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Recent economics in computer architecture, specifically the end of power-density-

performance scaling trends and the inefficiencies in modern processors, has motivated more

companies to develop custom hardware. Custom hardware improve important metrics that impact

revenue: latency, performance, and power. This has led to the widespread deployment of Field

Programmable Gate Arrays (FPGAs) in datacenters, automobiles, communications equipment,

and more.

However, hardware development is tedious, time consuming, and costly. There are many

challenges: languages are domain specific, few reusable libraries exist, and hardware compilation

is slow. In addition, development tools are expensive with a high-degree of vendor lock-in and
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domain-specific knowledge. These obstacles have limited hardware development to companies

that can afford the associated costs and a few knowledgeable hardware engineers.

Applications for hardware pipelines exist at all scales. Machine learning, computer

vision, and text processing are common targets for custom hardware and are pervasive in modern

applications. While the details differ between specific applications the computations to well

known patterns. These patterns provide a means for abstracting hardware development and

increase the accesibility of hardware development for non-hardware engineers.

This thesis presents work on increasing the accessibility of hardware development to

non-hardware engineers through the use of common parallel patterns. By abstracting recurring

patterns in hardware development we can create languages and architectures with performance

comparable to custom hardware circuits, and reduce the cost of hardware development.
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Chapter 1

Introduction

Improving throughput, reducing latency, and minimizing power consumption are three

never-ending, typically conflicting, constraints for computational systems. As Moore’s law [1]

and Dennard scaling [2] have ended, companies have been forced to find new ways to improve

performance and decrease power. Many companies have turned to custom hardware pipelines:

bespoke circuits that efficiently perform application tasks previously done on the CPU. These

custom hardware pipelines provide throughput, latency, and power benefits by using transistors

more efficiently. However, the development of hardware pipelines is difficult and companies

have come to face a different kind of constraint: not enough hardware engineers.

Field Programmable Gate Arrays (FPGAs) are a popular choice for implementing custom

hardware pipelines. FPGAs are computing architectures with reconfigurable routing and logic

gates that allow highly-efficient circuit implementations. FPGAs are more efficient (Perfor-

mance/Watt) than other computational substrates like Digital Signal Processors (DSPs), CPUs,

or GPUs and with lower cost, and faster development cycles than Application Specific Integrated

Circuits (ASICs). FPGAs have been used to implement custom hardware pipelines to improve

performance [3, 4], increase security [5, 6], and reduce latency [7, 3, 4]. These projects have

also been deployed at scale in datacenters [8, 9, 10], in processors [11], in cars [12, 13], and in

cell-phone towers [14]. With the widespread deployment and availability of FPGAs, the need for

hardware developers is growing.
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Unfortunately, developing custom hardware pipelines on FPGAs is notorously difficult.

This is because utilizing an FPGA in any system, let alone a data center, is complex, time

consuming, and therefore [15]. First, users must identify, design, and optimize a custom hardware

architecture for an FPGA. Second, they must choose a communication medium (e.g., PCIe,

Ethernet), write and integrate low-level Hardware Development Language (HDL) communication

cores. Then users must write kernel drivers to communicate between the CPU and the FPGA.

Next, the integration must be compiled, tested, debugged, and verified. These skills are possessed

by a small subset of hardware engineers with years of experience — for example — there are

23 (!) named authors on the initial paper describing the FPGA-based Microsoft Catapult project

[8].

What is needed are solutions that increase the accessibility of hardware development

for non-hardware engineers. This problem has been approached at many abstraction levels:

Existing software languages have been extended to create new Hardware Development Languages

(HDLs) that reduce verbosity [16, 17, 18]. Communication frameworks have been developed

to abstract low-level details of data transfer [19, 20, 21, 22]. High-Level Synthesis (HLS) tools

have been developed that emit complete hardware accelerators from algorithm descriptions

in software languages [23, 24, 25, 26, 27, 28]. System synthesis tools emit complete systems

by integrating HLS tools and communication frameworks [29, 28, 25]. Recent projects have

created open-source, high-level libraries to ease FPGA control and communication. Finally,

processor instruction sets have been developed that promotes application-specific extensions and

customization with support from software toolchains [30]. All these projects have increased the

productivity of hardware engineers, but little has been done to increase the general accessibility

of hardware development.

Several challenges remain that impede the accessibility of hardware development for

non-hardware engineers. First, vendor-specific tools, chip-specific interfaces, and low-level

architecture differences inhibit re-use and force designers to re-engineer solutions for every new

project. Second, HLS tools lack common abstractions found in software languages, which im-
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pedes re-use and familiarity. Three, the increasing number of processor projects, implementation

languages, and interface standards hinders evaluation and adoption. Four, hardware targets lack

detailed tutorials for non-hardware engineers, preventing uptake. Finally, the FPGA field still

suffers from lengthy compile times and that prevent rapid prototyping, experimentation, and

development.

This dissertation describes several projects to make hardware architecture development

more accessible to non-hardware engineers. We develop RIFFA [20, 21] to address vendor-

specific communication barriers in Chapter 2. We create and study a library of synthesizable

higher-order functions to provide a common software abstraction in hardware development in

Chapter 3. We introduce PYNQ and develop instructional materials, and tools for evaluating

soft processor projects in Chapter 4 and Chapter 5. Finally, Chapter 6 demonstrates that an

architecture of interconnected soft processors can build a performant general-purpose pipeline

accelerator. In short, this thesis will demonstrate that by abstracting recurring patterns

in hardware development we can create languages and architectures with performance

comparable to custom hardware circuits.

The following sections provide an outline and motivation for each chapter of this thesis:

1.1 A (Vendor Agnostic) Reusable Integration Framework
for FPGA Accelerators

Hardware pipelines must communicate through external interfaces like Ethernet or

PCI Express, or on-chip interfaces like AXI or Avalon. While the underlying protocols are

standardized the implementations are subject to vendor-specific wire names, packet formats,

and configuration registers. In addition, these interfaces have timing requirements that often

necessitate vendor-specific optimizations that can only be performed in low-level Hardware

Development Languages (HDLs) inaccessible to non-hardware engineers [15]. For this reason,

developing re-usable communication interfaces is inaccessible to even hardware engineers.
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The market is filled with expensive solutions from secondary vendors. Companies like

Northwest Logic, PLDA, Pico Computing and Xillybus provide PCI Express communication

solutions, while Maxeler, Convey and others provide full development environments with

languages and simulators. Some companies provide research pricing for academic groups, but

the cost can be prohibitive, comes with little support, and no source code. The FPGA community

needs solutions that are free and open-source to encourage prototyping and development.

Open-source and research projects have attempted to address this problem: Microsoft

Research’s Simple Interface for Reconfigurable Computing (SIRC) [31] uses 100 Mb Ethernet

on Windows; Open Component Portablity Infrastructure (OpenCPI) [32] provides Ethernet

ant PCIe implementations; MPRACE [33] runs only on Linux and exposes a low-level buffer

protocol; and DyRACT [34] only supports Xilinx boards. These projects have limited support

for operating systems, configurations, vendors, and languages. None of these solutions provide

cross-platform support for multiple languages, or vendor hardware restrictions. These problems

led to the development of RIFFA 2.0 [20] with broader support for Xilinx PCIe-enabled boards,

with four language APIs, and multiple-OS support.

In this chapter, we describe the development of RIFFA 2.1 and RIFFA 2.2 which add

pan-vendor support using re-usable hardare cores. We specifically describe our work on RIFFA

2.2, which re-architected the underlying transmit and receive channels for all vendor PCIe

Express interfaces.

1.2 Higher-Order Functions for Hardware Accelerators

Another obstacle to hardware architecture development are the abstractions provided by

languages. Hardware development is traditionally done with Hardware Development Languages

(HDLs). HDLs expose wiring, registers, and logic gates which make them verbose with few

abstractions [15]. Modern HDLs alleviate this somewhat by adding programming abstractions

like interface structures, standard template libraries, and provide higher-order functions to
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implement repeatable patterns [16, 17, 18]. Still, optimizing designs requires detailed knowledge

about the underlying architecture, like the number of inputs in a FPGA Look-Up-Table, or

bit-width of an addition core, or relative speeds of paths on a chip. This highly domain-specific

knowledge is a huge barrier to FPGAs which has lead to a push to make hardware design more

like software design and enable more software engineers [35] to write hardware cores.

High-Level Synthesis (HLS) tools are being developed to raise designer’s level of abstrac-

tion from logic gates, registers, wires, and clocks to algorithm development. These tools take

a program in a high-level language like C/C++, schedule operations, and emit an HDL circuit

that implements the desired behavior [29, 26, 36, 25, 28]. Annotations added by the user direct

tools to implement fine-grain pipeline, coarse-grain pipeline, or vector parallelism. More recent

work has focused on the development of system synthesis tools, which emit complete systems

by integrating the output of HLS tools and communication frameworks [29, 28, 25]. However,

state-of-the-art C/C++ synthesis tools still suffer from some of the same issues of tools they were

developed to replace: they lack libraries implemeting common patterns.

We have created an open-source library of higher-order functions synthesizable in C/C++

hardware development tools. We implement six common algorithms on a PYNQ board and

conclude that our library produces results that are generally statistically indistinguishable tradi-

tional techniques. This library increases the commonalities between hardware architecture and

software application development.

