
1 2 3 4 5 6 7 8

GPU count

Fig. 13. Dynamic warp scheduling on multiple C2050 GPUs.

[
o

7 7 B Static-shared memory

N
[l

72 Dynamic warp scheduling

N
o

w W
S«

W

N
« o
L

=
o

SM Occupancy (warps/cycle)
N
G

5 6 7 8 9 10 11 12 13 14 15 16 17 18
Scale factor

(a) Streaming multiprocessor utilization on C2050.

o w

25
~‘
\r,f‘\.
\\

5% 90% \

‘--—*‘
\‘—"‘t--i.._*__
—
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Scale factor

N
o

i
@

% Computation
=
o

e}

i e S
— T

(b) Work distribution over scale factors.

Fig. 14. Performance analysis on single-GPU implementations.

the scaling factors are independent, smaller scaling factors have
more windows and thus more features to compute. Thus, when
a GPU is assigned the smallest window scale factor it obtains
the largest amount of work of all scale factors. We consider the
5-GPU configuration to be the sweet spot, where the speedup-
efficiency tradeoff reaches its peak. At this point, the multi-GPU
implementation realizes a good speedup of 4.6, and runs at 95.6
FPS.

6.3. Performance analysis

6.3.1. Single GPU implementation

To determine why the dynamic warp scheduling implementa-
tion better utilizes the hardware resources of a single GPU, we an-
alyzed the performance information collected by computeprof, an
NVIDIA visual profiler for GPU-based programs [13].

As explained in Section 5.1, we re-launch our GPU kernel for
each search window scale factor, and later scale factors may under-
utilize the GPU hardware. Thus, we investigated device occupancy
and work distribution at different scale factors. The bar chart in
Fig. 14(a) shows the SM occupancy (active warps/active cycle), and
the line chart in Fig. 14(b) presents the percentage of work of each
scale factor. We show quantities averaged over the entire image
collection, though we found that these values are very close to
those of each individual image.

BEerulr BGPU2 NGPU3 EGPUA

7 GPuo

miliseconds

ANAANNNRNMNNNNNNN

Image number

Fig. 15. Time distribution when a 5-GPU configuration is used.

We observed that the maximum number of active warps per
active cycle is 48, but sometimes we observed a slightly higher
value, e.g. 50 with scale factors 7 and 9 shown (Fig. 14(a)). It can
be seen from Fig. 14(b) that the first 10 scale factors contribute
a dominant portion of the total computation—more than 90%.
Recall from Section 4.3 that this is a result of larger scaling factors
having fewer windows and thus fewer features to compute. The
workload at these larger scaling factors is much smaller than larger
ones as the results show. This information implies that the SM
occupancy corresponding to the most significant scale factors will
determine overall performance. Revisiting Fig. 14(a), we see that
the dynamic warp scheduling variant always achieves higher SM
occupancy compared to the other variant on the first 10 scale
factors. This explains why this variant is significantly faster than all
other implementations that use a static thread scheduling scheme.

6.3.2. Multi-GPU implementation

We next investigate performance on 5 GPUs—the largest config-
uration that still maintains a good efficiency. Fig. 15 demonstrates
that a static configuration on 5 GPUs works well on the full collec-
tion of 9 images, which have varying numbers of faces and differ-
ent face distributions. It can be seen that the amount of work that
5 GPUs receive is relatively uniform. This explains the high (92%)
parallel efficiency that this implementation achieves on 5 GPUs.

The small loss in efficiency (8%) is not the result of communi-
cation overheads, since the time to gather detected faces to the
root node is small. Rather, the problem is rooted in the static work-
load distribution over multiple GPUs, which cannot perfectly even
out the workload distribution over many different images. Nev-
ertheless, the static distribution is unavoidable since a dynamic
approach is not appropriate where the computation varies over a
wide range among 18 different scale factors and is not known be-
forehand.

7. Conclusion

We have presented dynamic warp scheduling as a means of
maintaining balanced workloads in the Viola-Jones face detection
algorithm on Graphical Processing Units. By avoiding excessive
load imbalance, our dynamic warp scheduling approach reduces
the running time of static thread scheduling by up to a factor of 3.1.
We also parallelized our design on multiple GPUs and realized a 4.6
times speedup on 5 Fermi GPUs. Our combined techniques enabled
a face detection rate of 95.6 FPS on VGA images (640 x 480). In
the future, we plan to implement the Viola-Jones face detection
algorithm on the Intel Xeon Phi coprocessor, which is based on
the MIC (Many Integrated Core) architecture, and compare this
new solution with our current GPU implementations. We are
also interested in testing and extending (if needed) our dynamic
warp scheduling approach on the NVIDIA’s next generation Kepler
GPU. Although this new GPU architecture increases the number
of schedulers in a SM to deal with a 6x increase in core count
per SM, there has been no change in the warp formation. Thus,
load balancing optimization continues playing an important role
in improving the detection rate on the Kepler architecture.

