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Abstract—Cryptographic cores are known to leak information
about their private key due to runtime variations, and there are
many well-known attacks that can exploit this timing channel.
In this work, we study how information theoretic measures
can quantify the amount of key leakage that can be exacted
from runtime measurements. We develop and analyze twenty
two RSA hardware designs – each with unique performance
optimizations, timing channel mitigation techniques or discretiza-
tion/randomization countermeasures. We demonstrate the effec-
tiveness of information theoretic measures for quantifying timing
leakage through correlation analysis of information theoretic
measurements and attack results. Experimental results show that
mutual information is a promising technique for quantifying
timing leakage for RSA, AES and ECC ciphers, i.e., the mutual
information correlates to being able to successfully guess the
value of the private key. This is an important step towards a
hardware security metric which allows designers to reason about
security alongside traditional hardware design metrics like area,
performance, and power.

Index Terms—Hardware security, cryptographic function, tim-
ing channel, information flow, security metric.

I. INTRODUCTION

CRYPTOGRAPHIC algorithms are important functions
for securing systems and information. These algorithms

are constructed in a manner that makes them functionally dif-
ficult to break. For example, RSA (perhaps the most common
asymmetric encryption algorithm) uses a trapdoor or one-way
function related to prime factorization that makes it computa-
tionally difficult to attack when you do not know the private
key. While these cryptographic algorithms are mathematically
secure in a functional sense, their implementations may con-
tain security vulnerabilities due to side channels. For example,
researchers have demonstrated that it is easy to recover the
secret key by looking at the amount of time the algorithm
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takes to execute (timing side channel) [1] or the amount of
power it consumes while performing the computation (power
side channel) [2].

There are a substantial number of demonstrated attacks on
cryptographic systems using different types of side channels.
Kocher was first to analyze the timing channels in several
cryptographic algorithms [1]. Schindler et al. identified the
timing channel in an RSA implemented using Chinese Re-
mainder Theory [3]. The RSA implementation in the OpenSSL
library was reported to leak timing information even in a
noisy network environment [4]. More recently, the elliptic
curve cryptography system in OpenSSL has also been dis-
closed to leak information from timing channel [5]. Yarom
et al. successfully launched an attack on constant time RSA
by exploiting cache timing channel [6]. The RSA blinding
technique also failed to prevent timing leakage in a software
RSA implementation [7].

Recently researchers proposed techniques to analyze hard-
ware designs for timing channels or developed new or modi-
fied hardware languages that completely eliminated a specified
timing side channel. Zhang et al. proposed a typing extension
on top of Verilog that eliminated timing channels [8]. Li
et al. developed a hardware description language that mit-
igated timing channels through careful finite state machine
generation [9]. Oberg et al. [10] proposed a framework to
detect timing channels in hardware designs including caches,
cryptographic cores, and SoC systems.

These approaches generally take a qualitative “all or noth-
ing” approach to timing channel security. In other words,
they take (sometimes substantial) measures to completely
eliminate the timing channel, or they simply detect that a
side channel does or does not exist. And when there is a side
channel, the techniques say nothing about the severity of that
channel. Many times it is not possible or necessary to build a
completely secure system (i.e., completely eliminate the side
channel). This may be too costly in terms of performance,
power, area, or design time; or it is not crucial to make the
system 100% secure, e.g, the information being protected does
not need the utmost levels of protection. Thus, cryptographic
systems often allow for some amount of information leakage.
For example, it may be ok to leak the position of the highest
non-zero key bit if that will enable the design to execute sub-
stantially faster. Thus, we argue for more quantitative metrics
that can assess the severity of the leakage, and enable the
designer to trade-off the security benefits alongside traditional
design metrics (e.g., area and performance).

Quantitative metrics can help designers more precisely mea-
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sure the security of a design. They can answer design questions
such as “is one implementation of a cryptographic function
more secure than another?”, and “how effective is a particular
security mitigation technique?”. These provide insights for
making important design decisions. For example, A pipelined
version of a design leaks 20% less timing information or
adding some security mitigation technique will cause 15%
more area overhead while making the design 40% more secure.
Deriving effective metrics allows security be integrated as
an important decision variable for hardware design space
exploration.

Information theoretic notions developed by Claude Shannon
provide powerful tools for quantifying channel capacity of
a transmission medium [11]. For example, Clark et al. used
entropy to quantify the amount of information leakage from
“while” language [12]. Zhang et al. revealed information
leakage of AES cryptographic implementation from cache ar-
chitectures using mutual information analysis [13]. Köpf et al.
studied the amount of information leakage versus performance
and established boundaries on the amount of information
flow [14].

This paper investigates how information theoretic metrics
can be used to quantify timing side channels in cryptographic
core implementations. Specifically, this paper makes the fol-
lowing contributions:
• Proposing metrics that enable designers to reason about

the security of their hardware design with respect to
timing side channels;

• Demonstrating how information theoretic methods such
as entropy and mutual information quantify timing leak-
age across different cryptographic hardware architectures
such as RSA, ECC and AES;

• Presenting experimental results that reveal the effects
of synthesis optimization, mitigation techniques, coun-
termeasures (discretization and randomization) on the re-
duction in RSA timing channel leakage using information
theoretic measures and timing attacks;

• Validating and verifying the correlation between informa-
tion theoretic measures and the ability to launch a timing
attack, which allows information theoretic metrics to help
designers to trade-off security alongside traditional design
metrics such as area and performance.

The reminder of this paper is organized as follows. In
Section II, we describe the threat model. In Section III, we
cover timing attacks on RSA and our method for quantifying
timing flow. Section IV discusses architecture optimization,
mitigation techniques and countermeasures for creating differ-
ent RSA architectures. Section V presents experimental results
on RSA timing channel. Section VI presents timing channel
evaluation about AES and ECC ciphers. We briefly review
related work in Section VII and conclude in Section VIII.