1.3 PYNQ: A Hardware Protoyping Environment

Trends toward higher performance and lower power in mobile computing have pushed

FPGA vendors to develop System-on-Chip (SoC) devices. These devices combine ARM proces-

sors and FPGA fabrics on a single die to provide high performance and low power for embedded

devices. They have been widely used in automobiles [13, 12], in communications [37], robotics

[38], and computer vision [39, 27]. The breadth these of applications demonstrate the utility of
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SoC devices. However, few development environments for these devices exist.

Many prototyping platforms exist on the embedded prototyping market. These are boards,

packaged with Integrated Development Environments (IDEs), for example: Arduino provides a

simple bare-bones systems programmed with a C++-like language and IDE with hundreds of

libraries; Raspberry Pi is a linux-based, low-cost board with Python libraries and the IDLE IDE;

BeagleBone is another linux-based system with a Javascript-like language and Cloud9 IDE to

name a few of the most popular. All of these projects provide development boards, extensive

libraries, and IDEs which increases the accessibility of the platforms.

One obstacle to FPGA development has been the absence of a standard, development

platform. Many boards have been provided, but none match the ease, accessibility, and cost

of software projects: Avnet has developed many iterations of the ZedBoard with custom linux

distributions, Terasic has developed the DE1 educational board, and Digilent has developed

the Arty line. These boards are provided with limited libraries, and rely on long compile times

in the vendor tool chains for hardware development. In order to make hardware development

more accessible, the community needs standard, low-cost, entry-level development boards for

rapid prototyping and development, backed by open-source libraries and accessible in high-level

languages.

Recently Xilinx has released project PYNQ - a collection of Python libraries and drivers

for ZYNQ SoCs with an Ubuntu Linux image. PYNQ-branded boards have low power ARM

processors, a small form-factor, and standard pin headers (Arduino, PMOD, and RasPi). Existing

PYNQ applications provide common embedded communcation interfaces like I2C, SPI, and

UART. Tutorials and documentation are delivered as web-based Jupyter notebooks served by the

PYNQ board. Because of the accessibility of the web-based IDE, PYNQ is being rapidly adopted

as a teaching platform across several universities, Tampere University of Technology, BYU [40],

the University of Washington, and at UC San Diego. The PYNQ project and boards provide many

of the abstractions and libraries that are common in software development boards. However,

PYNQ still does not solve two issues: long compile times, and few tutorials for building PYNQ
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applications.

Building a PYNQ application comprises a swath of interdependent topics: the Vivado

block diagram editor, IP and algorithm development, hardware interfaces, physical memory

spaces, drivers, and Python packaging. This has been a conscious (and reasonable) design choice

of the PYNQ team to focus on a well-built set of libraries and APIs to aid all-programmable

development. Instead, the task of developing tutorials and learning materials has been given to

the community.

We have created a set of tutorials demonstrating how to build PYNQ applications using

High-Level Synthesis (HLS) tools. Our lab curriculum is split into three units where each unit

is a set of independent Jupyter Notebooks teaching a concept. At the end of each tutorial the

readers have created a working PYNQ application. These tutorials should help readers overcome

the introductory challenges of hardware architecture development.

1.4 A Survey of Open-Source RISC-V Processors

The RISC-V project provides a flexible instruction set architecture (ISA) with no licensing

fees, a large (and growing) software infrastructure, and broad adoption. The RISC-V ISA is

highly flexible with 4 architectural widths, and 13 codified extensions. The flexibility, and

openness of the RISC-V specification has lead to a proliferation of open-source RISC-V projects

tailored to specific goals. These features have made it a natural choice for imlementing a custom

accelerator on an FPGA, since it is easy to tailor to specific application needs.

However the number of open-source RISC-V projects presents a challenge to developers.

Cores can use one of many languages, interface standards, architectural features, and worse,

different ISA extensions. This makes it difficult to evaluate the relative benefits of open-source

RISC-V projects, and presents a challenge to anyone hoping to choose a RISC-V project to use

as a hardware accelerator.

To address this problem we have built a tool to evaluate RISC-V projects using PYNQ.
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We use our tool to evaluate 5 RISC-V projects and compare against the Xilinx MicroBlaze

processor. Our results indicate that while RISC-V projects have a large variance in results, the

best RISC-V soft processors are competitive with the Xilinx MicroBlaze on measurements of

the maximum clock frequency, area, execution time on standard benchmarks, and executed

instructions. Along with tutorials for extending our work to other processors, this work will help

engineers overcome the challenges above.

1.5 A General-Purpose Pipeline Architecture

Processors are inefficient on modern workloads [41]. Traditional processor architectures

have inherent inefficiencies in computations like convolution that are widespread in computer

vision, machine learning, and linear algebra. Data movement and re-use in these applications

does not map well to modern processor register files and instruction sets. This has pushed many

companies to develop custom hardware to improve performance, reduce latency, and save power.

[8, 9, 10, 42].

Hardware development is significantly more challenging than software development.

Hardware development requires engineers with extensive domain specific knowledge and expe-

rience [35]. Hardware development languages are inabstract, with few high-level application

libraries [15]. These problems are compounded by the speed of hardware compilation flows;

CPU tool flows compile on the order of miliseconds to minutes, while FPGA binaries take tens

of minutes to hours and days [43, 44]. These challenges have limited hardware development to

companies that can afford the associated costs.

However, these applications are not limited to companies with deep pockets; the same

challenges exist at all scales but the cost of hardware development is prohibitive. What is needed

is a pipeline architecture that is general enough to capture common parallel patterns [30] and can

be re-programmed from high-level interfaces.

In this chapter we propose a general-purpose pipeline architecture using interconnected
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RISC-V processors. We perform a study to understand our architecture’s performance relative to

optimized libraries on an ARM processor and optimized libraries in hardware. We conclude that

a heterogeneous collection of processors provides the best performance, and can outperform two

generations of ARM processor with performance comparable to static hardware pipelines.
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Chapter 2

RIFFA 2.2: A (Vendor Agnostic) Reusable
Integration Framework for FPGA Acceler-
ators

2.1 Introduction

FPGAs are being used by an ever widening audience of designers, engineers, and

researchers. These designers are frequently non-hardware engineers as tools such as Xilinx

Vivado High Level Synthesis and the Bluespec language are lowering the barriers to entry for

FPGA use. Many of these use cases will require high bandwidth input and output between the

FPGA and a traditional CPU workstation. When faced with this problem one can either write

their own interconnection, license an existing solution from a vendor, or use an open source

solution.

Writing an interconnect is a significant amount of work and is a major barrier to FPGA

development for non-hardware engineers. FPGAs are flexible enough to connect to virtually any

device. However, this flexibility also makes it challenging to connect to virtually any device. The

protocol standards that make workstations interoperable must be implemented from the physical

layer on up in order for the FPGA to interface with it. This can be a large obstacle to overcome

for most designers. In many cases, implementing the interface logic can match or exceed the

effort required for implementing the original application or control logic.
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Several commercial solutions exist that can be licensed from vendors such as: Northwest

Logic, PLDA, and Xillybus. These solutions are PCI Express (PCIe) based. PCIe based

interconnects have become the de facto standard for high bandwidth FPGA-PC communication

because of PCIe’s ubiquitous presence, low latency, and scalable performance. These solutions

are high performing and available for most modern FPGA devices. However, the licensing costs

can be prohibitively high and often tied to vendor specific hardware. Some offer special pricing

for research based licenses, but no source is supplied.

Open source connectivity solutions exist as well, such as: Microsoft Research’s Simple

Interface for Reconfigurable Computing (SIRC), the Open Component Portablity Infrastructure

(OpenCPI), MPRACE, and DyRACT. These solutions offer interconnections over Ethernet or

PCIe. SIRC is a full solution with high level APIs and hardware interfaces. It works out of the

box with minimal configuration. Unfortunately, it only runs over 100 Mb Ethernet and is only

supported on Windows operating systems. This limits the bandwidth and platform. OpenCPI

is designed to use either Ethernet or PCIe to connect components such as FPGAs, GPUs, or

DSPs. The APIs are general enough to support a number of different components. This flexibility

however makes configuring and using OpenCPI difficult and overwhelming. The MPRACE

project provides a PCIe based framework that runs on Linux. It provides a low level buffer

management API and a DMA IP controller. This low level API is usable but not as well suited for

transferring data to and from software applications. Moreover, it only supports Linux platforms.

Lastly, the DyRACT project provides a platform for FPGA based accelerators needing PCIe

connectivity, DDR3, and partial reconfiguration. It is a nice framework for those needing partial

reconfiguration, PCIe connectivity, a clock manager, and memory controller.

There also attempts to integrate FPGAs into traditional software environments. Com-

mercial solutions such as Maxeler, Convey, and National Instruments provide full development

environments along with communications frameworks. This class of solutions works only with

custom vendor hardware and includes custom programming languages. Similarly, the Altera

OpenCL HLS solution includes support for PCIe based FPGA communication as part of their
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SDK. The SDK compiles OpenCL kernels to FPGA primitives and produces an OpenCL execu-

tion environment that executes on a FPGA instead of a GPU. There are also many framework

level attempts to bridge the communications divide between CPUs and FPGA cores. Projects

such as: Hthreads [45], HybridOS [46] and BORPH [47] all address this problem. However these

solutions utilize custom operating system kernels and often only support CPUs running on the

FPGA fabric. All of these frameworks are quite impressive but impose additional programming

and runtime constraints, in addition to vendor hardware lock-in.

