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Abstract—State-of-the-art C/C++ synthesis tools lack abstrac-
tions and conveniences that are pervasive in modern software
languages. Higher-order functions are particularly important as
they increase productivity by concisely representing common
design patterns. Providing these in hardware design environments
would improve the accessibility of hardware tools for software
engineers by providing familiar interfaces and abstractions. We
have created an open-source library of higher-order functions
synthesizable in C/C++ hardware development tools. We imple-
ment six common algorithms on a PYNQ board and conclude
that our library produces results that are generally statistically
indistinguishable non-recursive techniques.

Index Terms—FPGAs, High-Level Synthesis, Higher-Order
Functions, Programming Languages

I. INTRODUCTION

Hardware development tools have been gradually raising
their level of abstraction from specifying transistors, to defin-
ing gate level circuits, to describing register transfer opera-
tions. C/C++ hardware development tools [1], [2], [3], [4],
[5] further this trend by enabling the designer to provide
algorithmic descriptions of the desired hardware. Yet, despite
much progress, there are calls to make hardware design even
more like software design, which will allow more software
engineers to write hardware cores [6].

A major impediment to this lies in the fact that C/C++
hardware development tools lack many of the conveniences
and abstractions that are commonplace in modern productivity
languages. Higher-order functions are a prime example. They
are a pervasive representation of computational patterns that
take other functions as arguments. For example, the higher-
order functions map and reduce shown in Figure 1 are
the eponymous operators of Google’s MapReduce framework
[7] and the function filter is the semantic equivalent to
SQL’s WHERE clause [8]. Higher-order functions are also
useful in hardware development where they can represent
common parallel patterns [9], [10] like fast fourier transforms
(Figure 2), argmin reduction trees [11], sorting networks [12],
[8], and string matching [13]. Despite their benefits, higher-
order functions are not found in C/C++ hardware development
tools.

Higher-order functions are difficult to implement in C/C++
hardware development tools because parallel hardware must be
defined statically: types, functions, interfaces, and loops must
be resolved at compile time. In contrast, higher order functions
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typically rely on dynamic features: dynamic allocation, dis-
patch, typing, and loop bounds. Prior work has added higher-
order functions to Hardware Development Languages (HDLs)
[14], [3], [15], added higher-order functions to domain-specific
languages [10], or proposed extensions to C/C++ development
tools[9]. None have not created synthesizable higher-order
functions in a widespread language like C/C++.

1 def mulby2(x):
2 return x * 2
3 def add(x, y):
4 return x + y
5 l = [1, 2, 3, 4]
6 m = map(mulby2, l)
7 r = reduce(add, m)
8 print(r) # Prints ’20’

(a)

1 array<int, 4> l = {1, 2, 3, 4};
2 m = map(mulby2, l);
3 r = reduce(add, m);

(b)

Fig. 1. (a) Higher-order functions in Python that multiply all values in a list
by 2 (map), and take the sum (reduce). (b) An equivalent in C++ using our
library.

In this paper we develop a library of synthesizable higher-
order functions for C/C++ hardware development tools with
a syntax similar to modern productivity languages. Our work
leverages recent additions to the C++ language standard to
enable seamless integration into a C/C++ hardware design
flow.

This work has four main contributions:

• A demonstration of C++ techniques that enable synthe-
sizable higher-order functions

• An open-source library of higher-order functions for
C/C++ hardware development tools

• A statistical comparison between our work and loop-
based C/C++ implementing six common algorithms on
a PYNQ board

• A qualitative comparison between the syntax of our
library and a modern high-level language

Our paper is organized as follows: Section II describes the
C++ techniques we use to develop our higher-order functions.
Section III demonstrates how our library can be used to
implement the well-known the Fast Fourier Transform (FFT)
algorithm, one of many examples in our repository. Section IV
presents a comparison of compilation results between our
library and loop-based constructs on six common algorithms.
Section V describes related work. We conclude in Section VI.
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(a)

1 def fft(sig):
2 return divconq(nptfft, bitreverse(sig))

(b)

1 template <typename T, size_t LEN>
2 auto fft(array<T, LEN> sig){
3 return divconq(nPtFFTStage, bitreverse(sig));
4 }

(c)

Fig. 2. (a) A graphical representation of the divide-and-conquer structure of a Fast Fourier Transform (FFT). (b) A python implementation of the FFT
algorithm using the higher-order function divconq and functions NPtFFTStage and bitreverse. (c) A C++11 implementation of the Fast Fourier
Transform algorithm using divconq from our library of higher-order functions.

II. BUILDING HIGHER-ORDER FUNCTIONS

Higher-order functions are a pervasive abstraction that en-
capsulate common programming patterns by calling other
functions provided as input arguments. Figure 1 shows two
higher-order functions: map applies a function to every ele-
ment in an array, and reduce iterates through an array from
left to right applying a function and forwarding the result to
the next iteration. Higher-order functions can also implement
recursive patterns. Figure 2 demonstrates how the recursive
divide and conquer function divconq is used to implement
the fast fourier transform algorithm. By encapsulating common
patterns, higher-order functions encourage re-use.