II. THREAT MODEL

Cryptographic cores are usually integrated into a system on
chip (SoC) to accelerate security functions. Our threat model
assumes the attacker can measure encryption time, e.g., an
untrusted IP core or malicious software/firmware in the SoC

could monitor or use the cryptographic cores in order to re-
cover the secret key through runtime measurements. Our threat
model applies to any hardware components where the attacker
can extract secret information through timing information. We
use RSA as an example throughout the paper, but the idea can
extend to other components where the pertinent information
is a function of the computation time.

We assume the attacker knows the algorithmic details of
the cryptographic core of hardware IP under attack. We further
assume that the attacker has control over some inputs, (e.g., the
plaintext) and can observe certain outputs, e.g., the ciphertext
and “ready out”, “completed” or equivalent signal noting the
end of the computation. Essentially we assume that the attacker
has the ability to somehow measure the encryption time.

Our experiments are performed using different RSA archi-
tectures running on an FPGA. We add control logic around
these RSA cores to provide input data, and determine the
number of clock cycles required for each encryption operation.
Our threat model can be extended beyond this experimental
setup. It is applicable to any arbitrary hardware design such as
AES or ECC that leaks information through a timing channel.

III. BACKGROUND

A. Information Theoretic Metrics

Entropy measures the uncertainty of a variable. Using p(x)
to denote the probability mass function (pmf) of random
variable X , the Shannon Entropy is defined as

H(X) = −
∑
x∈X

p(x) log p(x) (1)

Mutual information quantifies the reduced uncertainty of a
variable X given the ability to observe another variable Y . It is
a measurement of how much information variable Y contains
about variable X . The mutual information between X and Y
is defined as
I(X;Y ) = H(X) +H(Y )−H(X,Y ), x ∈ X, y ∈ Y

= H(X)−H(X|Y )
(2)

where H(X|Y ) is the conditional entropy of X given Y .

B. Timing Channel in RSA

RSA is a public key cipher that maintains a key pair for
encryption and decryption. Given a public key e, secret key
d, modulus n, and plain text m, the cipher text c is encrypted
and decrypted as follows:

c = me mod n

m = cd mod n
(3)

Modular exponentiation is the basic operation of RSA. Al-
gorithms 1 and 2 illustrate how modular exponentiation is
calculated through repeated square-and-multiply from right to
left (R-2-L) and from left to right (L-2-R), respectively.

Both algorithms perform modular multiplication when the
key bit under consideration has a binary value of 1 (cor-
responding to Lines 4 - 5 in Algorithm 1 and Lines 3 -
4 in Algorithm 2). By comparison, a simple assignment is
performed when the current key bit has a value 0 (Lines 6 -
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7 in Algorithm 1 and Lines 5 - 6 in Algorithm 2). Thus, the
key bit values cause a timing variation in a sequential imple-
mentation. Furthermore, the messages (inputs) to the modular
multiplication lead to variations in modular exponentiation
time. These runtime differences create a timing channel that
an attacker can use to ascertain information about the key.

Algorithm 1 Modular exponentiation cd mod n calculated
using square-and-multiply from right to left (R-2-L)

1: m[0] := 1
2: s[0] := c
3: for i := 0 to w − 1 do
4: if d[i] == 1 then
5: m[i+ 1] := m[i] * s[i] mod n
6: else
7: m[i+ 1] := m[i]
8: end if
9: s[i+ 1] := s[i] * s[i] mod n

10: end for
11: Return m[w]

Algorithm 2 Modular exponentiation cd mod n calculated
using square-and-multiply from left to right (L-2-R)

1: s[w] := 1
2: for i := w − 1 to 0 do
3: if d[i] == 1 then
4: m[i] := s[i+ 1] * c mod n
5: else
6: m[i] := s[i+ 1]
7: end if
8: s[i] := m[i] * m[i] mod n
9: end for

10: Return m[0]

To demonstrate the existence of a timing channel, we create
hardware designs for both the L-2-R and R-2-L algorithms
and measure their execution time for different messages and
keys. Figure 1 shows the runtime measurements in terms of
the number of clock cycles. The two graphs at the top of
Figure 1 show the runtime distributions for different messages
using a single key (0x00971f1fbd396d4a4557ca2efa360475).
The graphs at the bottom of Figure 1 present the run-
time distributions for different keys using the same message
(0x134001e5135cb206920021e5135cb206). The key and the
message affect the computation of the modular exponentiation
in different manners; the key dictates the control of each
iteration and the message contributes to time to perform
the modular multiply and modular square calculations. From
Figure 1, we can see that the runtimes for different messages
range from 93399 to 94630 clock cycles; R-2-L and L-2-
R have the mean values of 94242 and 93750 clock cycles,
respectively. The runtimes for different keys range from 78801
to 105983 clock cycles with the frequency below 8; R-2-L and
L-2-R have the mean values of 93090 and 92598 clock cycles,
respectively. This shows that both the message and key can
cause variations in the runtime of the RSA algorithm, which
makes it susceptible to a timing attack.

Fig. 1. RSA modular exponentiation time distribution for R-2-L and L-2-R
algorithms. Modular exponentiation time in X axis is in clock cycles.

We will show how secret key can be recovered through sim-
ple yet effective statistical analysis of runtime measurements
in Sections III-C and III-D.

C. Kocher’s Timing Attack

Kocher was the first to provide a comprehensive theoretical
analysis of a timing attack using variance analysis [1]. The
attack is based on the assumption that the runtimes for
processing different key bits are independent, i.e., given a
number of messages, the runtime observations for different
key bits compose independent random variables.

Let T denote the vector that contains the total runtime obser-
vations for processing N messages and ti (i = 0, 1, · · · , w−1)
denote the vector that contains the runtimes for the computa-
tion corresponding to the i-th key bit. Then we have

var(T) = var(

w−1∑
i=0

ti) =
w−1∑
i=0

var(ti) (4)

The attack makes guesses of the current key bit (assuming
it could be either zero or one) and obtains the runtime vectors
t0i and t1i through observation. For a correct guess tci (c ∈
{0, 1}), the var(T) will decrease by var(tci ) to var(T − tci ).
For the incorrect guess, t1−ci is independent from the correct
runtime observations, and var(T − t1−ci ) should theoretically
increase var(T) by var(t1−ci ). In a real attack, the runtime
observation vectors are not perfectly independent from each
other. However, a correct guess tends to decrease the variance
by a larger amount than a wrong guess. The attack takes the
guess value that results in a larger reduction in variance as the
key bit.

