
FPGA Accelerated Online Boosting for Multi-Target Tracking

Matthew Jacobsen, Pingfan Meng, Siddarth Sampangi, Ryan Kastner
Computer Science & Engineering

University of California, San Diego
La Jolla, CA, USA

{mdjacobs, pmeng, ssampang, kastner}@cs.ucsd.edu

Abstract—Robust real time tracking of multiple targets is a
requisite feature for many applications. Online boosting has
become an effective approach for dealing with the variability
in object appearance. This approach can adapt its classifier
to changes in appearance at the cost of additional runtime
computation. In this paper, we address the task of accelerating
online boosting for multiple target tracking. We propose a
FPGA hardware accelerated architecture to evaluate and train
a boosted classifier in real time. A general purpose CPU
based software-only implementation can track a single target
at 17 frames per second (FPS). The FPGA accelerated design
is capable of tracking a single target at 1160 FPS or 57
independent targets at 30 FPS. This represents a 68× speed
up over software.

Keywords-FPGA, Tracking, Online Boosting

I. INTRODUCTION

Robust object tracking is a critical component for many
applications. Input and gesture recognition for human-device
interaction [1], autonomous vehicle systems [2], and video
surveillance [3] all require accurate tracking input. Many
of these practical applications require tracking multiple
independent targets at once, with low latency, several times a
second. Tracking effectively translates high bandwidth sen-
sor information into a low bandwidth set of data points for
higher level algorithms. This is a challenging task because
an object’s appearance can change over time. Small changes
in lighting, occlusions, deformations, or rotations can have
a dramatic effect.

Boosting has been employed in machine learning applica-
tions with considerable success. Classifiers of boosted Haar
features are commonly used as face and object detectors.
Training these classifiers is typically performed offline with
many training examples over several rounds. However, re-
search has shown that online boosting can be very effective
for object tracking [4], [5]. In contrast to traditional offline
boosting, online boosting gathers examples at runtime and
trains a classifier incrementally. This approach provides
training examples from the current environment and can re-
sult in a more adaptive and accurate classifier. These benefits
come with the cost of additional runtime computation.

In this paper, we consider the task of accelerating an
online boosting based tracker capable of tracking multiple

independent targets. We evaluate an online boosting algo-
rithm for robust tracking and implement a FPGA accel-
erated hardware design. We compare this design against
two software-only implementations on a general purpose
CPU. We continue with a discussion of related work, the
online boosting algorithm, our tracking application, and a
description of the FPGA accelerated design. Experimental
performance results and analysis are presented.

II. RELATED WORK

Much of the research in online boosting for tracking
focuses on improving the algorithms. While there are numer-
ous hardware accelerated tracking applications, they focus
on the evaluation of trained classifiers, not the training.
Online boosting requires evaluation and training to be com-
pleted at runtime. The complexity and iterative dependency
of training makes it difficult to parallelize. To our knowl-
edge, there are no hardware accelerated designs for online
boosted tracking in the literature at the time of this writing.

Accelerating boosted classifier training has been ad-
dressed by Lo [6]. They present a FPGA based architecture
to reduce the time to train Viola-Jones style classifiers. They
achieve a 14× speed up over a CPU. This work is similar
to our own, but deals only with accelerating offline training.

Heinzle et al. describe related work to accelerate compu-
tational stereo camera processing in [7]. Their design uses a
FPGA, GPU and CPU to process the stereo data in real time.
Online boosted tracking is employed in their framework.
However the tracking is run on the CPU. The authors point
out that their system would benefit from a FPGA accelerated
online boosting tracking implementation.

III. ALGORITHM

The tracking algorithm we employ is proposed by
Babenko [5]. It is an online boosting algorithm for tracking
based on MILBoost [8]. It was selected because of its robust
appearance model. The algorithm consists of two steps: find
the new target location, then update the trained classifier.

For each new image frame, a region surrounding the
last known location is evaluated. Evaluation yields a new
location. Then the region surrounding the new location is
used to select positive and negative training examples. These



Algorithm 1 Tracking Algorithm
Input: New image frame at time t

1: Select a set of samples, cropped from frame
Xs = {x|s > ‖l(x)− l∗t−1‖}

2: Calculate Haar feature values, f(x), for x ∈ Xs

3: Use classifier, H(x) =
∑

k
hk(x), to classify samples Xs

4: Set new location l∗t = l(argmaxx∈Xs H(x))
5: Select positive and negative samples sets from frame

X1 = {x|r > ‖l(x)− l∗t−1‖}
X0 = {x|q ≤ ‖l(x)− l∗t−1‖ < q′}

6: Train classifier on positive and negative sets
H = Train(X1, X0)

examples are used update the classifier for the next frame.
This tracking flow is illustrated in Algorithm 1.