Higher-order functions for are difficult to implement in
C/C++ hardware development tools because parallel hardware
must be defined statically: types and functions must be re-
solved, lists that define parallel interfaces must be statically
sized, and parallel loops must be statically bounded. In con-
trast, higher order functions in productivity languages such
as Python typically rely on dynamic features: polymorphic
functions are overloaded with a table of function pointers,
functions are passed as global memory addresses for dynamic
dispatch, lists are created and resized by memory allocators,
and the stack is dynamically resized for recursion. While it is
possible to define hardware with dynamic memory allocation,
function pointers, and dynamic dispatch the main drawback is
efficiency and similarities to general-purpose processors.

In the following subsections we describe how to replace
these dynamic features with static techniques to implement
synthesizable higher-order functions for C/C++ hardware de-
velopment tools. By using standard compiler features our work
is not limited to a single toolchain. The result of our work is
a library of higher-order functions that mimics the behavior
of modern productivity languages.

A complete listing of the functions used in this paper are
shown in Table I. The remaining functions can be found in
our repository.

A. Templates (Parametric Polymorphism)

In this section we describe how to use C++ templates to
provide the polymorphism required by higher-order functions.

Polymorphism is the ability of a data type or function to be
written generically. For example, the higher-order function
map must be written generically so that its array argument
can be a array of integers, array of arrays, array of classes,
or an array of any other type. map must also have a generic
output type so that it can produce any type of output array.
Container classes such as arrays must be able to store integers
or booleans. Polymorphism provides the ability to represent
repeatable patterns across various input and output types.

1) Class Templates: Class templates are used to param-
eterize container classes and algorithms with types, length,
and functions. They are pervasive in the C++ the Standard
Template Library (STL). We use templated classes like those
shown in Figure 3 extensively in our work.

Three examples of the the STL array class are shown
in Figure 3a. arr1 is an array of four integers, arr2
is an array of four floats, and arr3 is a array of
two array classes, each with four integers (a 2-by-4 matrix).
This example demonstrates how template parameters provide
generic classes.

Figure 3b shows how templated classes are defined. Tem-
plate parameters can be type names, class names, values, or
functions. Template variables can be used to define the type
of other template variables. For example T is used to define
the type of the template parameter VALUE.

1 int main(){
2 array<int, 4> arr1 = {1, 2, 3, 4};
3 array<float, 5> arr2 = {1.0, 2.0, 3.0, 4.0};
4 array<array<int, 4>, 2> arr3 = {arr1};
5 return 0
6 }

(a)

1 template <typename T, T VALUE>
2 class foo{
3 T fooval = VALUE;
4 };

(b)

Fig. 3. (a) Three parameterized instances of the STL array class.
(b) Defining a templated class foo.

2) Function Templates: Templates are also used to imple-
ment polymorphic functions that can handle multiple types
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with one definition. For example, the higher-order function
map must be written generically so that its array argument
can be a array of integers, array of arrays, array of classes,
or an array of any other type. Templates can also be used to
pass compile-time constants to a function. This functionality
is required for functions that use the STL array class and
will be used heavily in our higher-order functions.

Lines 1-10 in Figure 4 show two templated functions:
add and arrayfn. The template parameter T provides static
type polymorphism to both functions. This means they can
be applied to integers, floats, or classes. arrayfn has an
additional parameter LEN that specifies the length of its
array argument. These functions are called without template
inference on Lines 16-19.

1 template<typename T>
2 T add(T l, T r){
3 return l + r;
4 }
5

6 template<typename T, unsigned long LEN>
7 int arrayfn(array<T, LEN>& arr){
8 /* Do some array processing*/
9 return 0;

10 }
11

12 int main(){
13 array<int, 3> arr = {0, 1, 2};
14

15 // Three examples without template inference
16 int res1 = add<int>(0, 1);
17 float res2 = add<float>(0.0f, 1.0f);
18 int res3 = arrayfn<int, 3>(arr);
19

20 // The same examples with template inference
21 int res4 = add(0, 1);
22 float res5 = add(0.0f, 1.0f);
23 int res6 = arrayfn(arr);
24 return 0;
25 }

Fig. 4. Two templated functions: add and arrayfn.

3) Template Inference: Template parameter inference al-
lows template parameters to be inferred from the call site,
and is critical for creating succinct higher-order functions
that mimic dynamically typed software languages. Template
inference starts with the last template parameter, and stops
when a parameter cannot be inferred, or all parameters have
been inferred.

Figure 4 also demonstrates an example of template inference
on Lines 21-24. The template parameters of calls add and
arrayfn infer the T and LEN based on the types of the input
arguments at those callsites. The effect of template inference
is to allow designers to write less verbose code.

4) Functions as Template Parameters (First-Class Func-
tions): C++ functions can also be passed as template parame-
ters. Unlike software languages, where functions are passed as
pointers and dynamically resolved during runtime, functions
passed as template parameters are static and synthesizable.

Figure 5 demonstrates how the function truncate can be
passed to the higher-order function apply as the template
parameter FN.

Template inference cannot be applied to the example in
Figure 5. truncate depends on the type parameters TI and
TO, so it must follow those parameters in the parameter list.