These problems inhibit FPGA development for all users by increasing non-recoverable

engineering costs, and increasing the domain-specific knowledge necessary for FPGA develop-

ment. What is needed, is a flexible, multi-vendor, multi-language, no-cost solution so that FPGA

development can be available for anyone with a desktop computer.

To address these problems, we have developed RIFFA 1.0 [19], and RIFFA 2 [20]. RIFFA

is an open source framework that provides a simple data transfer software API and a streaming

FIFO hardware interface. It runs over PCIe and hides the details of the protocol so designers

can focus on implementing application logic instead of basic connectivity interfaces. It can be

integrated with projects built using a variety of tools and method. Both Windows and Linux

operating systems are supported and allow communication between multiple FPGAs per host.

In the sections that follow, we present a detailed description of the RIFFA 2.2 design.

RIFFA has gone through several iterations. RIFFA 1.0 [19] supported Xilinx devices with limited

PCI Express transfer bandwidth and a synchronous API. RIFFA 2.0 removed dependencies on

Xilinx IP, replaced the synchronous software API with an asynchronous stream-based API, and

maximized PCI Express bandwidth. RIFFA 2.1 added support for PCIe packet reordering and

limited Altera support. RIFFA 2.2 rearchitected the transmit and recieve packet formatters to

add support for next-generation Xilinx devices. We present a comparison with earlier releases,

an analysis of the architecture, and experimental performance results. The chief contributions of

this project are:
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• RIFFA 2.0: An open source, reusable, integration framework for multi-vendor FPGAs and

workstations in PCI Express Gen 2.0 .

• RIFFA 2.1: Improved packet reordering, scatter gather DMA,

• RIFFA 2.2: Multi-vendor/multi-generation support and re-usable packet engines in PCI

Express Gen 2.

The remainder of this chapter is organized as follows: Section 2.2 describes the high-level

abstraction provided by RIFFA. Section 2.3 describes the hardware and software architecture

that provides this abstraction and the evolution that occured from RIFFA 1.0 to RIFFA 2.2.

Section 2.4 reports performance results. Finally, we conclude in Section 2.5.

2.2 Design

RIFFA is based on the concept of communication channels between software threads on

the CPU and user cores on the FPGA. A channel is similar to a network socket in that it must

first be opened, can be read and written, and then closed. However, unlike a network socket,

reads and writes can happen simultaneously (if using two threads). Additionally, all writes

must declare a length so the receiving side knows how much data to expect. Each channel is

independent. RIFFA supports up to 12 channels per FPGA. Up to 12 different user cores can

be accessed directly by software threads on the CPU, simultaneously. Designs requiring more

than 12 cores per FPGA can share channels. This increases the number of effective channels, but

requires users to manually multiplex and demultiplex access on a channel.

Before a channel can be accessed, the FPGA must be opened. RIFFA supports multiple

FPGAs per system (up to 5). This limit is software configurable. Each FPGA is assigned an

identifier on system start up. Once opened, all channels on that FPGA can be accessed without

any further initialization. Data is read and written directly from and to the channel interface.

On the FPGA side, this manifests as a first word fall through (FWFT) style FIFO interface for
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each direction. On the software side, function calls support sending and receiving data with byte

arrays.

Memory read/write requests and software interrupts are used to communicate between the

workstation and FPGA. The FPGA exports a configuration space accessible from an operating

system device driver. The device driver accesses this address space when prompted by user

application function calls or when it receives an interrupt from the FPGA. This model supports

low latency communication in both directions. Only status and control values are sent using this

model. Data transfer is accomplished with large payload PCIe transactions issued by the FPGA.

The FPGA acts as a bus master scatter gather DMA engine for both upstream and downstream

transfers. In this way multiple FPGAs can operate simultaneously in the same workstation with

minimal CPU system load.

The details of the PCIe protocol, device driver, DMA operation, and all hardware

addressing are hidden from both the software and hardware. This means some level of flexibility

is lost for users to configure custom behaviors. For example, users cannot setup custom PCIe

base address register (BAR) address spaces and map them directly to a user core. Nor can they

implement quality of service policies for channels or PCIe transaction types. However, we feel

any loss is more than offset by the ease of programming and design.

To facilitate ease of use, RIFFA has software bindings for:

• C/C++

• Java 1.4+

• Python 2.7+

• Matlab 2008a+.

Both Windows 7 and Linux 2.6+ platforms are supported. RIFFA supports the following

FPGA families from Xilinx and Altera (annotated with Classic or Ultrascale interface type):

• Xilinx Spartan 6 (Classic Interface)

• Xilinx Virtex 6 (Classic Interface)

• Xilinx 7 Series (Classic Interface)

• Xilinx Ultrascale (Ultrascale Interface)
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• Altera Arria II (Classic Interface)

• Altera Cyclone IV (Classic Interface)

• Altera Stratix IV (Classic Interface)

• Altera Stratix V (Classic Interface)

RIFFA designs can make use of PCIe data bus widths: 32, 64, and 128. All PCIe Gen 1

and Gen 2 configurations up to x8 lanes are supported. PCIe Gen 3 up to x4 lanes are supported

for all devices.

In the next subsections we describe the software interface, followed by the hardware

interface.

2.2.1 Software Interface

The interface for the original RIFFA release [19] was a complicated collection of func-

tions that provided users with an array of data transfer options and threading models. These

functions were designed under the assumption that every PC initiated call to the FPGA would

result in a transfer of data in both directions. It also required data transfers in either direction to

be initiated by the PC. User IP cores would need to be designed with this paradigm in mind to

function properly with RIFFA 1.0. RIFFA 2 does not impose such restrictions. The interface on

the software side has been distilled down to just a few functions. Moreover, data transfers can be

initiated by both sides; PC functions initiate downstream transfers and IP cores initiate upstream

transfers. The complete RIFFA 2 software interface is listed in Table 2.1 (for the C/C++ API).

We omit the Java, Python, and Matlab interfaces for brevity.

There are four primary functions in the API: open, close, send, and receive. The

API supports accessing individual FPGAs and individual channels on each FPGA. There is

also a function to list the RIFFA capable FPGAs installed on the system. A reset function is

provided that programmatically triggers the FPGA channel reset signal. This function can be

useful when developing and debugging the software application. If installed with debug flags

turned on, the RIFFA library and device driver provide useful messages about transfer events.

The messages will print to the operating system’s kernel log. RIFFA includes this functionality
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Table 2.1. RIFFA 2.2 software API (C/C++).

Function Name & Description
int fpga list(fpga info list * list)

Populates the fpga info list pointer with info on all FPGAs installed in the system.
fpga t * fpga open(int id)

Initializes the FPGA specified by id. Returns a pointer to a fpga t struct or NULL.
void fpga close(fpga t * fpga)

Cleans up memory and resources for the specified FPGA.
int fpga send(fpga t * fpga, int chnl, void * data, int len, int offset,

int last, long timeout)

Sends len 4-byte words from data to FPGA channel chnl. The FPGA channel will be
sent len, offset, and last. timeout defines how long to wait for the transfer. Returns
the number of 4-byte words sent.
int fpga recv(fpga t * fpga, int chnl, void * data, int len, long timeout)

Receives up to len 4-byte words from the FPGA channel chnl to the data buffer. The
FPGA will specify an offset for where in data to start storing received values. timeout
defines how long to wait for the transfer. Returns the number of 4-byte words received.
void fpga reset(fpga t * fpga)

Resets the FPGA and all transfers across all channels.

because visibility into hardware bus transfers can be very useful when communicating with

custom designed FPGA cores.

The software API has only one function to send data and only one to receive data. This

has been intentionally kept as simple as possible. These function calls are synchronous and will

block until the transfer has completed. Both take byte arrays as parameters. The byte arrays

contain the data to send or serve as the receptacle for receiving data. In the send data function,

the offset parameter is used as a hint for the FPGA. It specifies an offset for storing data at the

destination. This can be used to support bulk memory copies between the PC and memory on

the FPGA. The last parameter is used to group together multiple transfers. If last is 0, the

destination should expect more transfers as part of the same group. The final transfer will should

have last set to 1. This grouping is entirely user specified and can be useful in situations where

memory limitations require sending multiple partial transfers. Lastly, the timeout parameter

specifies how many milliseconds to wait between communications during a transfer. Setting this

value to an upper bound on computation time will ensure that RIFFA does not return prematurely.
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Setting a zero timeout value causes the software thread to wait for completion indefinitely.

char buf[BUF SIZE];

int chnl = 0;

long t = 0; // Timeout

fpga t * fpga = fpga open(0);
int r = read data("filename", buf, BUF SIZE);

printf("Read %d bytes from file", r);

int s = fpga send(fpga, chnl, buf, BUF SIZE/4, 0, 1, t);

printf("Sent %d words to FPGA", s);

r = fpga recv(fpga, chnl, buf, BUF SIZE/4, t);

printf("Received %d words from FPGA", r);

// Process results ...

fpga close(fpga);

Figure 2.1. RIFFA 2.2 software example in C.

Figure 2.1 shows an example C application using RIFFA. In this example, the software

reads data from a file into a buffer, sends the data to the FPGA, and then waits for a response.

The response is stored back into the same buffer and then processed. In this example, the same

buffer is used to store the file data and the FPGA result. This is not a requirement. It just makes

for a simpler example.