D. Sliding Window Timing Attack

Kocher’s timing attack method is based upon the assumption
that the runtime distribution for individual key bits is inde-
pendent. It is possible to guess more than one bit per guess
iteration as long as this independence condition still holds. We
extend Kocher’s timing attack to a Sliding Window method.
In this method, we consider l-bits per guess iteration, where
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l is the window size. This yields to 2l potential guesses at
each guess iteration. A guess that gets all l bits correct should
result in the most significant decrease in variance while there
should be a smaller decrease in the variance as the number of
incorrectly guessed key bits increases.

In this following, we will introduce the Non-overlapping
Sliding Window method (with window sizes of 1, 2, and 3)
and Overlapping Sliding Window method (with a window size
of 3) to perform timing attack and analysis. We show that small
window sizes increase the accuracy over Kocher’s method
while running in a reasonable amount of time.
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Fig. 2. The sliding window methods using 3-bit-window. The upper part
shows the Non-overlapping Sliding Window method and the bottom part shows
the Overlapping Sliding Window method.

The upper part of Figure 2 shows the Non-overlapping Slid-
ing Window method using a 3-bit-window. The first window
considers bits 0-to-2 of the key, resulting in 8 guesses: 000,
001, · · · , 111. The correct guess among the eight leads to the
largest decrease in variance while the completely wrong guess
should have the smallest decrease in variance. The decision on
the current key bits can be made by observing and comparing
the decrease in variance. Then we proceed to the next window
that covers the next three bits of the key.

The bottom part of Figure 2 illustrates the Overlapping
Sliding Window attack. Here, we determine the guess for the
3-bit-window as before, but the successive windows provide
multiple guess results for the same bit. Thus, each key bit
has three (or more depending on the window size) guesses
corresponding to the number of windows covering it. We use
majority vote to decide the current key bit. Note that the
beginning and ending key bits have fewer than three guesses
as they are a boundary condition.

The sliding window methods can improve the attack success
rate. However, this comes at the cost of additional attack time
as the window size increases. This is because the attack time
is linear to the number of guess iterations, which increases
exponentially with the window size. We focus on how many
guess iterations are required for guessing each key bit on
average. In order to make a decision on each key bit, 1-bit-
window needs two guess iterations. With a window size of l,
the attack has to perform 2l guess iterations for each window,
each key bit requires 2l/l iterations on average. If the attack
time is one unit for Kocher’s attack, the attack time for the
Non-overlapping Sliding Window (window size = l) method
can be described as:

costsliding = 2l / 21 / l = 2l−1/l (5)

and the cost for the Overlapping Sliding Window method is:

costoverlap ≈ l ∗ 2l−1/l = 2l−1 (6)

It is worth noting that window size selection should sat-
isfy the independence assumption, i.e., the distributions of
processing time for each window should be independent.
Equations (5) and (6) show that the attack complexity grows
exponentially as the window size increases. Therefore, we
limit the window size to satisfy that l is significantly smaller
than w, where l is window size, and w is key length.

E. Quantifying Timing Information Flow in RSA

In this section, we characterize the timing information
leakage and establish a quantitative analysis model for the
RSA timing channel.

We use T to denote the set of RSA encryption times under
different keys (K) and messages (C). For a given key k ∈ K
and message c ∈ C, we have a specific runtime observation
t ∈ T . Since the keys and messages are discrete variables, we
use the pmf to describe the distribution of the RSA runtime
measurements as Equation (7):

L(K,C) = p{T = t | C,K}, c ∈ C, k ∈ K (7)

The pmf describes the timing characteristics of the RSA
architecture. For example, Figure 1 shows that different RSA
implementations can have variations in runtime distribution.
We can quantify the timing channel capacity of an RSA
architecture in terms of its entropy:

H(T ) = −
∑

k∈K,c∈C

p(T = t) log p(T = t) (8)

The entropy quantifies the average amount of information
revealed by runtime measurements. It only takes runtime
observations into account, ignoring the effect of the key on
the runtime. Although entropy provides a coarse-grain way
to evaluate the timing channel capacity, it is incapable of
quantifying how much information is leaking from each key
bit in RSA architecture.

We use mutual information to disclose this bit-level timing
channel characteristics about key information leakage. Given
a set of keys, there will be corresponding runtime observations
for these keys. We employ mutual information to measure the
amount of information revealed from runtimes about the key
bits:

I(ki;T ) = H(ki) +H(T )−H(ki, T ) (9)

where ki denotes the value of the i-th key bit and T is the
observed runtime for the entire key.

This shows how much information from the i-th key bit
leaks through the execution time or equivalently how much the
execution time depends on the i-th bit of the key. It also reveals
the timing characteristics of the RSA architecture with respect
to individual key bits. Although we quantify timing channel
in RSA hardware in much detail throughout the paper, mutual
information analysis can also apply to other ciphers such as
AES and ECC. We will present timing channel evaluation for
these ciphers in the following sections.
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IV. RSA HARDWARE ARCHITETURES

In this section, we will create 22 different RSA archi-
tectures, divided into two categories. The first category is
generated by using different synthesis optimizations, which
will be discussed in more detail in Section IV-A. The second
group employs different timing channel mitigation techniques
or discretization/randomization countermeasures, which will
be covered in Sections IV-B and IV-C.