1 template <typename TI>
2 unsigned char truncate(TI IN){
3 return (unsigned char)IN;
4 }
5

6 template <typename TO, typename TI, TO (FN)(TI)>
7 TO apply(TI IN){
8 return FN(IN);
9 }

10

11 int main(){
12 int i = 0x11223344;
13 unsigned char res;
14

15 res = apply<unsigned char, int, truncate<int> >(i);
16 // res = 0x44
17 return 0;
18 }

Fig. 5. A C++ function passed as a template parameter.

truncate is not a function argument to apply it cannot be
inferred. Figure 6 demonstrates how we can can aid template
inference by wrapping the truncate function inside of a
struct.

Figure 6 demonstrates how the body of the function
truncate and its template parameters are relocated to the
() operator inside of the Truncate struct. This is often
called a class/struct-wrapped function, or functor. By passing
the struct Truncate we “hide” the template parameters of its
function from the template parameter list in array. Instead,
the compiler infers them when Truncate is instantiated and
the () operator is called on Line 10 of Figure 6.

1 struct Truncate{
2 template <typename TI>
3 unsigned char operator()(TI IN){
4 return (unsigned char)IN;
5 }
6 };
7

8 template <typename TO, class FN, typename TI>
9 TO apply(TI IN){

10 return FN()(IN);
11 }
12

13 int main(){
14 int i = 0x11223344;
15 unsigned char res;
16 // Previously:
17 // apply<unsigned char, int, truncate<int> >(i);
18 res = apply<unsigned char, Truncate>(i);
19 // res = 0x44
20 return 0;
21 }

Fig. 6. Wrapping a function inside of a struct.

We can simplify this example further and deduce FN by
passing it as an argument to apply, as shown in Figure 7.
In Figure 7, Truncate is defined and instantiated as the
variable truncate. The variable truncate is passed as
a function argument to apply. Passing truncate as an
argument allows the compiler to infer the template parameter
FN. Because the variable __ignored is never used the
example in Figure 7 is synthesizable. However, we still cannot
infer TO unless it is passed as a function argument. To deduce
TO we must use a new feature from the C++ specification
covered in Section II-A5.
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1 struct Truncate{
2 template <typename TI>
3 unsigned char operator()(TI IN){
4 return (unsigned char)IN;
5 }
6 } truncate;
7

8 template <typename TO, typename TI, class FN>
9 TO apply(FN __ignored, TI IN){

10 return FN()(IN);
11 }
12

13 int main(){
14 int i = 0x11223344;
15 unsigned char res;
16 // Prev: apply<unsigned char truncate<int> >(i);
17 res = apply<unsigned char>(truncate, i);
18 // res = 0x44
19 return 0;
20 }

Fig. 7. Class-wrapped-functions can be inferred by passing them as instances
at the callsites.

5) Type Inference: Section II-A4 we showed that we can
automatically infer input types using template inference, but
could not infer output types since output types are not argu-
ments. Higher-order functions like map can return a multitude
of types depending on what function is provided. To correctly
mimic the behavior of dynamically-typed software languages
we must be able to infer the output types automatically.

Figure 8 demonstrates how we can remove the TO template
parameter from apply using the new auto keyword. This
causes the compiler to deduce the return value from the type
of FN. Figure 8 is functionally identical to Figure 7, but the
call to apply is now less verbose.

1 struct Truncate{
2 template <typename TI>
3 unsigned char operator()(TI IN){
4 return (unsigned char)IN;
5 }
6 } truncate;
7

8 // Previously: <typename TO, typename TI, class fn>
9 template <class fn, typename TI>

10 // Previously: TO apply(fn _, TI IN)
11 auto apply(fn _, TI IN){
12 return fn()(IN);
13 }
14

15 int main(){
16 int i = 0x11223344;
17 unsigned char res;
18 // Previously: apply<unsigned char>(truncate, i);
19 res = apply(truncate, i);
20 // res = 0x44
21 return 0;
22 }

Fig. 8. Applying the new auto keyword to Figure 7 allows us to remove
the template parameter TO

B. Arrays

Lists are the most common target of higher order func-
tions. In software productivity languages lists are implemented
as dynamically allocated chunks of memory (contiguous or
linked) that can be created, duplicated, resized, and modified
during runtime. Lists in hardware circuits describe static
structures that cannot be dynamically modified. To describe
these structures in C/C++ we must use static arrays.

1 int main(){
2 // Constructing three arrays
3 array<int, 10> arr = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
4 array<int, 10> arr1 = range<10, 0, 1>(); // {0...9}
5 array<int, 2> arr2 = construct(1, 2); // {1, 2}
6

7 // Manipulating arrays
8 int h = head(arr); // 0
9 array<int, 9> t = tail(arr); // {1...9}

10 array<int, 10> arr3 = prepend(h, t); // {0...9}
11 array<int, 10> arr4 = append(t, h) // {1..9, 0}
12 array<int, 20> arr5 =
13 concatenate(arr, arr); // {0...9, 0...9}
14 return;
15 }

Fig. 9. A variety of array constructors and manipulations.

For our higher-order functions we use the array class
from the C++ Standard Template Library to provide list-like
functionality for our higher-order functions. The array class
has major benefits over pointers. Unlike pointers an array
is parameterized by its length, and propagates this parameter
through function arguments and for template inference. Sec-
ond, array is a class with a copy operator. This means it can
be returned from a function directly, unlike pointers, which
must be passed as an argument to be modified in order to
be “returned”. This maintains a more Python-like feel for our
functions.