In Practice

Our experience with this interface is positive, but not without drawbacks. Removing the

expectation of function-call style bi-directional data transfer allows users to design systems with

more flexibility. The software interface can be easily understood as there exists a single function

for each basic operation (open, close, send, receive). The interface also allows users to develop

IP cores that perform either stream processing or traditional von Neumann style computing (bulk

memory copies to FPGA memory).

The interface however does not support some common use cases very well. Specifically,

many programming models require some type of read/write capability for FPGA based registers.

Strictly speaking, this is supported. But it requires users to write an IP core that maps data
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transferred with offset parameters to an internal register array (for example). These register

accesses require a DMA transfer for every read/write, which is inefficient.

Additionally, the lack of non-blocking function calls makes it cumbersome to perform

common stream processing tasks. Consider the example in Figure 2.1. Because the calls

fpga send and fpga recv are blocking, all the data must be transferred to the FPGA via the

fpga send call before the call to fpga recv can be made. The upstream transfer cannot begin

until the call to fpga recv is made. This arrangement may be a problem if the IP core attached

to the channel is designed to start sending a response before it receives all the data. Many

streaming oriented designs will produce output in this fashion and attempt to start an upstream

transaction while the downstream transaction is still running. To avoid a deadlock, users will

need to use two threads; one for the call to fpga send and one for the call to fpga recv. This

allows both calls to execute in an time overlapping manner as the IP core would expect.

RIFFA would benefit from an expanded software API that supports programmed I/O and

non-blocking function calls. Future versions may include these features.

2.2.2 Hardware Interface

The interface on the hardware side is composed of two sets of signals; one for receiving

data and one for sending data. These signals are listed in Table 2.2. The ports highlighted in

blue are used for handshaking. Those not highlighted are the FIFO ports which provide first

word fall through semantics. The value of DWIDTH is: 32, 64, or 128, depending on the PCIe link

configuration.

Figure 2.2 shows a Verilog example of an IP core that matches the C example code from

Figure 2.1. In this example, the IP core receives data from the software thread, counts the number

4-byte words received, and then returns the count.

For upstream transactions, CHNL TX must be set high until all the transaction data is

consumed. CHNL TX LEN, CHNL TX OFF, and CHNL TX LAST must have valid values until the

CHNL TX ACK is pulsed. The CHNL TX ACK pulse indicates that channel has read the parameters and
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Table 2.2. RIFFA 2.2 hardware interface

Signal Name I/O Description
CHNL RX CLK O Clock to read data from the incoming FIFO.
CHNL RX I High signals incoming data transaction. Stays high until all

data is in the FIFO.
CHNL RX ACK O Pulse high to acknowledge the incoming data transaction.
CHNL RX LAST I High signals this is the last receive transaction in a sequence.
CHNL RX LEN[31:0] I Length of receive transaction in 4-byte words.
CHNL RX OFF[30:0] I Offset in 4-byte words of where to start storing received data.
CHNL RX DATA[DWIDTH-1:0] I FIFO data port.
CHNL RX DATA VALID I High if the data on CHNL RX DATA is valid.
CHNL RX DATA REN O Pulse high to consume value from on CHNL RX DATA.
CHNL TX CLK O Clock to write data to the outgoing FIFO.
CHNL TX O High signals outgoing data transaction. Keep high until all

data is consumed.
CHNL TX ACK I Pulsed high to acknowledge the outgoing data transaction.
CHNL TX LAST O High signals this is the last send transaction in a sequence.
CHNL TX LEN[31:0] O Length of send transaction in 4-byte words.
CHNL TX OFF[30:0] O Offset in 4-byte words of where to start storing sent data in

the CPU thread’s receive buffer.
CHNL TX DATA[DWIDTH-1:0] O FIFO data port.
CHNL TX DATA VALID O High if the data on CHNL TX DATA is valid.
CHNL TX DATA REN I High when the value on CHNL TX DATA is consumed.

started the transfer. The CHNL TX DATA OFF value determines where data will start being written

to within the PC’s receiving byte array (this is the hardware equivalent to the software offset

parameter). This is measured in 4-byte words. As described in Section 2.2.1, CHNL TX LAST

must be 1 to signal the end of a set of transfers. This will unblock the thread waiting in

fpga recv. Data values asserted on CHNL TX DATA are consumed when both CHNL TX DATA VALID

and CHNL TX DATA REN are high.

The handshaking ports are symmetric for both sets of signals. Thus, the behaviors

are reversed with downstream transactions. The user core is notified of a new downstream

transaction when CHNL RX goes high. The user core must acknowledge the transaction by

asserting CHNL RX ACK high for at least one cycle. The CHNL RX ACK pulse indicates that the

user core has read the parameters and that data can now be delivered into the FIFO. This

barrier serves to separate FIFO data between downstream transfers. Back to back transfers

may otherwise keep the FIFO full and there would be no way to delineate transfer boundaries.
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As with upstream transactions, data will be made available on CHNL RX DATA and is valid when

CHNL RX DATA VALID is high. Each cycle CHNL RX DATA VALID and CHNL RX DATA REN are high,

data present on CHNL RX DATA is considered consumed. The channel may present new valid data

on that port the following cycle. The values for CHNL RX LAST, CHNL RX LEN, and CHNL RX OFF

correspond to those provided via the fpga send function call on the host PC and should be used

as intended.

Timing diagrams for these signals illustrate the upstream and downstream transfers on a

cycle by cycle basis. They are available on the RIFFA website: http://riffa.ucsd.edu.

In Practice

The interface requires providing a length value for transfers. This can be problematic in

situations where the transfer length is unknown. Consider, for example, a data compression IP

core that compresses data received from the host PC. To accommodate this type of situation, the

core could buffer the compressed data until it is all generated and then start a upstream transfer.

Another solution is to buffer data in chunks and send each in its own transfer. To avoid such

workarounds, RIFFA supports early termination on upstream transfers. Designs with unknown

upstream transfer size can set CHNL TX LEN to an upper bound value, start the transaction and

send data as it is generated by the core. When the core finishes producing output, it can lower

CHNL TX, regardless of how much data was actually transferred. The RIFFA channel will interpret

this behavior as an early termination and complete the transfer with the data sent thus far. As long

as CHNL TX is high, the transaction will continue until CHNL TX LEN words have been consumed.

Despite a minimal set of signals in the hardware interface, we have found that the

handshaking protocol can be an obstacle in designs. It requires building a state machine to

manage. Many designs simply need a simple FWFT FIFO (or AXI-4 Lite style) interface. In

these designs, the handshaking and parameter information are not used but require additional

logic and understanding to deal with.
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parameter INC = DWIDTH/32;

assign CHNL RX ACK = (state == 1);

assign CHNL RX DATA REN = (state == 2 || state == 3);

assign CHNL TX = (state == 4 || state == 5);

assign CHNL TX LAST = 1;

assign CHNL TX LEN = 1;

assign CHNL TX OFF = 0;

assign CHNL TX DATA = count;

assign CHNL TX DATA VALID = (state == 5);

wire data read = (CHNL RX DATA VALID & CHNL RX DATA REN);

always @ (posedge CLK)

case(state)

0: state <= (CHNL RX ? 1:0);

1: state <= 2;

2: state <= (!CHNL RX ? 3:2);

3: state <= (!CHNL RX DATA VALID ? 4:3);

4: state <= (CHNL TX ACK ? 5:4);

5: state <= (CHNL TX DATA REN ? 0:5);

endcase

always @ (posedge CLK)

if (state == 0)

count <= 0;

else

count <= (data read ? count+INC:count);

Figure 2.2. RIFFA 2.2 hardware example in Verilog.

2.2.3 Changes from RIFFA 1.0

RIFFA 2 is a complete rewrite of the original RIFFA 1.0 release. RIFFA 1.0 only supports

the Xilinx Virtex 5 family. RIFFA 2.2 supports all modern FPGA devices from Xilinx and Altera

across PCIe Gen 1, Gen 2, and Gen 31.

RIFFA 1.0 requires the use of a Xilinx PCIe Processor Local Bus (PLB) Bridge core.

Xilinx has since moved away from PLB technology and deprecated this core. The PLB Bridge

core limited the PCIe configuration to a Gen 1 x1 link. Additionally, the bridge core did not

support overlapping PLB transactions. This did not have an effect on the upstream direction

1Up to x4 lanes.

21



because upstream transactions are one way. Downstream transactions however, must be sent by

the core and serviced by the host PC’s root complex. Not being able to overlap transactions on

the PLB bus results in only one outstanding downstream PCIe transaction at a time. This limits

the maximum throughput for upstream and downstream transfers to 181 MB/s and 25 MB/s

respectively. The relatively low downstream bandwidth was a chief motivator for improving

upon RIFFA 1.0.

RIFFA 1.0 made use of a simple DMA core that uses PLB addressing to transfer data.

The hardware interface exposes a set of DMA request signals that must be managed by the user

core in order to complete DMA transfers. RIFFA 2 exposes no bus addressing or DMA transfer

signals in the interface. Data is read and written directly from and to FWFT FIFO interfaces on

the hardware end. On the software end, data is read and written from and to byte arrays. The

software and hardware interfaces have been significantly simplified since RIFFA 1.0.