A. RSA Performance Optimization Architecture

Hardware optimizations can have a significant impact on
timing. For example, architectures exploiting parallelism or
pipelining require a smaller number of clock cycles than
those that work in a sequential manner. We are interested in
understanding if and how these different optimizations affect
the amount of information leaked through runtime. In order to
evaluate our method, we use high-level synthesis (HLS) to do
different hardware optimizations. Optimizations are typically
specified using pragmas that tell the HLS tool how to optimize
particular regions of the code, e.g., pipeline, and unroll. In this
work, we use the Xilinx Vivado HLS tool to generate five dif-
ferent RSA architectures using various optimization strategies
(e.g., to generate hardware with different performance and area
trade-offs).

L1: for(i=0 to w-1){

#pipeline

#unroll    

if(Key[i]==1)       

  ModMult(…); //mod multiply

ModMult(…);  //mod square 

}

L2: for(i=0 to w-1){

#pipeline

#unroll    

if() {   …

           … 

           … }

}

ModExp(Outer_Loop) ModMult(Inner_Loop)

for(i=0 to w-1){

  #pipeline

  #unroll    

  if(Key[i]==1)       

    ModMult(…); // mod multiply

  ModMult(…);  // mod square

}

for(i=0 to w-1){

  #pipeline

  #unroll    

  if(…) {

  

  }

}

L1: ModExp (Outer_Loop) L2: ModMult (Inner_Loop)

L1: for(i=0 to w-1){

#pipeline

#unroll    

if(Key[i]==1)       

  ModMult(…); //mod multiply

ModMult(…);  //mod square 

}

L2: for(i=0 to w-1){

#pipeline

#unroll    

if(…) {   …

              … 

              … }

}

ModExp(Outer_Loop) ModMult(Inner_Loop)

...

Fig. 3. The basic RSA algorithm implemented with two nested loops. The
outer loop calculates modular exponentiation; the inner loop performs modular
multiplication.

We implement Algorithm 1 in synthesizable C code, which
consists of two nested loops as shown in Figure 3. The
outer loop (L1) performs computations from Lines 3-10 in
Algorithm 1. The inner loop (L2) performs the modular
multiply or modular square in Line 5 or Line 9. While there
are many pragmas for optimization in HLS, we focus on
pipeline and unroll due to their importance and impact on
final architecture of hardware. The pipeline pragma is used
to pipeline the iterations of loops. The unroll pragma allows
multiple iterations of the loop to be executed at the same time.

Using these two pragmas, we generate 16 different architec-
tures using different HLS directives. However, only 5 of them
are relatively unique, i.e., the others are similar to these five
and not interesting enough to discuss. The OPTIMIZATION
group of Table I summarizes these five designs. The dash
symbol indicates no optimization is performed for that loop.

The Sequential design does not have any optimization; it is
largely sequential. The second design pipelines the modular
multiply (L2). The Unroll design unrolls the modular multi-
ply loop. The Pipeline&unroll-1 design partially unrolls and
pipelines the modular multiply loop. The Pipeline&unroll-2

design unrolls the modular multiply loop and pipelines the
modular exponentiation loop.

B. RSA Timing Mitigation Architecture
Mitigation techniques make changes to the algorithm itself

in order to reduce timing-based leakage. These mitigation
techniques typically fall to two categories, either making
runtime measurements constant or random [4], [15]. Other
possible defenses attempt to decouple runtime measurements
from messages. These include performing dummy modular
multiplication even when the key bit is zero [4], moving the
modular square into the conditional branch statements [4],
inserting additional reduction in the Montgomery algorithm
even if unnecessary [15], and introducing some random num-
bers into RSA computation (i.e., RSA blinding) to make the
runtime observation unrelated to the message [4]. In our anal-
ysis, we consider several RSA implementations with built-in
mitigation techniques. These designs include the Left-to-right-
multiply-always (L-2-R-always), Power-ladder, Montgomery-
multiplication (Montgomery), Parallel, Exponent-blind and
Base-blind designs.

The L-2-R-always algorithm inserts a dummy multiply in
the else statement of the conditional branch. This reduces the
key dependent delay difference and helps mask the timing
feature that causes key leakage. The Power-ladder algorithm
carefully re-designs the algorithmic flow. It moves the modu-
lar square operation into the conditional branch and always
performs both modular multiply and square regardless of
the current key bit. For these previous two architectures,
the runtime of a modular multiplication operation is not
constant; there is timing variation for different messages. The
Montgomery algorithm uses a different modular multiplier
(i.e., MontMult). The runtime of a modular multiplication
operation using this new multiplier is entirely determined by
the modulus. Although there is still a timing difference caused
by the conditional branch in the algorithm flow, it eliminates
the timing difference resulting from different messages. Thus,
the variance of the runtimes is consistently zero for both key
bit guesses, making it impossible to determine the correct
key bit. The Parallel design uses two modular multipliers to
implement modular multiply and modular square, respectively.
There is no data dependence between the conditional branch
statement and modular square, these two components run
in parallel. Because modular multiply always costs equal
or less time than modular square, modular square execution
time masks conditional branch statement execution time. The
Parallel architecture reduces timing variation by increasing
parallelism but it does not eliminate the timing difference
resulting from different messages and keys. The Exponent-
blind algorithm introduces a random number to protect the
private key, which is based on Fermat’s theorem to guarantee
the correctness of modular exponentiation. It decouples and
fuzzes the correlation between the private key and the runtimes
significantly. The Base-blind algorithm introduces a random
number to mask the messages, which makes the runtime ob-
servation unrelated to the messages. The MITIGATION group
of Table I summarizes the different designs with mitigation
techniques used in our analysis.
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TABLE I
DESIGN OVERHEADS FOR DIFFERENT RSA ARCHITECTURES.