Figure 9 shows severals examples of how C++ array
objects are constructed and can be manipulated. While these
arrays cannot be dynamically resized, our library also provides
a collection of functions for static list manipulation. A few
simple examples of list manipulations are shown in Figure 9.
Thus, the array class allows us to provide software-like
syntax for C++ hardware tools.

C. Recursion and Looping

Higher-order functions use loops or recursion to iterate
over list elements. Dynamically typed languages like Python
can use loops to implement recursion since intermediate type
state is propagated during runtime. Statically typed languages
like C++ must use recursion since the output of the previous
iteration must type-check with the current at compile time.
Since C++ hardware development tools are statically typed
and no dynamic stack, we must use static recursion.

1 int main(){
2 array<int, 10> arr = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
3 int s = sum(arr); // s = 45
4 return 0;
5 }

Fig. 10. Using the recursive array-sum from Figure 11

C++ static recursion uses a technique known as template
metaprogramming [16]. Template metaprogramming is syn-
thesizable because its is unrolled at compile time, bounded
by compile-time template parameters, it eliminates the need
for a dynamic stack. Template metaprogramming makes the
resulting functions concise. This is shown in Figure 10, which
calls sum to obtain the sum of an array of elements, and sum’s
implementation in Figure 11.
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1 template <size_t LEN>
2 struct _sum{
3 auto operator()(array<int, LEN> IN){
4 return head(IN) + _sum<LEN-1>()(tail(IN));
5 }
6 };
7

8 template <>
9 struct _sum<0>{

10 int operator()(array<int, 0> IN){
11 return 0;
12 }
13 };
14

15 template <size_t LEN>
16 int sum(array<int, LEN> IN){
17 return _sum<LEN>()(IN);
18 }

Fig. 11. An array-summation implementation using recursive class templates.

Figure 11 shows an implementation of sum that uses
template recursion to iterate through the array. Lines 15-18
define the sum method with the template parameter LEN. This
is preceded by two definitions of the _sum helper class. The
first definition on Lines 1-6 is the recursive definition that
is used when the template parameter LEN is non-zero. The
second definition on Lines 8-13 is the base case for when
LEN is zero. Together these implement the sum method.

When the sum method is called in Figure 11 the func-
tion creates an instance of _sum<LEN> and then calls the
() operator. The () operator instantiates an instance of
_sum<LEN-1> and calls _sum<LEN-1>’s () operator. This
process continues until LEN is equal to 0 and _sum<0> return
0. When the program is run in software the program unwinds
the call tree and adds the elements together. Since LEN is a
static template parameter this recursion is bounded at compile
time and can be synthesized.

D. Higher-Order Functions

We now have all of the pieces to develop our synthesizable
higher-order functions: templates, arrays, functions, and recur-
sion. We emphasize that the implementations of our higher-
order functions are complex but that using our functions is
quite simple as demonstrated in these examples.

We demonstrate our techniques by implementing the higher-
order function reduce in Figure 12 and follow with an
example in Figure 13. reduce is defined on Lines 18-22.
When the function reduce is called templates are inferred
as described in Section II-A3. The template parameter LEN
specifies the length of the array, parameters TI and TA provide
input polymorphism on the initial value and the array value
respectively, and FN is the function class from Section II-A4.
The output type is deduced by the auto keyword. LEN
parameterizes the recursive class _rhelp defined on Lines 1-
8. The base case when LEN is zero is defined on Line 10-16.
The recursive behavior follows the description in Section II-C.

1 template <size_t LEN>
2 struct _rhelp{
3 template<typename TI, typename TA, class FN>
4 auto operator()(FN F, TI INIT, array<TA, LEN> IN){
5 return _rhelp<LEN-1>()(F, FN()(INIT, head(IN)),
6 tail(IN));
7 }
8 };
9

10 template <>
11 struct _rhelp<0>{
12 template<typename TI, typename TA, class FN>
13 TI operator()(FN F, TI INIT, array<TA, 0> IN){
14 return INIT;
15 }
16 };
17

18 template <size_t LEN, typename TI, typename TA,
19 class FN>
20 auto reduce(FN F, TI INIT, array<TA, LEN> IN){
21 return _rhelp<LEN>()(F, INIT, IN);
22 }

Fig. 12. Implementation of the function reduce using all of the features
described in this section.

Figure 13 shows how the array summation function from
Figures 10 and 11 can be re-written using reduce. Again, this
demonstrates that using our functions is quite simple despite
the implementation complexity.

1 int main(){
2 array<int, 10> arr = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
3 int s = reduce(add, arr, 0); // s = 45
4 return 0;
5 }

Fig. 13. Array summation from Figure 10 re-written using reduce defined
in Figure 12

III. EXAMPLES

We demonstrate our work by implementing the Fast Fourier
Transform (FFT) algorithm with our higher-order function
library. We use this example to demonstrate our library and
compare its syntax to Python, a modern, dynamically-typed
productivity language. We have chosen FFT because it uses
many of our higher order functions, is a well-known algorithm
in the hardware development community, and has been used
as a motivating related hardware development language work,
[14], [17]. Further examples are available in our repository,
and results are shown in Section IV.