T. Nguyen et al. / J. Parallel Distrib. Comput. 73 (2013) 677-685 685

Acknowledgments

This research began in the Autumn of 2009, as a class project
in CSE 260, Parallel Computation, in the Department of Com-
puter Science and Engineering at the University of California,
San Diego (UCSD) [3]. The code development was performed on
a NVIDIA Tesla system located at UCSD and supported by NSF
DMS/MRI Award 0821816. This research used computation re-
sources of the National Energy Research Scientific Computing
Center (the Dirac GPU cluster), which is supported by the Of-
fice of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231. Tan Nguyen is a fellow of the Viet-
nam Education Foundation (VEF), cohort 2009, and was supported
in part by the VEF. Daniel Hefenbrock was a visiting student
from the Hasso-Plattner-Institute at the University of Potsdam,
Germany. Scott Baden dedicates his portion of the research to the
memory of Paul A. Baden (1938-2009).

References

[1] J. Cho, B. Benson, S. Mirzaei, R. Kastner, Parallelized architecture of multiple
classifiers for face detection, in: ASAP’09: Proceedings of the 2009 20th IEEE
International Conference on Application-specific Systems, Architectures and
Processors, IEEE Computer Society, Washington, DC, USA, 2009, pp. 75-82.

[2] J. Cho, S. Mirzaei, J. Oberg, R. Kastner, Fgpa-based face detection system
using haar classifiers, in: FPGA'09: Proceeding of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, ACM, New York, NY, USA,
2009, pp. 103-112.

[3] CSE 260, Department of Computer Science and Engineering, University of
California, San Diego. [Online]. Available: http://cseweb.ucsd.edu/classes/
fa09/cse260, ?2??.

[4] Dirac, NERSC. [Online]. Available: http://www.nersc.gov/users/computational-
systems/dirac/, ????.

[5] C. Gao, S.-L. Lu, Novel fpga based haar classifier face detection algorithm
acceleration, in: International Conference on Field Programmable Logic and
Applications, 2008. FPL 2008. pp. 373-378.

[6] J.P.Harvey, GPU Acceleration of Object Classification Algorithms Using NVIDIA
CUDA, Master's thesis, Rochester Institute of Technology, Rochester, NY, 2009.

[7] D. Hefenbrock, J. Oberg, N.T.N. Thanh, R. Kastner, S.B. Baden, Accelerating
Viola-Jones face detection to fpga-level using gpus, in: Proceedings of the 2010
18th IEEE Annual International Symposium on Field-Programmable Custom
Computing Machines, FCCM'10, IEEE Computer Society, Washington, DC, USA,
2010, pp. 11-18.

[8] J. Kong, Y. Deng, Gpu accelerated face detection, in: 2010 International
Conference on Intelligent Control and Information Processing, ICICIP,
pp. 584-588.

[9] J. Meng, D. Tarjan, K. Skadron, Dynamic warp subdivision for integrated branch
and memory divergence tolerance, SIGARCH Comput. Archit. News 38 (2010)
235-246.

[10] Message Passing Interface Forum. [Online].

[11] V. Nair, P.-O. Laprise, JJ. Clark, An fpga-based people detection system,
EURASIP J. Appl. Signal Process. 2005 (2005) 1047-1061.

[12] NVIDIA CUDA Programming Guide Version 4.0, NVIDIA, 2011.

[13] NVIDIA Visual Profiler, NVIDIA. [Online]. Available: http://developer.nvidia.

[14] OpenCV, [Online]. Available: http://sourceforge.net/projects/opencvlibrary/,
2272,

[15] C.P. Papageorgiou, M. Oren, T. Poggio, A general framework for object
detection, in: Proceedings of the Sixth International Conference on Computer
Vision.

[16] H.A. Rowley, S. Member, S. Baluja, T. Kanade, Neural network-based face
detection, IEEE Trans. Pattern Anal. Mach. Intell. 20 (1998) 23-38.

[17] H.Schneiderman, A statistical approach to 3d object detection applied to faces
and cars, in: Proceedings IEEE Conference on Computer Vision and Pattern
Recognition CVPR 2000, pp. 746-751.

[18] B. Sharma, R. Thota, N. Vydyanathan, A. Kale, Towards a robust, real-time
face processing system using cuda-enabled gpus, in: 2009 International
Conference on High Performance Computing, HiPC, pp. 368-377.

[19] T. Theocharides, N. Vijaykrishnan, M. Irwin, A parallel architecture for
hardware face detection, in: IEEE Computer Society Annual Symposium on
Emerging VLSI Technologies and Architectures, 2006. vol. 00, pp. 2.

[20] D. Unat, X. Cai, S.B. Baden, Mint: realizing cuda performance in 3d stencil
methods with annotated c, in: Proceedings of the International Conference on
Supercomputing, ICS’11, ACM, 2011, pp. 214-224.