Designs Optimization Techniques Mitigation Techniques Slice Regs. LUT Area (Cells) Avg. CyclesL1 L2

Optimization

Sequential – – – 1846 1400 4479 93066
Pipeline – pipeline – 1851 1689 4919 70167
Unroll – unroll – 4204 4799 11779 75869

Pipeline&unroll-1 – pipeline unroll – 4212 4768 11939 70988
Pipeline&unroll-2 pipeline unroll – 194097 419047 – 42699

Mitigation

L-2-R – – – 2409 1763 5521 92588
L-2-R-always – – Dummy modular multiply 2538 1823 5773 121733
Power-ladder – – Re-design algorithm flow 2539 1883 5770 124487
Montgomery – – Const. time modular multiply 5293 5648 13636 95021

Parallel – – Parallel multiply and square 1809 2153 5051 22699
Exponent-blind – – Exponent randomization blinding 2663 2132 4381 100907

Base-blind – – Base randomization blinding 7226 12780 16289 54177

Discretization

Interval-100 – – Interval = 100 cycles 1857 1414 4508 93115
Interval-150 – – Interval = 150 cycles 1857 1413 4507 93140
Interval-200 – – Interval = 200 cycles 1857 1415 4508 93165
Interval-300 – – Interval = 300 cycles 1857 1414 4508 93215

Constant – – Constant time 1866 1430 4534 106690

Randomization

LFSR4 – – Delay 0 to 15 cycles 1860 1413 4509 93071
LFSR6 – – Delay 0 to 63 cycles 1868 1426 4505 93081
LFSR8 – – Delay 0 to 255 cycles 1872 1428 4542 93176
LFSR9 – – Delay 0 to 511 cycles 1875 1429 4552 93304
LFSR10 – – Delay 0 to 1023 cycles 1878 1432 4559 93560

C. Discretization and Randomization Countermeasure

1) Discretization Countermeasure: A simple yet effect way
to hide timing variation from observations is to make the
total runtime for processing all messages and keys constant.
This completely eliminates the timing side channel. However,
it comes at a high performance penalty since all executions
will have the worst case execution time. A more intelligent
alternative is to quantize the RSA computation times. This
enforces that the execution times are bounded to multiples of
some predefined time quantum [16]. This method can help
reduce computation cost but does not fully eliminate timing
leakage. We refer to this quantile method [16] or bucket
method [14] as the discretization countermeasure. It can be
implemented by a simple module to delay the computation
to force them to complete at certain times. This aggregates
“close” completion times to a few discrete values, and thus
makes it harder to discriminate between them. One can think
of this as eliminating several lower bits of the timer used
to measure the execution time. There is clearly a loss of
information that could possibly make the attack more difficult.

In order to understand the effect of discretization counter-
measure on key leakage, we use the Sequential design as a
baseline in our implementations. The worst case execution
time is used as the runtime for the Constant design. Then
we set the execution time interval to different number of
clock cycles. For example, when setting the time interval to
100 clock cycles, a runtime of 94887 clock cycles will be
delayed to 94900 after discretization. In our implementations,
we set the interval sizes to 100, 150, 200 and 300 clock
cycles. Different discretization designs and their corresponding
average runtimes are shown in the DISCRETIZATION group
of Table I.

2) Randomization Countermeasure: Another frequently
used technique for fuzzing the timing observation is to
randomize the computation time in order to decouple the
correlation between the key bits and runtime. This can be

implemented by incorporating a random number generator for
delay control.

In order to understand the effect of randomization counter-
measure on key leakage, we also use the Sequential design
as a baseline in our implementations. We employ linear
feedback shift registers (LFSRs) to add random delay to RSA
computation time. The LFSR lengths are set to 4, 6, 8, 9 and
10 bits for different implementations. Different randomization
designs and their corresponding average runtimes are shown
in the RANDOMIZATION group of Table I (LFSRn refers to
n-bit LFSR).

V. EXPERIMENTAL RESULTS

A. Experimental Setup
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Fig. 4. Timing attack framework.

Our timing attack framework consists of three modules:
test vector generation, RSA timing measurement, and statis-
tical analysis. Figure 4 illustrates our experimental setup. We
implement different RSA architectures on the Xilinx VC707
FPGA board. We focus on 128-bit RSA cores for ease of result
interpretation though the quantitative analysis method applies
to RSA cores of arbitrary key length. In the test vector genera-
tion module, we use OpenSSL to generate RSA key pairs (key
and modulus) and produce random messages with Python’s
pseudo-random number generator. In the statistical analysis
module, we compute the variances of runtime measurements
to guess each key bit using both Kocher’s and sliding window
timing attack methods. We calculate the mutual information
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between the key bits and total runtime to quantify information
leakage.

B. Quantitative Analysis of Optimized RSA Architectures

We first analyze five different RSA cores optimized for
performance (see the OPTIMIZATION group of Table I in
Section IV-A). We collect runtime samples of 6000 different
key pairs for each architecture. In order to understand the
relationship between hardware architecture and key informa-
tion leakage, we perform mutual information analysis using
Equation (9). The results are shown in Figure 5.

From Figure 5, we can see that the Sequential architecture
leaks about 0.7 bits of information on average while the Unroll
architecture has 0.8 bits of leakage. Although the unroll direc-
tive allows loop parallelism in modular multiplication by using
extra hardware resources and operations, it introduces more
unique runtimes, increasing H(T ) and mutual information
significantly. The Pipeline design reduces information leakage
to 0.5 bits. Pipeline&unroll-1 further reduces this leakage to
around 0.36 bits. All these designs are implemented using one
modular multiply function, so modular multiply and modular
square operations execute sequentially. The pipeline and unroll
directives in HLS change the structure of inner loop for
these designs. The general trend is that implementation level
parallelism reduces the amount of leakage.

The Pipeline&unroll-2 design only leaks information about
the highest non-zero key bit. This design has a special archi-
tecture – the synthesis tool generates two modular multipliers,
one for modular multiply and the other for modular square.
These two modular multipliers run in parallel, and each key
bit iteration completes in the same number of clock cycles. In
addition, their modular multiply and control logic times are
also constant, diminishing the effect from different messages.
We can see that for most of the key bits, the leakage is nearly
zero but the curve increases dramatically at the end. That is due
to the fact that architecture stops its execution after reaching
the most significant 1 bit of the key. Thus, we can accurately
determine where the highest non-zero key bit resides by
observing the total runtime of the algorithm. For example,
the longest runtime will have a 1 in the most significant bit.
If the most significant bit is 0, it will have a shorter runtime
since the algorithm will terminate sooner. In other words, the
distribution of high key bits has a significant effect on I(ki;T )
by dominating the total runtime. Another way of viewing this
is using Equation (2) to derive the following:

I(ki;T ) = H(T )−H(T |ki) (10)

Here, the entropy of the total runtime H(T ) is constant for all
the key bits given the total runtime measurements; the decrease
in conditional entropy H(T |ki) contributes to the increase in
I(ki;T ). While the decrease in the conditional entropy means
that the uncertainty of total runtime T given ki decreases, it
also indicates that the higher key bits have a deterministic
effect on the total runtime.