On the host PC, contiguous user space memory is typically scattered across many non-

contiguous pages in physical memory. This is an artifact of memory virtualization and makes

transfer of user space data difficult. Earlier versions of RIFFA had a single packet DMA engine

that required physically scattered user space data be copied between a physically contiguous

block of memory when being read or written to. Though simpler to implement, this limits

transfer bandwidth because of the time required for the CPU to copy data. RIFFA 2 supports

a scatter gather DMA engine. The scatter gather approach allows data to be read or written to

directly from/to the physical page locations without the need to copy data.

RIFFA 1.0 supports only a single FPGA per host PC with C/C++ bindings for Linux.

Version 2 supports up to 5 FPGAs that can all be addressed simultaneously from different threads.

Additionally, RIFFA 2 has bindings for C/C++, Java, Python, and Matlab for both Linux and

Windows. Lastly, RIFFA 2 is capable of reaching 97% maximum achievable PCIe link utilization

during transfers. RIFFA 1.0 is not able to exceed more than 77% in the upstream direction or

more than 11% in the downstream direction.
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2.3 Architecture
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Figure 2.3. RIFFA architecture in RIFFA 2.2. The Channel Layer is described in Section 2.3.1,
the DMA Layer (Green) in Section 2.3.1, Multiplexer Layer (Yellow) in Section 2.3.1, Engine
Layer (Orange) in Section 2.3.1, and the Translation Layer (Red) in Section 2.3.1

A diagram of the RIFFA architecture is illustrated in Figure 2.3. The top of the diagram

shows the hardware architecture, as described in Section 2.3.1. The software architecture

is described in Section 2.3.2. The underlying goal of RIFFA architectural decisions is to

achieve maximum throughput and minimum latency with the fewest resources. As a result, the

architecture can run at line rate, never needing to block or pause, in both upstream (FPGA to

Host) and downstream (Host to FPGA) directions.

At each level in the architecture, any potential blocking by a channel or component is
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averted through the use of FIFOs, multiplexing, and overlapping execution.

2.3.1 Hardware Architecture

RIFFA’s hardware architecture is built from layers of abstractions to hide the underlying

PCI Express protocol. At the highest layer of abstraction, the user is presented with a series of

channel interfaces. At the lowest layer, RIFFA wraps the vendor-specific PCI Express interface.

This is shown in Figure 2.3 and described below.

The RIFFA cores are driven by a clock derived from the PCIe reference clock. This

clock’s frequency is a product of the PCIe link configuration. It runs fast enough to saturate

the PCIe link if data were sent every cycle. User cores do not need to use this clock for their

CHNL TX CLK or CHNL RX CLK.

Channel Layer

At the top level RIFFA users are presented with the Channel Interface, described in

Table 2.2 and shown in blue in Figure 2.3. A set of RIFFA channels provide streaming read

and write interfaces, with asynchronous clock-crossings to user cores. These interfaces deal

exclusively with payload data.

The FIFO abstraction provided by RIFFA was developed in RIFFA 2. The FIFO interfaces

with provide a simple interface for high speed data transfer. The asynchronous clock crossings

allow users to operate at whatever clock frequency suits their design instead of operating at the

frequency dictated by the PCI Express endpoint.

DMA Engine Layer

The DMA Engine layer resides below the Channel Layer and is shown in green in

Figure 2.3. The DMA Engine layer manage reading and writing data from the asynchronous,

user-filed, FIFOs to host memory. These transfers happen using the Transmit Scatter Gather

Engine, Recieve Scatter Gather Engine, Transmit Writer, and Channel Registers shown in green
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in Figure Figure 2.3. This layer was formalized in RIFFA 2.2 to handle the new engine layer

interface (specified below).

The Scatter Gather engines are responsible for providing a contiguous memory space

abstraction to the channels. When an application sends data to the FPGA, or receives data from

the FPGA it must provide a buffer. This buffer appears contiguous to the software application,

but in actual fact it is a collection of 4 KB (typically) physical pages. A buffer is presented to

the FPGA as a list of pages, or a scatter gather list. The Transmit and Recieve Scatter Gather

engines are responsible for reading these lists and providing the physical page addresses as write

addresses to the TX Writer, or issuing reads to physical pages that fill the RX Fifo with data. The

scatter gather engines are operated using reads and writes to the channel registers. These writes

specify the location of scatter gather lists. A complete Scatter Gather transaction is described in

2.3.2.

It is possible (and simpler) to design a scatter gather DMA engine that does not perform

such advanced and flexible processing. However, the result is a much lower performing system

that does not take advantage of the underlying link as efficiently. There are many examples of

this in research and industry.

Multiplexer Layer

The Multiplexer Layer is responsible for routing data between the independent RIFFA

channels and is shown in yellow in Figure Figure 2.3. This layer was formalized in RIFFA

2.2. The Multiplexer Layer is responsible for fair arbitration between the independent RIFFA

channels on the transmit path, and routing requests back to their source on the receieve path.

Engine Layer

The engine layer is responsible for transmitting and recieving packets to the unified

vendor cores. It is shown in orange in Figure 2.3 and in more detail in Figure 2.4 and was added

in RIFFA 2.2 to provide pan-vendor support. The abstraction it provides is a wire-based interface
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that hides the underlying PCI Express packet format. The recieve path provides two interfaces:

Recieve Request Interface (RXR), and Recieve Completion Interface (RXC). These are mirrored

on the transmit side: Transmit Request Interface (TXR), and Transmit Completion Interface

(TXC).

Inside the Engine Layer, information is formatted into packets. A packet has a three or

four word header followed by some number of words of payload (each word is 4 bytes). Data

is sent using write packets. Requests for data are made by issuing read packets and receiving

completion packets. Completion packets contain the requested data as payload.

The engine layer abstracts vendor-specific packet formats. Xilinx (Pre-Ultrascale) devices

have a big-endian data format. Altera devices have a little-endian format, but requires an

additional 32-bit word between the header and payload when the incoming (or outgoing) data

would not be aligned to a 64-bit boundary. Post-Ultrascale Xilinx devices have a fundamentally

different format that is not described in the PCIe Specification; this too is handled by the engine

layer.

Figure 2.4. Classic Engine Layer Architecture RIFFA 2.2

Finally, the engine layer abstracts the width of the PCIe Express interface. This width
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can be 32, 64, or 128 bits wide. Writing a DMA engine that supports multiple widths requires

different logic when extracting and formatting PCIe data. For example, with a 32 bit interface,

header packets can be generated one 4-byte word per cycle. Only one word can be sent/received

per cycle. Therefore, the DMA engine only needs to process one word at a time, containing either

header or payload data. However with a 128 bit interface, a single cycle presents four words

per cycle. This may require processing three header packets and the first word of payload in a

single cycle. If the FPGA vendor’s PCIe endpoint supports straddled PCIe transactions, a single

cycle on a 128 bit interface can contain data from two different PCIe transactions (completions

for example). To achieve the highest performance, the DMA engine must be able to correctly

process data for/from those two packets in a single cycle.

The engine layer also contains the reorder buffer, which manages the ordering of read

responses. In PCI Express, a single read request can be split into multiple read responses, and

interleaved with other in-flight read responses that come before, or after. These packets can

arrive out of order and overlap with other completion packets. Packet headers use tag numbers as

identifiers for correlating requests with completions. The tag number space is limited and must

be managed fastidiously to keep the request pipeline full. Credit limits must be monitored to

avoid sending too many packets or causing too many packets to be received.

The PCIe specification allows the host PC’s root complex to service outstanding read

requests in any order it chooses. This can result in requested data returning to the RX Engine

out of order. To reorder the data, each PCIe read request is issued with a unique tag in the

header. This tag is selected by the Reordering queue at the time the TX Engine sends the

request. The channel number making the request is captured and associated with the tag. When

PCIe completion packets arrive at the RX Engine, they contain the request tag in their header.

The Reordering Queue stores the payload data in on-chip block RAM (BRAM) in a location

corresponding to the tag, and thus the sequence in which it was requested. Tags are issued in

increasing order, wrapping at overflow. They are not reused until the received data is consumed

by the channel. Received completions are processed in increasing wrapped order as well. In this
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manner, data is always returned to the channels in the order in which it was requested. This can

be visualized as a two pointer circular tag queue.

A naı̈ve implementation of the Reordering Queue might partition the tag space between

channels and use a separate FIFO for each tag. This approach will work, but can consume

considerable resources and limit the throughput of each channel. The Reordering Queue instead

uses a single logical BRAM to store the payloads for each tag, across all channels. The BRAM is

partitioned into equal amounts, with size equal to the maximum read payload size. For the 32 bit

bus width, this design is straightforward as only one 32 bit word of payload can be provided each

cycle. However, the 64 and 128 bit bus widths may have varying amounts of payload each cycle.

To make efficient use of the BRAM, each word must be written independently, at

potentially different RAM positions and word enables. This requires a pair of BRAM ports for

each word of payload provided by the bus, and independent RAM positions for each word2. This

typically means a single BRAM for each word of bus width. A diagram illustrating the use of

the Reordering Queue is displayed in Figure 2.5. This scheme requires less BRAMs than one

that uses one per tag. There are 32 or 64 tags (depending on configuration) but only four words

of payload at the widest 128 bit bus configuration.

In Figure 2.5 the BRAM is initially empty. Three packets arrive (sequence is top to

bottom), filling the BRAM. The first and last packet are completions for Tag 1. The middle

packet is for Tag 0. Data from the last packet must be written to two separate positions within

the Tag 1 buffer space. This is why simply using byte/word write enables will not suffice.