The FFT algorithm is developed in several parts. Sec-
tion III-A demonstrates interleave, which is used in
the bitreverse function in Section III-B. Section III-C
demonstrates how to implement an N-point FFT Stage func-
tion. Section III-D combines the previous sections into an
implementation of the FFT algorithm.

A. Interleave

The interleave function interleaves two lists as shown
in Figure 14. Figure 14a shows a graphical example of
interleaving two lists. Figure 14b demonstrates a C++ im-
plementation using our synthesizable library, and Figure 14c
demonstrates a Python implementation.

Figure 14b uses zipWith to apply the construct func-
tion to combine both arrays into a pair-wise array of arrays.
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List Function Description
array<TA, 2> construct(TA, TA) Turn two elements into a 2-element array
array<TA, LEN + 1> prepend(TA, array<TA, LEN>) Add an element to the head of an array
array<TA, LEN + 1> append(array<TA, LEN>, TA) Add an element to end of an array
array<TA, LENA + LENB> concatenate(array<TA, LENA>, array<TA, LENB>) Concatenate two lists into a single list
TA head(array<TA, LEN>) Get the first element (head) of an array
array<TA, LEN-1> tail(array<TA, LEN>) Get a list with all elements except the head (tail)
array<pair<TA, TB>, LEN> zip(array<TA, LEN>, array<TB, LEN>) Combine two lists into a list of pairs
pair<array<TA, LEN>, array<TB, LEN> unzip(array<pair<TA, TB>, L) Split list of pairs into a pair of two lists
Higher-Order Function Description
auto flip(FN) Return a new function with FN’s input arguments swapped
auto compose(FNA, FNB) Return a function where FNA is called on the output of FNB
auto map(FN, array<TA, LEN>) Apply a function to each element in a list
auto reduce(FN, array<TA, LEN>, TI) Iterate from left to right applying FN and carrying the result
auto rreduce(FN, array<TA, LEN>, TI Iterate from right to left applying FN and carrying the result
auto divconq(FN, array<TA, clog2(LOGLEN)>) Divide a list into elements and apply a function to pairs
auto zipWith(FN, array<TA, LEN>, array<TB, LEN>) Combine two lists with a function

TABLE I
SUMMARY OF THE LIST-MANIPULATION AND HIGHER-ORDER FUNCTIONS USED IN THIS PAPER. FN IS SHORTHAND FOR A WRAPPED FUNCTION FROM

SECTION II-D

Then, rreduce applies the merge function to attach the
front of each 2-element array to the end of the previous
array and produce an interleaving. The corresponding Python
implementation is shown in Figure 14c, with zip instead
of zipWith because Python tuples are easily converted to
arrays.

{0,2,1,3} {4,6,5,7} 

{0,4,2,6,1,5,3,7} 

(a)

1 struct Interleave{
2 template <typename T, size_t LEN>
3 auto operator()(array<T, LEN> L, array<T, LEN> R){
4 auto pairs = zipWith(construct, L, R);
5 return rreduce(concatenate, pairs,
6 array<T, 0>());
7 }
8 } interleave;

(b)

1 def interleave(L,R):
2 pairs = zip(L, R)
3 concatenate = lambda p, lst: list(p) + lst
4 return rreduce(concatenate, pairs, [])

(c)

Fig. 14. (a) Interleaving two lists graphically (b) Interleaving two lists in
C++ (c) Interleaving two lists in Python

B. Bit-Reverse

Figure 15 shows a bit-reverse permutation for arrays. In
the permutation, the element at index N is swapped with the
value at P , where P is equal to the a reversal of the bits of
N . For example in an 8-element list, if N = 1 = 3′b001, then
P = 4 = 3′b100. Figure 15a shows a bit-reversal permutation
applied to the list {0, 1, 2, 3, 4, 5, 6, 7} as a recursive interleav-
ing. This is followed by the synthesizable C++ implementation
in Figure 15b and the Python implementation in Figure 15c.

Figure 15b implements the bit-reverse permutation using
the higher-order functions we have developed. divconq from

Table I is used to divide the input array into single-element
arrays. The function interleave from Section III-A is used
to interleave the resulting arrays to produce the result.

{0} 
{0,1} 

{1} {2} {3} 
{2,3} 

{0,2,1,3} {4,6,5,7} 

{4} 
{4,5} 

{5} {6} {7} 
{6,7} 

{0,4,2,6,1,5,3,7} 

(a)

1 struct Bitreverse{
2 template <typename T, size_t LEN>
3 auto operator()(array<T, LEN> IN){
4 return divconq(interleave, IN);
5 }
6 } bitreverse;

(b)

1 def bitreverse(in):
2 return divconq(interleave, in)

(c)

Fig. 15. (a) Bit-reverse permutation of a list graphically (b) Bit-reverse in
C++ (c) Bit-reverse in Python

C. N-Point FFT Stage

The FFT algorithm is implemented by recursively applying
an N-Point FFT function to two outputs of two N/2-Point
functions in the previous stage. The N-point FFT stage is
shown graphically in Figure 16a. In an N-point FFT inputs
from the “left” and “right” inputs are passed with the context
(tree level and index) to the fftOp function. fftOp performs
computation and then produces two outputs that are de-
interleaved in a similar fashion.