Note that there is sharp decrease in mutual information for
higher key bits of all designs, this is due to the fact that the
distribution of values for the higher key bits contributes to the

decrease of I(ki;T ). Although the highest key bit dominates
the total runtime for each individual key, the distribution
characteristics of higher key bits make H(T |ki) increase
significantly. Besides, there is no information leakage for the
first two key bits in any of the architectures. This is due to the
fact that these two bits are the same across all of the different
keys due to the requirements on how RSA keys are generated
(i.e., the lowest key bit must be odd). The mutual information
between a constant and another variable is constantly zero.

We conduct timing attack using Kocher’s method on each
design with 500 key pairs. The attack results are shown
in Figure 6. Figure 6 shows that the attack success rates
decrease for the higher key bits, which corresponds to the
sharp decrease trend for mutual information results in Figure 5.
The Pipeline&unroll-2 design is difficult to attack; the attack
success rate is around 50%, which is close to a random
guess. This is not surprising given that this architecture has
very little leakage as discussed earlier. Correspondingly the
mutual information in Figure 5 is nearly zero. Note that the
most significant bits have a higher attack success rate, which
corresponds to the strong up-tick in the mutual information
at the higher key bits. Visually the remainder of the attacks
follow a similar trend.

Based on our analysis, the Pipeline design introduces 10%
more area overhead while achieving 33% performance im-
provement and its timing channel leakage reduces to 0.5 bits.
Although the Unroll design causes 163% more area overhead
to achieve 23% performance improvement, its timing channel
leakage increases to 0.8 bits. The Pipeline&unroll-1 design has
167% more area overhead while achieving 31% performance
improvement; its timing channel leakage decreases to 0.36 bits.
The Pipeline&unroll-2 design reduces the key leakage to 0
except for the highest non-zero key bit at an extremely high
design cost. In the following section, we explore mitigation
techniques that reduce timing channel leakage at much lower
design overheads.

C. Quantitative Analysis of Mitigated RSA Architectures
In this section, we focus on the architectures implemented

with different mitigation techniques. These are discussed in
Section IV-B and summarized in the MITIGATION group of
Table I. We collect runtime samples using the same 6000 key
pairs as Section V-B. Figure 7 shows the mutual information
analysis results.

The L-2-R design has mutual information of 0.63 bits. The
Base-blind design has mutual information of around 0.62 bits.
The Exponent-blind design reduces key information leakage
to 0.46 bits. The L-2-R-always and Power-ladder designs have
mutual information of 0.11 bits and 0.18 bits, respectively. The
Montgomery design reduces key information leakage to 0.04
bits; the synthesis tool generates an architecture with constant
modular multiplication and constant control logic clock cycles,
removing the effect of different messages on timing. But two
modular multiply operations still run in a sequential way
without changing the conditional branch structure. Different
keys still result in timing variation and thus key bit leakage
is not completely eliminated. The Parallel design reduces the
key information leakage to 0.11 bits.
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Then we conduct Kocher’s attack on these designs using
the same 500 key pairs as Section V-B, the results are shown
in Figure 8. The designs with mitigation techniques are more
difficult to attack than the L-2-R design. The Power-ladder
design is easier to attack than the L-2-R-always design. The
Montgomery design and the Parallel design have success rates
around 50%, which are less than the L-2-R-always and Power-
ladder designs. The Exponent-blind design is harder to attack
than the designs without mitigation techniques. The success
rate of the Exponent-blind design is lower than the Power-
ladder design, but its mutual information is higher than the
Power-ladder design. The increase in mutual information for
the Exponent-blind design is caused by the random number,
which introduces additional uncertainty. It also indicates more
powerful timing attacks probably exist for the Exponent-blind
design (we validate that the Non-overlapping Sliding Window
method using 3-bit-window can improve the success rate.). The
Base-blind design is used to decouple the correlation between
the messages and the runtimes without influencing the key
leakage and the attack results significantly. Meanwhile, the
Parallel design costs 91% area overhead as compared to the
L-2-R design, but is 3 times faster than the L-2-R design while
reducing mutual information to only 0.11 bits.

When comparing attack success rates with the mutual
information results in Figure 7, we can see three trends. First,
a higher mutual information value indicates a higher likelihood
of successful attack. Second, there is an increase in the most
significant bits in both mutual information results and attack
success rate results for most of the mitigation designs. Third,
success rate decreases in higher bits location for the L-2-
R, Power-ladder, L-2-R-always and Parallel designs, which
corresponds to related mutual information analysis results in
Figure 7. Thus, mutual information analysis results can well
reflect timing channel characteristics of mitigation designs.

D. Quantitative Analysis of Discretized and Randomized RSA
Architectures

1) Discretized Architecture: Intuitively speaking, dis-
cretization countermeasures lead to less timing variation be-
cause of coarse-grain time intervals, which reduces timing
channel leakage. In this section, we focus on the architec-
tures with discretization countermeasures summarized in the
DISCRETIZATION group of Table I.

We use mutual information to measure information leakage
with the same 6000 key pairs, and use Kocher’s method
to attack each design with 100 different key pairs. The
experiment results are shown in Figure 9 and Figure 10. We
can see that mutual information results decrease gradually
while time intervals increase. And the timing attack success
rates decrease, too. Because the Constant design leaks no
information, mutual information for each key bit is 0 and the
success rate is around 50%. The Constant design leads to 13%
performance and 1% area overhead penalty to eliminate tim-
ing channel. However, discretization countermeasures improve
timing channel security by sacrificing performance slightly.
For example, the Interval-300 design results in less than 1%
performance penalty to achieve timing channel leakage of
0.013 bits from our mutual information analysis.