The algorithm is a two pass algorithm in the sense that it
must access the image frame twice. First to search for the
new location. Then again, after the new location is found
to gather training examples. The passes must take place
sequentially. The second pass cannot begin until the new
location has been found. A sequential dependency exists
between image frames as well. The next frame cannot be
evaluated until the classifier has been trained from examples
drawn from the current frame.

We continue with a detailed explanation by describing
the three basic components common to most tracking al-
gorithms: the motion model, the search strategy, and the
appearance model.

A. Motion Model

The motion model assumes the object location at time t
will be within a radius, s, from the object location at time
t− 1. Each location within radius s has equal probability.

B. Search Strategy

All locations within radius s are evaluated. The location,
l(x), with the maximum classification value is selected as
the new object location, l∗. This greedy strategy lends itself
well to parallel execution as there is no data dependency
between locations during evaluation.

C. Appearance Model

The main idea of boosting is to combine several weak
classifiers, h, into a strong classifier, H . This is achieved
by iteratively maximizing the log likelihood of the strong
classifier. At each iteration, the existing strong classifier is
combined with the next weak classifier, h, that maximizes
this quantity over the training data.

The algorithm makes use of an additional technique called
Multiple Instance Learning (MIL) [9] to improve classifier
robustness. The idea is to group samples together into sets
(called bags) and train using the sets instead of the samples
directly. We use just one positive and one negative set.

MIL mitigates the problem of correctly labeling samples
as they are collected. This is achieved by setting the positive

Figure 1: Circular search region with radius s (left). Circular region with
radius r for positive examples and sampled annular region with radii q and
q′ for negative examples (right).

training set to all the samples in a tight radius, r, around the
newly found object location. The negative training set is a
sparse sampling from an annular region between two radii, q
and q′, surrounding the newly found location. See Figure 1
for an illustration of these regions.

The algorithm uses Haar-like features, similar to those
used for face and object detection [10]. At initialization,
a pool of M Haar features are generated with random
rectangle coordinates and weights. During training, K of
these features are selected and are used as weak classifiers,
h(x), to form the strong classifier, H(x) =

∑
k hk(x).

Each weak classifier consists of a Haar feature and four
additional parameters. These additional parameters quantify
the degree to which the feature represents the object being
tracked. They are updated during training using positive and
negative samples. At runtime, each weak classifier predicts
the likelihood of a sample window using the log odds
ratio between positive and negative examples. This formula
results in higher scores the closer a sample’s feature value
is to the mean of the positive examples.

IV. FPGA DESIGN

Our design is motivated by a human computer interaction
application. The application requirements are to track at least
three independent points at 30 frames per second (FPS). It
must also evaluate frames at three different scales to track
objects as they move closer and further from the camera.

The algorithm was initially implemented in software and
profiled. Our FPGA design accelerates the slowest tasks,
identified in Figure 2. The largest amount of time (54.5%)
is spent training the classifier. Boosting is inherently se-
quential. Each training iteration must wait for the previous
iteration to complete before starting the next.

The FPGA design is partitioned between software and
hardware. The software is responsible for acquiring image
frames, passing data to the FPGA, receiving data from the
FPGA, and keeping track of state. The algorithm initializes
in software. Targets of any size can be tracked, but they
are scaled to fit a fixed hardware window size of 20×20.
CPU-FPGA communication is achieved using RIFFA [11].

For each new 8 bit grayscale image frame, a square
region of the frame surrounding the current location is
cropped and sent to the FPGA along with parameters. The



1 2 3 4 5 6 7
0

10

20

30

40

50

60

Tasks

Pe
rc

en
ta

ge
 o

f t
ot

al
 ti

m
e

Tasks as a percentage of total runtime

 

 

Create integral image
Create search sample set
Classify search samples
Argmax classified search set 
Create pos/neg sample set
Train: classify pos/neg samples
Train: update parameters
Train: select K best weak classifiers
Render frame

Figure 2: Duration of tasks in the algorithm as a percentage of total time.

square region includes only the pixels within the search
radius s. Additional parameters define the Haar features,
weak classifiers, radius, and scaling factors. The FPGA
architecture is illustrated in Figure 3.