We define an nPtFFTStage function in Figure 16b. This
function first computes its level (LEV) using the LEN template
parameter. LEV is replicated and paired with an index to
produce a context for each fftOp function. The function
calls the fftOp function using zipWith to pass the context
and input data. The output is de-interleaved using unzip and
merge.
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{L0, L1, L2, L3} {R0, R1, R2, R3} 

FFT Op 0 FFT Op 1 FFT Op 2 FFT Op 3 

{O0, O1, O2, O3, O4, O5, O6, O7} 

(a)

1 struct NPtFFTStage{
2 template <typename T, size_t LEN>
3 auto operator()(array<T, LEN> l, array<T, LEN> r){
4 static const std::size_t LEV = log2(LEN) + 1;
5 auto contexts = zip(replicate<LEN>(LEV),
6 range<LEN>());
7 auto inputs = zip(l, r);
8 auto outpairs = zipWith(fftOp, contexts, inputs)
9 auto outputs = unzip(outpairs);

10 return concatenate(outputs.first,
11 outputs.second);
12 }
13 } nPtFFTStage;

(b)

1 def nptfftstage(L, R):
2 lev = log2(len(L) + 1)
3 contexts = zip([lev]*L, range(len(L)))
4 inputs = zip(L, R)
5 outpairs = map(fftOp, zip(contexts, inputs))
6 outputs = zip(*outpairs) # Unzip
7 return outputs[0] + outputs[1]

(c)

Fig. 16. (b) N-Point FFT Stage using synthesizable higher-order functions
(c) N-Point FFT Stage using Python

D. Fast Fourier Transform

We now have all the tools we need to implement widely-
used Fast Fourier Transform (FFT) algorithm from Figure 2.
The divide and conquer, recursive structure of the FFT algo-
rithm is shown in Figure 2a. Each N-point stage of an FFT
combines the results of two N/2-point transforms.

The FFT algorithm is implemented in Figure 17 using
the higher-order function divconq with the nPtFFTStage
function. The input list is bit-reversed to obtain the correct
output ordering.

1 template <typename T, size_t LEN>
2 auto fft(array<T, LEN> sig){
3 return divconq(nPtFFTStage, bitreverse(sig));
4 }

Fig. 17. FFT Implementation using the functions described in this section

As demonstrated, we have created a library of higher-order
functions with a syntax that is similar to a modern productivity
language, Python. This is evident from comparing examples
in Figures 1, 2, 14, 15, 16, and 17. In all examples, the syntax
and structure of the C++ code is very similar to Python. This
is in spite of extensive use of C++ templates. More examples
can be found in our repository, and in Section IV.

IV. RESULTS

We report the quantitative results of our work by synthe-
sizing six application kernels with our higher-order functions
and compare them to loop-based implementations. The kernels

we target are described in Section IV-A, followed by the
experimental setup in Section IV-B and results in Section IV-C.

A. Application Kernels

1) Fast Fourier Transform: The Fast Fourier Transform
(FFT) kernel was presented in Section III-D. The FFT kernel
is widely used in signal analysis, often for compression.
As demonstrated in Section III, the FFT kernel can be im-
plemented with the higher-order divconq and zipWith
functions. The loop-based equivalent is written with a pair
of nested loops.

2) Argmin: Argmin is a function to compute value and
index of the minimum element in an array. This function can
be used in many streaming data processing applications such
as databases [8], [11]. The Argmin kernel can be written using
the higher-order function divconq and function argminop
as an input. The argminop function returns the value and
index of the minimum value from its subtrees. The loop-based
equivalent is implemented with a pair of nested loops.

3) Finite Impulse Response Filter: A Finite Impulse Re-
sponse (FIR) filter is a common signal processing kernel
that takes samples from an input signal and performs a dot-
product operation with an array of coefficients. These filters
can be used for simple high-pass, and low-pass audio filtering.
Our FIR filter is composed of two zipWith to perform
the element-wise multiplication of the input signal array and
coefficient array, and divconq to produce an addition tree to
take the sum of all of the elements. The loop-based equivalent
is written as a single for-loop that computes the element-wise
multiplication, and a pair of nested for loops to implement the
addition tree.

4) Insertion Sort: Insertion Sort is a streaming function
that computes sorted lists. In our kernel, an array of values
is streamed into the kernel. The kernel maintains a sorted
order for the N minimum or maximum values seen and
ejects others. This is identical to the implementation in [12].
The Insertion Sort kernel can be written using the higher-
order function reduce, and a compareswap function. The
compareswap function is applied to each element in the
list and swaps the element depending on the sort criteria. The
ejected element is carried forward for further comparison.

5) Bitonic Sort: Bitonic sort is a highly parallel sorting
function used widely on GPU and FPGA architectures [12].
Its structure can be described recursively as a tree of butterfly
networks.

6) Smith-Waterman: A systolic array is a common hard-
ware structure for solving dynamic programming problems. In
this example we use the Smith-Waterman algorithm from [13].
The systolic array is written as a composition of zipWith
and reduce.