Finally, the reorder buffer also manages control flow for the transmit engine. Hosts

control the flow of packets by advertising a credit limit for reads, writes, and completions. These

credits represent the maximum number of oustanding packets of each type. The reorder buffer

tracks these credits and stalls the transmit path when necessary.

2Data in RIFFA is transferred in 32 bit word increments. Therefore, using words as the level of granularity is
sufficient.
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Figure 2.5. Reordering Queue operation for a 128 bit wide bus.

Translation Layer

The translation layer abstracts the three Vendor-specific interface schemes: Altera and

Xilinx (Pre-Ultrascale) “Classic” interface specification with a fifo-like interface for Transmit

(TX) and Recieve (RX). Xilinx also provides the “Ultrascale” interface for its newer devices that

splits these into TXC, TXR, RXC, and RXR interfaces.

Upstream Transfers

Upstream transfers are initiated by the user core via the CHNL TX * ports. Data written

to the TX FIFO is split into chunks appropriate for individual PCIe write packets. RIFFA will

attempt to send the maximum payload per packet. It must also avoid writes that cross physical

memory page boundaries, as this is prohibited by the PCIe specification. In order to send the data,
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Figure 2.6. Translation Layer for RIFFA 2.2

the locations in host PC memory need to be retrieved. This comes in the form of scatter gather

elements. Each scatter gather element defines a physical memory address and size. These define

the memory locations into which the payload data will be written. Therefore, each channel first

requests a read of list of scatter gather elements from the host. Once the channel has the scatter

gather elements, they issue write packets for each chunk of data. Channels operate independently

and share the upstream PCIe direction. The TX Engine provides this multiplexing.

The TX Engine drives the upstream direction of the vendor specific PCIe Endpoint

interface. It multiplexes access to this interface across all channels. Channel requests are

serviced in a round robin fashion. The latency of checking each channel for requests is mitigated

by overlapping the search for the next channel during the servicing of the current request. The

TX Engine also formats the requests into full PCIe packets and sends them to the vendor specific

PCIe Endpoint. The TX Engine is fully pipelined and can write a new packet every cycle.

Throttling on data writes only occurs if the vendor specific PCIe Endpoint core cannot transmit

the data quickly enough. The Endpoint may apply back pressure if it runs out of transmit buffers.

As this is a function of the host PC’s root complex acknowledgment scheme, it is entirely system
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dependent.

In practice, PCIe Endpoint back pressure occurs most during transfer of small payload

PCIe packets. The vendor cores are configured with a fixed amount of header and payload

buffer space. Less than maximum sized PCIe packets increases the header to payload ratio. This

consumes more header buffers in the vendor Endpoint cores and may cause them to throttle the

upstream transmit rate even though payload buffers exist. RIFFA was designed to send maximum

sized payload packets whenever possible. Therefore, this tends to not be a problem in practice.

Downstream Transfers

Downstream transfers are initiated by the host PC via the software APIs and manifest

on the CHNL RX * ports. Once initiated, the channel cores request scatter gather elements for the

data to transfer. Afterwards, individual PCIe read requests are made for the data at the scatter

gather element locations. As with upstream transfers, up to the maximum payload amount is

requested and care is taken to avoid requesting data that crosses physical page boundaries3. Care

is also taken to request data so as to not overflow the RX FIFO. Each channel throttles the read

request rate to match the rate at which the RX FIFO is draining. Channel requests are serviced

by the TX Engine. When the requested data arrives at the vendor Endpoint, it is forwarded to the

RX Engine. There the completion packet data is reordered to match the requested order. Payload

data is then provided to the channel.

The RX Engine core is connected to the downstream ports on the vendor specific PCIe

Endpoint. It is responsible for extracting data from received PCIe completions and servicing

various RIFFA device driver requests. It also demultiplexes the received data to the correct

channel. The RX Engine processes incoming packets at line rate. It therefore never blocks

the vendor specific PCIe Endpoint core. In addition to higher throughput, this also means the

number of completion credits can be safely ignored when issuing requests. Data received by the

Endpoint will be processed as soon as it is presented to the RX Engine, avoiding the possibility
3Scatter gather elements may be coalesced by the host operating system if they are adjacent and may span more

than one page.
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of running out of buffer space. After extracting payload data, the RX Engine uses a Reordering

Queue module to ensure the data is forwarded to the channel in the order it was requested.

2.3.2 Software Architecture

On the host PC is a kernel device driver and a set of language bindings. The device

driver is installed into the operating system and is loaded at system startup. It handles registering

all detected FPGAs configured with RIFFA cores. Once registered, a small memory buffer is

pre-allocated from kernel memory. This buffer facilitates sending scatter gather data between the

workstation and FPGA.

A user library provides language bindings for user applications to be able to call into

the driver. The user library exposes the software interface described in Section 2.2.1. When an

application makes a call into the user library, the thread enters the kernel driver and initiates

a transfer. This is accomplished through the use of the ioctl function on Linux and with

DeviceIoControl on Windows.

The ioctl and DeviceIoControl functions support flexible, unrestricted communica-

tion between user space and kernel space. However, they are unstructured and cannot be used

directly by users. This is largely why language bindings are provided. We considered exposing

the kernel driver via the standard filesystem functions: read, write, open, close, etc. This

would remove the need for language specific bindings. Users would be able to use any language

and simply call filesystem functions in that language. In fact, the Xillybus driver works this way.

The drawback is that any communication not modeled by the filesystem interface will not fit

as easily. Functions like fpga reset and fpga list would be difficult to support. Moreover,

language bindings provide users additional convenience by performing type conversion and

checking.

At runtime, a custom communication protocol is used between the kernel driver and the

RX Engine. The protocol is encoded in PCIe payload data and address offset. The protocol con-

sists of single word reads and writes to the FPGA BAR address space. The FPGA communicates
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with the kernel driver by firing a device interrupt. The driver reads an interrupt status word from

the FPGA to identify the conditions of each channel. The conditions communicated include: start

of a transfer, end of a transfer, and request for scatter gather elements. The protocol is designed

to be as lightweight as possible. For example, a write of three words are all that is needed to to

start a downstream transfer. Once a transfer starts, the only communication between the driver

and RIFFA is to provide additional scatter gather elements or signal transfer completion.

Figure 2.7. Upstream transfer sequence diagram.

Upstream Transfers

A sequence diagram for an upstream transfer is shown in Figure 2.7. An upstream transfer

is initiated by the FPGA. However, data cannot begin transferring until the user application

calls the user library function fpga recv. Upon doing so, the thread enters the kernel driver
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and begins the pending upstream request. If the upstream request has not yet been received,

the thread waits for it to arrive (bounded by the timeout parameter). On the diagram, the user

library and device driver are represented by the single node labeled “RIFFA Library”.

Servicing the request involves building a list of scatter gather elements which identify the

pages of physical memory correspond to the user space byte array. The scatter gather elements

are written to a small shared buffer. This buffer location and content length are provided to the

FPGA so that it can read the contents. Each page enumerated by the scatter gather list is pinned

to memory to avoid costly disk paging. The FPGA reads the scatter gather data then issues write

requests to memory for the upstream data. If more scatter gather elements are needed, the FPGA

will request additional elements via an interrupt. Otherwise, the kernel driver waits until all the

data is written. The FPGA provides this notification, again via an interrupt.

After the upstream transaction is complete, the driver reads the FPGA for a final count

of data words written. This is necessary as the scatter gather elements only provide an upper

bound on the amount of data that is to be written. This completes the transfer and the function

call returns to the application with the final count.

Downstream Transfers

A similar sequence exists for downstream transfers. Figure 2.8 illustrates this sequence.

In this direction, the application initiates the transfer by calling the library function fpga send.

The thread enters the kernel driver and writes to the FPGA to initiate the transfer. Again, a

scatter gather list is compiled, pages are pinned, and the FPGA reads the scatter gather elements.

The elements provide location and length information for FPGA issued read requests. The read

requests are serviced and the kernel driver is notified only when more scatter gather elements are

needed or when the transfer has completed.

Upon completion, the driver reads the final count read by the FPGA. In error free

operation, this value should always be the length of all the scatter gather elements. This count is

returned to the application.
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Figure 2.8. Downstream transfer sequence diagram.

The kernel driver is thread safe and supports multiple threads in multiple transactions

simultaneously. For a single channel, an upstream and downstream transaction can be active

simultaneously, driven by two different threads. But multiple threads cannot simultaneously

attempt a transaction in the same direction. The data transfer will likely fail as both threads

attempt to service each other’s transfer events.

2.4 Performance

We have tested RIFFA 2.2 on several different platforms. A listing of the FPGA develop-

ment boards and their configurations are listed in Table 2.3. This Table also lists the maximum

achieved transfer rates for each configuration. Normalized link utilization is based on maximum

negotiated payload limits. Highest values for each interface width are bolded. RIFFA has been
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Table 2.3. RIFFA 2 maximum achieved bandwidths, link utilization, and normalized link
utilization for upstream (Up) and downstream (Down) directions.

FPGA Board & Configuration Max. (Up/Down) Link Normalized
Bandwidth Utili. Link Util.