2) Randomized Architecture: We then use mutual informa-
tion to measure information leakage with the same set of key
pairs, and use Kocher’s method to attack each design with 100
different key pairs. The mutual information results are shown
in Figure 11 and the attack results are shown in Figure 12.
However, mutual information increases while the timing attack
success rate deceases with the increase of LFSR length. This
is because the LFSR introduces uncertainty (i.e., additional
information) to the RSA runtime. The additional uncertainty
will make the design harder to attack and affect the accuracy
of mutual information measurement under a limited number
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of samples.
A frequently used method to attack designs protected by

randomization countermeasures is to collect multiple samples
under the same input condition and take the average of
multiple measurements to average away the random noise. We
use this method to attack the RSA architectures protected by
LFSR and estimate information leakage under this new attack.

We use the same 6000 key pairs, repeat the measurement for
each key 8 times and take all the runtime measurements for
each key pair to calculate mutual information. Correspond-
ingly, we apply each message 8 times and take the mean
as the runtime for the message in our attack as well. The
mutual information and attack results are shown in Figure 13
and Figure 14, respectively. Under this new attack method,
mutual information results increase (or decrease) while the
timing attack success rates increase (or decease). This change
in the trend is because there is an increase in the number
of samples for estimating mutual information and multiple
samples for the same key pairs can now more precisely reveal
the inconsistency in runtimes caused by randomization. Such
inconsistency will cause collisions in mutual information esti-
mation and lead RSA architectures with a large LFSR, which
are harder to attack, to have lower mutual information. In
terms of design overheads, the LFSR9 design reduces mutual
information to around 0.35 bits with only 0.3% performance
and 1.6% area overhead penalty, and the LFSR10 design
reduces mutual information to around 0.34 bits with only 0.6%
performance and 1.8% area penalty.

In conclusion, mitigation designs such as the L-2-R-always
and Power-ladder designs balance the conditional branch
structure to minimize timing difference. The Montgomery
design implements modular multiplication in the Montgomery
field to eliminate the timing difference resulting from different
messages. The Parallel architecture reduces timing variation
by increasing parallelism to mask the timing difference caused
by unbalanced conditional branches. The Discretization coun-
termeasures reduce the timing difference by binning the run-
times into groups. The Exponent-blind design and randomiza-
tion countermeasures decouple the correlation between the key
bits and the runtimes by introducing additional randomness.
Our information theoretic method can also help to understand
the effectiveness of different techniques on mitigating timing
channels according to our analysis.

E. Sliding Window Attack Analysis

Based on the independence assumption made for the sliding
window methods in Section III-D, it is reasonable to decouple
the correlation of each window on the runtimes. In this section,
we present mutual information analysis and attack results
for the sliding window methods. We first focus on the Non-
overlapping Sliding Window method. Its mutual information
equation is as follows:

I(ki;T ) =
H(k[s:(s+l−1)]) +H(T )−H(k[s:(s+l−1)], T )

l
(i ∈ [s : (s+ l − 1)]; s = s+ l; 0 ≤ s < w)

(11)

where s denotes the key bit location, l denotes the window size
(it is specified to be 1, 2, 3 in this work) and w denotes the key
length. We can see that there is only one guess and mutual
information result for each key bit in the Non-overlapping
Sliding Window method.

We then test the Overlapping Sliding Window method with a
window size l of three. There will be three guesses and mutual
information results for each key bit as shown in Section III-D.
In our analysis, we need to calculate I1(ks;T ), I2(ks;T ) and
I3(ks;T ) due to the overlap in windows. Then, its mutual
information is calculated as Equation (12).

I1(ks;T ) =
H(k[(s−2):s]) +H(T )−H(k[(s−2):s], T )

3

I2(ks;T ) =
H(k[(s−1):(s+1)]) +H(T )−H(k[(s−1):(s+1)], T )

3

I3(ks;T ) =
H(k[s:(s+2)]) +H(T )−H(k[s:(s+2)], T )

3
I(ks;T ) =max{I1(ks;T ), I2(ks;T ), I3(ks;T )}

(s = s+ 1; 0 ≤ s < w)
(12)

We employ Equations (11) and (12) to quantify the infor-
mation leakage from the Sequential design under the sliding
window attacks using the same 6000 key pairs. The results are
shown in Figure 15. We can see that the mutual information
result increases with the window size increasing. When using
1-bit, 2-bit and 3-bit windows, the mutual information results
are 0.7, 0.77 and 0.81 bits, respectively. When using the
Overlapping Sliding Window method, the mutual information
is about 0.82 bits.

Then we perform timing attack based on sliding window
methods using 500 different key pairs. Figure 16 shows
the average accuracy for the key guesses. The results show
that 1-bit-window method correctly guesses 73% of the key
bits. The 2-bit-window and 3-bit-window methods increase
attack success rates to 82% and 87%, respectively. And the
Overlapping Sliding Window method has about 98% accuracy.

We can also see that as the mutual information results
go higher with the window size increasing, the attack suc-
cess rates increase too. Both mutual information and attack
success rate indicate that sliding window attacks aggravate
key leakage. Mutual information is capable of reflecting and
assessing information leakage of the RSA timing channel in
the circumstances of sliding window attacks as validated by
the attack results.

F. Correlation Analysis

To better determine the connection between mutual infor-
mation and leakage, we rely on Spearman’s ρ, as a correlation
measure between mutual information (shown in Figure 5,
Figure 7, Figure 9, Figure 11, Figure 13 and Figure 15) and
attack success rate (shown in Figure 6, Figure 8, Figure 10,
Figure 12, Figure 14 and Figure 16) for each key bit position
across all the designs. In this work, we deal with each key
bit position separately lest too much trouble in independence
analysis between the key bits.