B. Experimental Setup

For each of the six algorithms described in Section IV-A
we developed a loop-based and higher-order-function-based
implementation, resulting in twelve designs. Each design tar-
geted 16-element arrays, with types described in Table II. For
each design we gathered performance, resource utilization,
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Higher-Order Functions Loop Based
Function Name (Data Type) FF SRL LUT BRAM DSP FF SRL LUT BRAM DSP
Fast Fourier Transform (FFT) (ap_fixed<32,16>) 21263 2487 8096 0 77 21240 2494 8096 0 77
Argmin (int) 2670 8 1573 0 0 2666 10 1575 0 0
FIR Filter (float) 14388 277 7306 0 48 14388 272 7305 0 48
Insertion Sort (int) 2300 0 935 0 0 2300 0 935 0 0
Bitonic Sort (int) 11929 1 4869 0 0 11929 1 4869 0 0
Smith-Waterman (ap_int<2>) 895 11 1187 0 0 895 11 1186 0 0

TABLE II
POST-IMPLEMENTATION RESOURCE UTILIZATION FOR SIX ALGORITHMS ON A PYNQ (XC7Z020) IN VIVADO 2017.4.

and maximum frequency results for loop-based and higher-
order-function-based variants of the six algorithms. Our results
were gathered in Vivado 2017.4 and implemented on a PYNQ
development board with a Zynq XC7Z020 SoC.

Performance results were gathered from the Vivado HLS
synthesis tool. The tool targeted a clock period of 2 nanosec-
onds (500 MHz) to guarantee that the architecture was fully
pipelined and completely unrolled. These results are reported
in Table III.

Resource utilization and Fmax results are reported from
a sweep of thirteen Vivado Implementation goals. Resource
utilization did not vary across these thirteen runs and are re-
ported in Table II. For each goal we performed a binary search
for the maximum frequency, varying the output frequency of
the Xilinx Clock Wizard attached to the hardware core. The
resulting statistics are reported in Table IV. Finally, Table V
presents a statistical analysis of the maximum frequency data
we collected.

C. Analysis

Performance results are shown in Table III. Column 1
displays the name for each of the six application kernels.
Columns 2 and 3 show the initiation interval and latency for
each higher-order-function-based application kernel. Likewise,
columns 4 and 5 show the initiation interval and latency for
each loop-based application kernel.

HOFs Loop-Based

Function Name Interval
(Cycles)

Latency
(Cycles)

Interval
(Cycles)

Latency
(Cycles)

FFT 1 59 1 59
Argmin 1 7 1 7
FIR Filter 1 65 1 65
Insertion Sort 1 31 1 31
Bitonic Sort 1 21 1 21
Smith-Waterman 1 16 1 16

TABLE III
PERFORMANCE RESULTS FROM VIVADO HLS 2017.4 FOR SIX

APPLICATION KERNELS ON 16-ELEMENT LISTS

From Table III we conclude that our higher-order functions
produce equal performance to fully-unrolled loop-based de-
signs. This is evident from comparing the initiation intervals
of columns 2 and 4 and the latencies of columns 3 and 5
in Table III. For all designs, higher-order implementations
are equal to fully-unrolled loop-based implementations. We
conclude there are no performance penalties associated with
our higher-order functions.

Post-Implementation resource utilization is shown in Ta-
ble II. Columns 2-6 in Table II show resource utilization
for applications written with our higher-order functions and
columns 7-11 show resource utilization for applications written
with fully-unrolled loops.

From Table II we conclude that our higher-order functions
implementations consume similar resources to loop-based im-
plementations. Higher-order function and loop-based imple-
mentations consume equal numbers of DSPs and no BRAMs.
The two methodologies also consume similar numbers of
Flip-Flops (FFs), Look-Up-Tables (LUTs), and Shift-Register-
Look-up-tables (SRLs): The maximum resource difference
between the two implementation methodologies is less than
10 resources, a less than 1% difference in most cases. Given
these small differences, we conclude that our functions do not
produce significant differences in resources consumed.

We have a theory for this behavior. Vivado HLS and SDSoC
use an LLVM backend to generate verilog circuits. This verilog
is emitted from LLVM IR. We theorize that this behavior is
because LLVM IR produced by our higher-order functions is
identical to the LLVM IR produced by loop-based designs
after code transformations have been performed. However, the
designs above generate large LLVM IR files, and it is difficult
to differentiate the structures. However, results shown here are
consistent with this theory.

Post-Implementation frequency statistics are shown in Ta-
ble IV. The statistics in Table IV are gathered from a sweep
of 13 Vivado Implementation goals. Columns 2-4 show the
mean, median, and standard deviation of frequency results for
application kernels implemented with higher-order functions,
and columns 5-7 show statistics for loop-based designs.

HOFs Fmax (MHz) Loop Fmax (MHz)

Function Name Mean Med. Std. Mean Med. Std.

FFT 123.56 124.22 3.35 123.56 123.44 3.18
Argmin 110.64 110.94 2.51 110.91 109.77 2.89
FIR Filter 166.80 165.63 3.12 165.56 166.41 3.57
Insertion Sort 162.83 162.11 3.22 166.47 164.84 5.02
Bitonic Sort 112.77 112.11 3.50 113.85 115.63 2.76
Smith-W. 103.73 104.69 4.19 103.58 105.47 5.34

TABLE IV
MAXIMUM FREQUENCY STATISTICS FROM 13 IMPLEMENTATION RUNS OF

VIVADO 2017.4

To determine whether the average maximum frequency of
higher-order-function-based kernels differs statistically from
loop-based kernels we perform an exact permutation test with
the null hypothesis of equal means [18], [19]. In considering
whether to reject the null hypothesis, we adjust for multiple
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comparisons using Holm-Bonferroni (H-B) correction, this is
necessary because we test each of the six designs indepen-
dently. The resulting p-values and α = 0.05 H-B rejection
thresholds are reported in Table V.