AVNet Spartan 6 LX150T
PCIe Gen 1 x1, 32 bit wide data path, 62.5 MHz 226 / 212 MB/s 90 / 85% 96 / 88%

Xilinx ML605, Virtex 6 LX240T
PCIe Gen 1 x8, 64 bit wide data path, 250 MHz 1816 / 1694 MB/s 91 / 85% 96 / 87%

Xilinx VC707, Virtex 7 VX485T
PCIe Gen 2 x8, 128 bit wide data path, 250 MHz 3640 / 3403 MB/s 91 / 85% 97 / 88%

Terasic DE4, Altera Stratix IV EP4SGX230KF40
PCIe Gen 1 x8, 64 bit wide data path, 250 MHz 1800 / 1593 MB/s 90 / 80% 96 / 85%

Terasic DE5-Net, Altera Stratix V 5SGXEA7N2F45
PCIe Gen 2 x8, 128 bit wide data path, 250 MHz 3600 / 3192 MB/s 90 / 80% 96 / 85%

Terasic DE5-Net, Altera Stratix V 5SGXEA7N2F45
PCIe Gen 3 x4, 128 bit wide data path, 250 MHz 3542 / 3139 MB/s 90 / 80% 96 / 85%

installed on Linux kernels 2.6 and 3.1, as well as on Microsoft Windows 7. Our experiments

were run on a Linux workstation with six 3.6 GHz Intel i7 cores on an Ivy Bridge architecture,

using 12 channel RIFFA FPGA designs. The user core on each channel was functionally similar

to the module in Figure 2.2. The software was operationally similar to the example listed in

Figure 2.1. We used PCIe cores packaged with Xilinx Vivado 2013.2, Xilinx ISE 14.1, and

Altera Quartus II 13.1.

Latency times of key operations are listed in Table 2.4. Latencies were measured using

cycles counted on the FPGA and are the same across all tested boards and configurations. The

interrupt latency is the time from the FPGA signaling of an interrupt until the device driver

receives it. The read latency measures the round trip time of a request from the driver to RIFFA

(through the RX and TX Engine cores), and back. The time to resume a user thread after it has

been woken by an interrupt is the only value that stands out. At 10.4 µs it is the longest delay

and is wholly dependent on the operating system.

Bandwidths for data transfers are shown in Figure 2.9 (scale is logarithmic to fit all

configurations). The figure shows the bandwidth achieved as the transfer size varies for several
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Table 2.4. RIFFA latencies.

Description Value
FPGA to host interrupt time 3 µs ± 0.06
Host read from FPGA round trip time 1.8 µs ± 0.09
Host thread wake after interrupt time 10.4 µs ± 1.16

PCIe link configurations. Maximum theoretical bandwidths for each configuration are dawn in

the same color. The upstream and downstream configurations are provided in the legend. The

value in square brackets is the width of the primary bus interface.

Figure 2.9 shows the maximum bandwidth achieved is 3.64 GB/s (using the 128 bit

interface). This is 91% utilization of the theoretical link bandwidth. All devices tested reach

89% or higher theoretical bandwidth utilization. This is quite efficient, even among commercial

solutions. This is largely due to the low amount of overhead the framework imposes and the fact

that RIFFA can run at line rate without blocking. In practice this can keep the PCIe link busy

transferring payload data nearly every cycle.

Looking closely at the curves we notice that the upstream direction out performs the

downstream direction. This is due to the fact that the FPGA performs reads for downstream

transfers and writes for upstream. Upstream transfers are made by the FPGA issuing back to

back PCIe writes to the host PC’s root complex. Downstream transfers are made by the FPGA

issuing back to back PCIe reads. The FPGA must then wait for the host PC’s root complex to

respond with the requested data. Despite pipelining, this extra one way request adds overhead as

the root complex must queue and service each read request.

While not shown on Figure 2.9, RIFFA 1.0 was only able to achieve bandwidths of 181

MB/s and 24 MB/s for upstream and downstream directions respectively. This represents a

theoretical link utilization of 73% and 10%. On the same hardware and configuration, RIFFA

2.2 achieves 226 MB/s and 212 MB/s (or 90% and 85%) for the same directions. The relatively

poor performance of RIFFA 1.0 was one of the strongest motivators for RIFFA 2.

The performance between the Xilinx and Altera devices is nearly evenly matched. From
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Figure 2.9. Transfer bandwidths as a function of transfer size for several FPGA PCIe link
configurations

Table 2.3, it appears that the Xilinx devices out perform the Altera equivalents. However,

these differences are primarily in the maximum bandwidth achieved. Figure 2.10 shows the

downstream bandwidth for Xilinx and Altera devices configured with a 128 bit interface (scale is

linear to show more detail). From this figure, one can see that each device supports a slightly

different maximum bandwidth. The difference in maximum bandwidths between the Altera

and Xilinx Gen 2 configurations are likely due to packet straddling. On 128 bit wide PCIe

configurations, the Xilinx PCIe Endpoint core will provide multiple packets per cycle in the

downstream direction. The Altera core will not, which can reduce throughput when saturated.

Within the 256 KB - 2 MB transfer range, the three configurations exhibit slightly

different performance. The Gen 3 configuration fares best and has the most even growth. This

is not surprising given the Ivy Bridge architecture of the host PC. However the difference

in performance between the Altera Gen 2 and Xilinx Gen 2 configurations is a bit puzzling.
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Figure 2.10. Downstream bandwidths as a function of transfer size for Altera and Xilinx devices.

Neither behavior can be attributed to the number of advertised completion credits. Both are

endpoint devices and must advertise unlimited completion credits to the root complex. The Xilinx

configuration performs better but has half the receive buffer size of the Altera configuration

(8 KB vs 16 KB). Thus we can only presume these differences in performance stem from

implementation decisions in each vendor’s respective PCIe Endpoint core.

Between the Altera Gen 2 and Gen 3 configurations there is a noticeable difference

in performance. The difference in maximum bandwidth attained is due to the difference in

bandwidths between Gen 2 x8 and Gen 3 x4 links. The Gen 3 lanes are not quite twice as fast as

the Gen 2 lanes (500 MB/s vs. 984 MB/s). The maximum theoretical bandwidth for the Gen 3

x4 is actually a bit less than the Gen 2 x8. Given this understanding, the Altera devices perform

equally well as measured by the utilizations for both configurations.

One notable exception to this performance equivalence is the bandwidth of the Gen 3 x4

configuration during smaller transfers. Figure 2.10 shows a scaled view of the lower end of the

transfer range with more detail. Here we see that for payloads below 2 KB, the use of PCIe Gen

3 can provide double the bandwidth. Moreover, this illustrates that much of the latency in these
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small transfers is PCIe protocol specific, not attributed to RIFFA.

2.4.1 Normalized Utilization

Theoretical bandwidth utilization is a commonly compared metric among communication

frameworks as it identifies how much overhead the framework imposes. RIFFA 2 performs

well using this metric but any utilization less than 100% invites further improvement. A 100%

utilization is impossible to achieve because it is calculated by assuming only payload data is sent

every cycle. PCIe packets require headers and transfers can require packet exchanges that do not

contain payload. Therefore, this is a fundamentally impossible goal.

Identifying and accounting for protocol overheads, for each test case, can be complex and

difficult for comparison. However, differences in PCIe configurations between systems can yield

considerably different bandwidth utilization values. To account for some of these differences

and provide a point of reference for how much they can affect the theoretical utilization metric,

we compare against the maximum achievable bandwidth. This achievable bandwidth is the same

as the theoretical bandwidth but also recognizes the existence of packet headers. The header

to payload ratio in PCIe packets can be affected significantly by differences in the maximum

read/write packet payload. This maximum payload parameter varies across systems. The benefit

of using this metric is that it normalizes utilization values across systems, and provides a more

system agnostic value.

Using this metric, RIFFA achieves 97% of the maximum achievable bandwidth. This

suggests that at most 3% is attributable to RIFFA overhead and link maintenance. In Table 2.3

we provide both the theoretical and achievable bandwidth utilizations for the upstream and

downstream directions. The achievable bandwidth utilization is referred to as normalized link

utilization in the table. We feel using a normalized utlization that does not vary with PCIe

configuration payload limits is a comparably better metric.
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2.4.2 Resource Utilization

Resource utilizations for RIFFA, for a single channel, are listed in Tables 2.5 and 2.6. The

cost for each additional channel is also listed. Resource values are from the corresponding FPGA

devices and configurations listed above. Wider data bus widths require additional resources for

storage and PCIe processing. It is useful to note that single channel designs use 4% or less of the

FPGA on all our devices. The utilizations listed do not include resources used by the vendor

specific PCIe Endpoint core. These core utilizations can vary depending on the configuration

values specified during generation and whether a hard block IP exists on the device.

Table 2.5. RIFFA 2 resource utilization on Xilinx devices.

RIFFA (1 channel) Slice Registers Slice LUTs BRAMs DSP48Es
32 bit Endpoint 4270 3903 12 0

additional channel 2430 2870 7 0
64 bit Endpoint 5350 5110 10 0

additional channel 3175 3584 7 0
128 bit Endpoint 7396 7489 16 0

additional channel 4371 5221 12 0

Table 2.6. RIFFA 2 resource utilization on Altera devices. Altera devices do not support a 32 bit
interface.