[21] P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple
features, in: Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition CVPR 2001, pp. 511-518.

[22] P. Viola, M. Jones, Robust real-time face detection, IEEE International
Conference on Computer Vision, vol. 2, 2001, p. 747.

[23] Y. Wei, X. Bing, C. Chareonsak, Fpga implementation of adaboost algorithm
for detection of face biometrics, in: 2004 IEEE International Workshop on
Biomedical Circuits and Systems, pp. S1/6-17-20.

Tan Nguyen is a Ph.D. student under supervision of
Dr. Scott Baden from the Department of Computer Sci-
ence and Engineering, University of California, San Diego.
His research interests include massive parallel program-
ming, latency hiding, and automatic source-to-source
transformation. He received his B.S. degree in Computer
Science and Engineering from the Ho Chi Minh City Uni-
versity of Technology, Vietnam. Tan Nguyen is a fellow of
the Vietnam Education Foundation (VEF), cohort 2009.

Daniel Hefenbrock received his B.S. and M.S. degrees in
IT-Systems Engineering from the University of Potsdam,
Germany in 2008 and 2011, respectively. In 2009/2010
he was a visiting graduate student at the Department of
Computer Science and Engineering of the University of
California, San Diego. He currently works at Microsoft as
a Software Development Engineer in the area of cloud
storage technologies.

Jason Oberg received his B.S. degree in Computer
Engineering from the University of California, Santa
Barbara in 2009. He is currently pursuing his Ph.D.
degree, working with Ryan Kastner, from the Department
of Computer Science and Engineering, University of
California, San Diego. His primary research interests
include hardware and embedded system security with the
use of information flow tracking and high-performance
computing specifically using field-programmable gate-
| arrays (FPGAs).

Ryan Kastner received the Ph.D. degree in Computer Sci-
ence from the University of California, Los Angeles. He
is currently a Professor with the Department of Com-
puter Science and Engineering, University of California,
San Diego. His current research interests include many
aspects of embedded computing systems, including re-
configurable architectures, digital signal processing, and
security.

Scott B. Baden is Professor of Computer Science and En-
gineering at the University of California, San Diego, where
he has been a member of the faculty since 1990. He re-
ceived the Ph.D. in Computer Science from the University
of California, Berkeley in 1987. Dr. Baden'’s research is in
high performance and parallel computation. His research
focuses on programming abstractions, domain-specific
translation, performance programming, adaptive and data
centric applications and algorithm design. Dr. Baden
is a member of IEEE (Senior member) and SIAM, and a Se-
nior Fellow at the San Diego Supercomputer Center. He is a
founding member of UCSD’s Computational Science, Mathematics, and Engineering
Program (CSME). Dr Baden is an active proponent of International Education and an
avid photographer.

rs

http://cseweb.ucsd.edu/classes/fa09/cse260
http://cseweb.ucsd.edu/classes/fa09/cse260
http://cseweb.ucsd.edu/classes/fa09/cse260
http://cseweb.ucsd.edu/classes/fa09/cse260
http://cseweb.ucsd.edu/classes/fa09/cse260
http://cseweb.ucsd.edu/classes/fa09/cse260
http://cseweb.ucsd.edu/classes/fa09/cse260
http://www.nersc.gov/users/computational-systems/dirac/
http://www.nersc.gov/users/computational-systems/dirac/
http://www.nersc.gov/users/computational-systems/dirac/
http://www.mpi-forum.org
http://developer.nvidia.com/nvidia-visual-profiler
http://developer.nvidia.com/nvidia-visual-profiler
http://developer.nvidia.com/nvidia-visual-profiler
http://developer.nvidia.com/nvidia-visual-profiler
http://developer.nvidia.com/nvidia-visual-profiler
http://sourceforge.net/projects/opencvlibrary/

	A software-based dynamic-warp scheduling approach for load-balancing the Viola--Jones face detection algorithm on GPUs
	Introduction
	Related work
	The face detection algorithm
	Features
	The Integral Image
	The stage cascade

	GPU platform and parallel approaches
	GPU architecture and the CUDA programming model
	Challenges associated with the implicit SIMD model
	Parallelization strategies
	Parallelize across windows
	Parallelize within a window
	Parallelize by scale

	Static versus dynamic work-partitioning schemes
	Static work partitioning
	Dynamic work partitioning
	Dynamic work partitioning with warp scheduling

	Implementation
	Static thread scheduling with a basic implementation
	Static thread scheduling with shared memory
	Dynamic warp scheduling implementation
	Multiple-GPU implementation

	Experimental results
	Testbed
	Results
	Single-GPU implementation
	Multi-GPU implementation

	Performance analysis
	Single GPU implementation
	Multi-GPU implementation

	Conclusion
	Acknowledgments
	References