A. Target Search

Parameters and image data are sent from the PC to the
FPGA. In this pass, only Stage 0 is run. Stage 0 streams
frame data through three parallel classification pipelines.
Each classification pipeline scales the frame data indepen-
dently, converts the scaled data into integral image data,
and runs it through a systolic sliding window. Image scaling
resizes the target to fit within a 20×20 pixel window. The
scaling module uses Block RAM (BRAM) to buffer lines so
that four pixels can be used to interpolate each output pixel.
An integral image is calculated on the scaled image. Only
the 17 least significant bits of each integral image pixel are
kept. This has no affect on Haar feature calculation as higher
order bits will be subtracted away.

Integral image pixels are streamed to a sliding window
architecture, similar to that employed by Cho [12]. It is
a systolic architecture where each new pixel generates
a new vertical column of pixels in the window. A two
dimensional register array represents the current window
so that any arrangement of pixels can be accessed each
cycle. The register window is accessed by six parallel Haar
rectangle extractor modules. This allows each classification
pipeline to calculate one Haar feature every cycle. Radial
and annular window filtering is accomplished by tracking
window positions within the cropped region.

After the Haar features are calculated, they are scored by
the WeakClassifier module. This module is fully pipelined
and produces a new value every cycle. The values are
summed to achieve a single value per window location.
We avoid division, square root, and logarithm operations by
precomputing multiplicative coefficients on the PC. Floating
point operators are still used however because feature values
take on a wide range of values. The algorithm’s ability
to discriminate between these values directly impacts its
accuracy. Finally, the window with the maximum feature
value across all three classification pipelines is returned to
the PC. This is used as the new target location.

MEAN 
CALCULATION 

UPDATE 
FEATURE 

PARAMETERS 

WEAK 
CLASSIFIER 

 
 

HOST PC 

RECV THREAD SEND THREAD 

STAGE 0 

MAIN 

PCI EXPRESS 
LINK 

FPGA 

PC 

STAGE 1 STAGE 2 
PIPELINED 

HPOS 

MAX 

LOG LIKELIHOOD 
(FOR POS. EX.) 

HNEG 

LOG LIKELIHOOD 
(FOR NEG. EX.) 

FRAME 
SCALER 

INTEGRAL 
IMAGE 

RADIAL 
FILTER 

HAAR 
CALCULATION 

SLIDING 
WINDOW 

MAX 

WEAK 
CLASSIFIER 

Figure 3: FPGA architecture. Stage 0 evaluates the classifier (at 3 scales).
Stages 1 and 2 update and train the classifier respectively. During the search
pass, only Stage 0 is used. All Stages are used during the training pass.

B. Classifier Training

Training has dependencies between iterations and also
within each iteration. Log likelihood values depend on
all the weak classifier scores, which depend on all the
updated feature parameters which depend on Haar values.
To accommodate these dependencies, we split the data path
into three Stages that can run concurrently. Data generated
between Stages are stored in FIFOs.

As before, Stage 0 calculates Haar feature values for
each sample location. In addition, the mean, E(X), and
squared mean, E(X2), for each Haar feature are calculated
incrementally as values are generated. Stage 1 uses the
saved Haar values and means to update feature parameters
and calculate weak classifier scores for each window. The
updated feature parameters are also sent to the PC. Stage 2
uses these scores and parameters to calculate the log like-
lihood for each feature. The log likelihoods are calculated
using 16 parallel pipelines of floating point operators. This
preserves accuracy for the wide range of values resulting
from the exponential, division, and logarithm operations.
It also balances the runtime across stages. Stage 2 iterates
K times, selecting the feature with the minimum negative
log likelihood each time. It outputs K numbers in total,
representing the trained classifier H . The PC uses this to
update its definition of H for the next frame.

V. RESULTS AND ANALYSIS

We tested our implementations on a 4 core Intel i7 3.6
GHz system with 16 GB RAM with 640x480 resolution
video. For all experiments, the feature pool size, M , was
set to 250, with a classifier size, K, of 50. We set s to 35, r
to 4, q to 6, and q′ to 8. Figure 4 shows the performance of



1 10 100 1,000

MATLAB

C++

FPGA

Frames per second

Im
pl

em
en

ta
tio

ns
Implementation performance

 

 

3 locations
1 location1x

68x
68x

0.007x

1x

17

Figure 4: Performance of implementations (longer is better). Speed up over
C++ software is shown to right of each bar.

our implementations. Because many practical applications
do not need to render the image frame, we did not include
the time to render in our measurements. Otherwise, time
measurements for the performance reported include the time
for running the entire algorithm, not just the kernels.

A. Software-only

We implemented the algorithm using MATLAB and C++.
The MATLAB implementation is single threaded. It is
capable of running the algorithm at 0.123 FPS. We did not
attempt to run the algorithm with multiple targets.