Spearman’s ρ is nonparametric, which means that the
measure does not assume data comes from a particular
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parametrized distribution. High correlation is achieved when
one variable is a monotonic function of the other regardless
of what this function may be. While significance of ρ may
be computed according to several distribution-based measures,
we compute it using an exact permutation test for each key
bit from position 2 to 127 (The least significant two key bits
are removed because their values are constant). Figure 17
shows all the p values of the Spearman tests. We see that
117 key bit positions (93% of the key bit positions) have
p less than 0.1, where at the α = 0.1 level we reject the
null hypothesis that the mutual information and success rate
are uncorrelated. We see that 110 key bit positions (87% of
the key bit positions) have p less than 0.05, where at the
α = 0.05 level we reject the null hypothesis that the mutual
information and success rate are uncorrelated. This allows us
to say that for a greater value of the mutual information we
have much confidence to see a greater success rate – indicating
greater information leakage. In other words, both success rate
and mutual information are capable of characterizing timing
leakage for cryptographic hardware architectures. Based on the
timing channel leakage of these architectures given different
situations, mutual information is positively correlated with the
attack success rate.

Given that it may not completely conform to independence
condition between different key bits in reality, we can still rely
on statistical tools to implement proper correlation calculation.
For example, (1) using the average of the dependent data
points as [17] do; or (2) analyzing each dependent key bit
position separately across all the designs as this work shown;
or (3) setting up statistical model such as hierarchical model
or random effects model with respect to the dependence, we
do not discuss this in more detail here, leaving it an open
problem to discuss and solve in future.

VI. ASSESS TIMING CHANNEL IN OTHER CIPHERS

Mutual information is also capable of capturing timing
leakage in other ciphers such as AES and ECC. We use AES,
RSA (the Parallel design) and ECC cores from opencores.org
for illustration. The mutual information results are shown in
Figure 18.

Timing channel in AES results from the unbalanced condi-
tional modular reduction in the xtime primitive in the Mix-
Coloumns operation [18]. However, when we measure the
mutual information between the key bits and runtimes using
an AES core from [19], the result is 0. This indicates that
there is no timing channel in this AES implementation. This
is because the xtime primitive has been balanced to constant
runtime, there is no key-dependent timing variation as in [18].

The most important computation in ECC is point scalar
multiplication. The binary implementation of scalar multi-
plication using double-and-add algorithm has a conditional
branch statement structure similar to RSA. When the key
bit is one, the key bit iteration performs both point add
and point double calculation; otherwise it performs point
double only. The key bits have a significant effect on the
runtimes of scalar multiplication. Such unbalanced conditional
branch structure contributes to timing difference. For the ECC
implementation from [19], we use Equation (9) to measure
the mutual information between the key bits and the runtimes
using 6000 keys. The results are shown in Figure 18. The
mutual information is around 0.04 bits, which is pretty low. It
indicates that there is a timing channel, but it can be difficult
to attack. This ECC implementation has a timing channel
characterization similar to the Montgomery RSA design. This
is because the ECC implementation uses point add and point
double with constant times, and the ECC input points have no
effect on the timing variation [19]. So we cannot attack the
ECC design by testing different input points using Kocher’s
method. Only the key has an effect on timing variation, which
means we can still attack the ECC by testing different keys
(e.g. the brute-force method).

Mutual information can assess the ECC timing channel
information leakage in this test. However, a full overview of
timing channel characterization in different ECC implementa-
tions requires a thorough quantitative analysis of multiple ECC
designs with different parameters and mitigation techniques.
We will leave it to explore in depth in future work.

VII. RELATED WORK

There are numerous works that use information theoretic
methods to ascertain the security of a system by analyzing
the behavior of the software. Denning is amongst the first
to relate security and information theory [20]. McLean first
describes the flow model security property [21]; it is later
formalized quantitatively by Gray as an applied flow model,
which relates noninterference to the maximum rate of flow
between variables [22]. Clark et al. use different information
theoretic measures to bound the information leaked from
“while” programs [12]. Mica and Morgan use conditional
entropy to calculate the channel capacity of a program [23].
McCamant and Ernst [24] present a technique to more pre-
cisely quantify how much information is revealed by the
public output of C-like programs. Malacaria and Heusser [25]
introduce quantitative information analysis for C code and
show that the information leakage vulnerabilities in the Linux
Kernel. Information theory measures, e.g., the worst case
mutual information [26] and min-entropy [27], are used at the
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Fig. 18. Mutual information between different key bits and the total runtimes for ECC, RSA and AES implementations.

system level to determine the difficulty of breaking into the
system. None of these techniques deal with hardware designs
as we describe in this work.

There are numerous efforts focusing on using mutual infor-
mation as a distinguisher function for side channel analysis
(power, EM, and fault analysis [28], [29], [30]). Batina et
al. [28] and Gierlichs et al. [31] performed a comprehensive
study on mutual information analysis on the power attacks.
These are inspired by Standaert et al. [32], who use mutual
information to measure the amount of side-channel leakage for
a cryptographic function implementation. They all use mutual
information to attack the design. None of these works attempts
to characterize the effects of hardware optimization, mitigation
techniques and countermeasures on the timing channel as we
do in this work.

Perhaps the most similar work to ours is that done by Köpf
et al. [14], [33]. They provide a bound on the information
leakage through a timing channel based upon the number
of observations. They use conditional entropy to derive that
bound. This is similar in spirit to what we do in our work in
that we are trying to derive a metric for security. However, we
are looking at orthogonal variables – they look at the effect
of the number of measurements on the leakage, while we are
trying to understand how a design itself effects the leakage
and how different attacks effect the leakage.

VIII. CONCLUSION

In this paper, we demonstrate the possibility of using the
mutual information as a metric to quantify the amount of
information a hardware architecture leaks through a timing
channel. Our work reveals that the mutual information and
success of the attack is correlated, i.e., a design with higher
mutual information is more likely to expect higher attack
success rate. Our work suggests that mutual information is a
promising metric to quantify the information leakage through
timing side channel.
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