Function Name p-value α = 0.05 thresh.
FFT Algorithm 0.97656 0.05
Argmin 0.74976 0.01667
FIR Filter 0.22267 0.01
Insertion Sort 0.00830 0.00833
Bitonic Sort 0.23193 0.0125
Smith-Waterman 0.91406 0.025

TABLE V
p-VALUES AND H-B REJECTION THRESHOLDS FROM A PERMUTATION

TEST WITH THE NULL HYPOTHESIS OF EQUAL MEANS

Out of the six designs, only one (Insertion Sort) would
be rejected at the α = 0.05 level, and only just barely.
Given the results of the Table V analysis, we conclude that
our functions produce maximum frequency results that are
generally statistically indistinguishable from those of loop-
based designs.

V. RELATED WORK

A. Hardware Development Languages

There have been several hardware-development projects
that bring functional languages to bring higher-order func-
tions to hardware development. Lava [14] and Cλash [17]
are functional hardware development languages embedded in
Haskell that provide higher-order functions and polymorphism
to users. Lava is interesting because the operators are com-
posed from functional definitions of Xilinx primitives, which
provides a function abstraction for the user and context for the
compiler to improve synthesis.

Higher-order functions originate from, but are not limited
to purely-functional languages. The Chisel project [15] uses
Scala and provides higher-order functions. Several projects
have used Python for hardware development, for example,
PyMTL [20] is a project that embeds a hardware development
language in Python to raise the level of abstraction. These
projects provide higher-order functions, imperative syntax, and
polymorphism to generate circuits.

However, HDL projects fail to raise the designer’s level of
abstraction. The notion of wiring together operations, schedul-
ing, registers, and clocks is pervasive. These concepts are
unfamiliar to software developers. In addition, HDL languages
do not generate complete systems. C/C++ synthesis tools com-
pletely abstract the detailed wiring, scheduling, and clocking
concepts and automate core integration with communication
and memory interfaces [1], [4], [5].

B. High-Level Synthesis Languages

High-level synthesis tools were developed to eliminate
scheduling, wires, and registers from designer control - but few
support higher-order functions. The Bluespec [21] language
is one tool that provides higher-order functions. Bluespec is
written written as a set of rules that are executed when pre-
requisites are met. These rules are scheduled by the Bluespec
compiler to create a Verilog circuit.

Despite its obvious advantages the syntax and structure of
the Bluespec language is substantially different than modern
software languages. Our work provides a syntax that is similar
to modern software languages and still provides higher-order
functions, and automatic scheduling.

C. Domain-Specific Languages

In [10] the authors develop a domain-specific language
with higher-order functions to generate parallel hardware.
This domain-specific language is scheduled, translated into
Maxeler’s vendor-specific dataflow hardware development lan-
guage, and finally deployed onto the vendor system. By using
higher-order functions the authors can deploy highly-parallel
systems, with low verbosity and high productivity for software
engineers.

Our work does not use a domain specific language. Instead,
we provide a familiar software API within C++ synthesis tools.
By targeting the C++ compiler toolchain we can rely on a large
body of existing work on optimization passes to improve our
quality of result.

In addition, [10], [9], and [?] are highly complementary to
our own. In [10] the authors state: “generating imperative code
from a functional language only to have the HLS tool attempt
to re-infer a functional representation of the program is a
suboptimal solution because higher-level semantic knowledge
in the original program is easily lost.” Similarly, [9] motivates
the need for parallel patterns in C++. We believe our work is a
basis for both of these works. We have generated higher-order
function interfaces for C++ synthesis, eliminating the need to
“re-infer a functional representation”.

D. Our Work

In our work we develop a library of higher-order functions
for C/C++ synthesis tools. Using C/C++ synthesis tools avoids
the pitfalls of HDLs: low-level wiring, registers, scheduling,
and interfaces. Unlike prior work in high-level synthesis, our
work is synthesizable to hardware and available in standard
tools without modifications. Finally, it provides a syntax
similar to a modern dynamically typed productivity language
within C++.

VI. CONCLUSION

In this work, we have demonstrated a library of synthesiz-
able library of higher-order functions for C++. These functions
mimic the syntax of a modern dynamically-typed productivity
language despite being written in a statically-typed language,
for a tool with limited memory primitives.

We demonstrated how we build our higher order functions
using C++ templates, and new features in the C++ standard.
The library we created uses extensive C++ templates but the
API we produced is simple and has similar syntax to Python.

Our results demonstrate that our code generates highly-
similar hardware to traditional loop-based high-level synthe-
sis: performance results were equal, differences in resources
consumed were small, and the distributions of the maximum
frequencies were generally statistically indistinguishable.
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There are challenges ahead for this work: First, defining
functions is more verbose than in other languages. Second,
our work currently instantiates completely parallel computa-
tion kernels. Further work is needed to break these kernels
into iterative sub-problems and provide a trade-off between
performance and area.

In summary, we have made measure steps toward increasing
the accessibility of C++ synthesis tools by providing common
abstractions that are present in software environments.
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