Our C++ implementation is highly optimized, multi-
threaded, and makes use of Intel Integrated Performance
Primitives vector instructions. OpenMP is used to parallelize
the application. This implementation is based on a version
provided by the authors of the algorithm. It is capable of
running at 17 FPS while tracking a single target and at
7 FPS when tracking three targets concurrently. Despite
being multi-threaded, it performed effectively the same when
pinned to a single processor due to its sequential nature.

B. FPGA

The FPGA design was built using Xilinx Vivado 2013.3
in Verilog. It was implemented on a Xilinx Virtex 7 VC707
development board and run at 250 MHz. It has a x8 Gen
2 PCIe connection to the PC. Table I lists the resource uti-
lization of the entire design. Arithmetic results between the
FPGA and software implementations differ by a maximum
of 0.77%. This is due to differences in floating point operator
implementations. This difference did not affect final values.

The FPGA implementation communicates with a C++ ap-
plication. However, as all the image processing is performed
on the FPGA, the software only performs bookkeeping
functions. It is capable of tracking a single target at 1160
FPS, three targets at 480 FPS, and 57 targets at 30 FPS.
When run independently, the kernels that evaluate windows
and train the classifier run at 6635 FPS and 1383 FPS
respectively.

C. Comparison

The FPGA implementation runs 68× faster than the C++
CPU implementation. This is due to the manually sched-

Table I: FPGA design resource and VC707 utilization.

Slice Reg. Slice LUT BRAM DSP48E
187505 231971 224 304

31% 76% 22% 11%

uled pipelined data path and dedicated parallel operators.
Although multiple targets are processed sequentially by the
FPGA, Stage modules can overlap in time. This contributes
most significantly to the better performance. The data path
has also been parallelized at bottlenecks to balance pipeline
stage runtimes.

The runtime performance of the FPGA design is depen-
dent on the size of the target being tracked. Larger targets
require more pixels to be transferred and more time to
scale on the FPGA. In our experiments, we tracked targets
with sizes between 20 and 40 pixels square without any
significant change in performance. Runtime performance
also scales sub-linearly with additional targets. For the same
period of time, the total number of tracked targets is higher
at lower frame rates.

VI. CONCLUSION

In this paper, we have addressed the task of accelerating
an online boosting based multi-target tracker. We have pro-
posed and evaluated a FPGA accelerated design. It achieves
a 68× speed up over a general purpose CPU based, highly
optimized, software-only C++ implementation. The FPGA
design is capable of tracking a single target at 1160 FPS or
57 independent targets at 30 FPS.

REFERENCES

[1] G. R. Bradski, “Computer vision face tracking for use in a
perceptual user interface,” Intel Technology Journal, 1998.

[2] S. Avidan, “Support vector tracking,” IEEE Trans. Pattern
Anal. Mach. Intell, vol. 26, no. 8, pp. 1064–1072, 2004.

[3] D. Snow, M. J. Jones, and P. Viola, “Detecting pedestrians
using patterns of motion and appearance,” in ICCV, 2003.

[4] H. Grabner, M. Grabner, and H. Bischof, “Real-time tracking
via on-line boosting,” in BMVC, 2006, p. I:47.

[5] B. Babenko and M.-H. Y. S. Belongie, “Robust object track-
ing with online multiple instance learning,” TPAMI, 2011.

[6] C. Lo and P. Chow, “A high-performance architecture for
training viola-jones object detectors,” in FPT. IEEE, 2012.

[7] S. Heinzle, P. Greisen, D. Gallup, C. Chen, D. Saner,
A. Smolic, A. Burg, W. Matusik, and M. H. Gross, “Com-
putational stereo camera system with programmable control
loop,” ACM Trans. Graph, vol. 30, no. 4, p. 94, 2011.

[8] P. A. Viola, J. C. Platt, and C. Zhang, “Multiple instance
boosting for object detection,” in NIPS, 2005.

[9] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Perez, “Solv-
ing the multiple instance problem with axis-parallel rectan-
gles,” Artificial Intelligence, vol. 89, pp. 31–71, 1997.

[10] P. A. Viola and M. J. Jones, “Robust real-time face detection,”
in ICCV, 2001, p. 747.

[11] M. Jacobsen and R. Kastner, “Riffa 2.0: A reusable integration
framework for fpga accelerators,” in FPL, 2013.

[12] J. Cho, S. Mirzaei, J. Oberg, and R. Kastner, “Fpga-based
face detection system using haar classifiers,” in FPGA, 2009.