RIFFA (1 channel) Resisters ALMs RAM bits DSPs
64 bit Endpoint 5432 5888 406 Kb 0

additional channel 2662 3098 293 Kb 0
128 bit Endpoint 7660 8475 600 Kb 0

additional channel 4146 4608 390 Kb 0

2.4.3 Factors Affecting Performance

Many factors go into attaining maximum throughput. There is enough confusion on

the topic that Xilinx has published a whitepaper [48]. The key components affecting RIFFA

performance are: transfer sizes, maximum payload limits, completion credits, user core clock

frequency, and data copying.
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As Figure 2.9 clearly illustrates, sending data in smaller sizes reduces effective throughput.

There is overhead in setting up the transfer. Round trip communication between the Endpoint

core and the device driver can take thousands of cycles. During which time, the FPGA can be

idle. It is therefore best to send data in as large a transfer size as resources will allow to achieve

maximum bandwidth.

When generating the vendor specific PCIe Endpoint core, it is beneficial to configure the

core to have the maximum values for payload size, read request size, and completion credits.

This will give RIFFA the highest amount of capacity when sending data.

The payload size defines the maximum payload for a single upstream PCIe transaction.

The read request size defines the same for the downstream direction. At system startup, the

PCIe link will negotiate rates that do not exceed these configured maximum values. The larger

the payloads, the more payload data each PCIe transaction can carry. This affects effective

bandwidth most directly as it reduces the amount time spent transmitting packet header data.

Maximum rates can be reached by configuring the IP cores to the highest setting and letting the

system determine the negotiated maximum.

Completion credits and their corresponding buffers are used in the PCIe Endpoint to

hold PCIe transaction headers and data for downstream PCIe transaction requests. During

downstream transfers, completion credits limit the number of in-flight requests. RIFFA does not

throttle memory read requests due to completion credit availability. Because RIFFA processes

completions at line rate, no data will ever be lost. However more in-flight requests provide

greater margin for moving data from the workstation to the user core at maximum bandwidth.

The speed at which a channel’s RX FIFO is drained is also a factor. RIFFA will throttle

read requests for downstream data to avoid overflowing the channel RX FIFOs (throttled inde-

pendently). This allows each channel to read received data at whatever rate it chooses. However,

to maximize transmission bandwidth, a user core must empty its RX FIFO at the same rate (or

faster) than it is filled. Using a clock with a frequency at least as high as that used by RIFFA is

recommended to achieve this. Note that the user core can be clocked by any source. It need not
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be the same clock that drives the RIFFA.

Lastly, end-to-end throughput performance can be diminished by excessive data move-

ment. Making a copy of a data buffer before sending it to the FPGA takes time. RIFFA’s software

APIs accept byte arrays as data transfer receptacles. Depending on the language bindings, this

may manifest as a pointer, reference, or object. However, the bindings have been designed

carefully to use data types that can be easily cast as memory address pointers and be written or

read contiguously within the virtual address space without needing to be copied into the kernel

(pass by reference, not value). Scatter gather DMA operations perform the actual movement in

the physical address space during transfer.

2.5 Conclusion

We have presented RIFFA 2, a reusable integration framework for FPGA accelerators.

RIFFA provides communication and synchronization for FPGA accelerated applications using

simple interfaces for hardware and software. It is an open source framework that easily integrates

software running on commodity CPUs with FPGA cores. RIFFA supports modern Xilinx and

Altera FPGAs. It supports multiple FPGAs in a host system, Linux and Windows operating

systems, and software bindings for C/C++, Java, Python, and Matlab. This

FPGAs are being used by an ever widening audience of designers, engineers, and

researchers. These designers are frequently non-hardware engineers as tools such as Xilinx

Vivado High Level Synthesis and the Bluespec language are lowering the barriers to entry for

FPGA use. Many of these use cases will require high bandwidth input and output between the

FPGA and a traditional CPU workstation. When faced with this problem one can either write

their own interconnection, license an existing solution from a vendor, or use an open source

solution.

In this chapter, we have also provided a detailed analysis of RIFFA as a FPGA bus master

scatter gather DMA design and an analysis of its performance. Tests show that data transfers
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can reach 97% of the achievable PCIe link bandwidth. We hope RIFFA will enable designers

to focus on application logic instead of building connectivity infrastructure. RIFFA 2 can be

downloaded from the RIFFA website at http://riffa.ucsd.edu.
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Chapter 3

Synthesizable Higher-Order Functions for
C++

3.1 Introduction

Hardware development tools have been gradually raising their level of abstraction from

specifying transistors, to defining gate level circuits, to describing register transfer operations.

C/C++ hardware development tools [29, 26, 36, 25, 28] further this trend by enabling the designer

to provide algorithmic descriptions of the desired hardware. Yet, despite much progress, there are

calls to make hardware design even more like software design, which will allow more software

engineers to write hardware cores [35].

A major impediment to this lies in the fact that C/C++ hardware development tools

lack many of the conveniences and abstractions that are commonplace in modern productivity

languages. Higher-order functions are a prime example. They are a pervasive representation

of computational patterns that take other functions as arguments. For example, the higher-

order functions map and reduce shown in Figure 3.1 are the eponymous operators of Google’s

MapReduce framework [49] and the function filter is the semantic equivalent to SQL’s WHERE

clause [50]. Higher-order functions are also useful in hardware development where they can

represent common parallel patterns [51, 52] like fast fourier transforms (Figure 3.2), argmin

reduction trees [53], sorting networks [54, 50], and string matching [55]. Despite their benefits,

higher-order functions are not found in C/C++ hardware development tools.
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1 def mulby2(x):

2 return x * 2

3 def add(x, y):

4 return x + y

5 l = [1, 2, 3, 4]

6 m = map(mulby2 , l)

7 r = reduce(add , m)

8 print(r) # Prints ’20’

(a)

1 array <int , 4> l = {1, 2, 3, 4};

2 m = map(mulby2 , l);

3 r = reduce(add , m);

(b)

Figure 3.1. (a) Higher-order functions in Python that multiply all values in a list by 2 (map), and
take the sum (reduce). (b) An equivalent in C++ using our library.

Higher-order functions are difficult to implement in C/C++ hardware development tools

because parallel hardware must be defined statically: types, functions, interfaces, and loops

must be resolved at compile time. In contrast, higher order functions typically rely on dynamic

features: dynamic allocation, dispatch, typing, and loop bounds. Prior work has added higher-

order functions to Hardware Development Languages (HDLs) [56, 36, 16], added higher-order

functions to domain-specific languages [52], or proposed extensions to C/C++ development tools

[51]. None have created synthesizable higher-order functions in a widespread language or tool.

In this chapter we develop a library of synthesizable higher-order functions for C/C++

hardware development tools with a syntax similar to modern productivity languages. Our work

leverages recent additions to the C++ language standard to enable seamless integration into a

C/C++ hardware design flow.

This work has four main contributions:

• A demonstration of C++ techniques that enable synthesizable higher-order functions

• An open-source library of higher-order functions for C/C++ hardware development tools

• A statistical comparison between our work and loop-based C/C++ implementing six

common algorithms on a PYNQ board

• A qualitative comparison between the syntax of our library and a modern high-level

language
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(a)

1 def fft(sig):

2 return divconq(nptfft ,

3 bitreverse(sig))

(b)

1 template <typename T, size_t LEN >

2 auto fft(array <T, LEN > sig){

3 return divconq(nPtFFTStage , bitreverse(sig));

4 }

(c)

Figure 3.2. (a) A graphical representation of the divide-and-conquer structure of a Fast Fourier
Transform (FFT). (b) A python implementation of the FFT algorithm using the higher-order func-
tion divconq and functions NPtFFTStage and bitreverse. (c) A C++11 implementation of
the Fast Fourier Transform algorithm using divconq from our library of higher-order functions.

This chapter is organized as follows: Section 3.2 describes the C++ techniques we use to

develop our higher-order functions. Section 3.3 demonstrates how our library can be used to

implement the well-known the Fast Fourier Transform (FFT) algorithm, one of many examples

in our repository. Section 3.4 presents a comparison of compilation results between our library

and loop-based constructs on six common algorithms. Section 3.5 describes related work. We

conclude in Section 3.6.

3.2 Building Higher-Order Functions

Higher-order functions are a pervasive abstraction that encapsulate common programming

patterns by calling other functions provided as input arguments. Figure 3.1 shows two higher-

order functions: map applies a function to every element in an array, and reduce iterates through

an array from left to right applying a function and forwarding the result to the next iteration.

Higher-order functions can also implement recursive patterns. Figure 3.2 demonstrates how the
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recursive divide and conquer function divconq is used to implement the fast fourier transform

algorithm. By encapsulating common patterns, higher-order functions encourage re-use.

Higher-order functions for are difficult to implement in C/C++ hardware development

tools because parallel hardware must be defined statically: types and functions must be resolved,

lists that define parallel interfaces must be statically sized, and parallel loops must be statically

bounded. In contrast, higher order functions in productivity languages such as Python typically

rely on dynamic features: polymorphic functions are overloaded with a table of function pointers,

functions are passed as global memory addresses for dynamic dispatch, lists are created and

resized by memory allocators, and the stack is dynamically resized for recursion. While it is

possible to define hardware with dynamic memory allocation, function pointers, and dynamic

dispatch the main drawback is efficiency and similarities to general-purpose processors.

In the following subsections we describe how to replace these dynamic features with static

techniques to implement synthesizable higher-order functions for C/C++ hardware development

tools. By using standard compiler features our work is not limited to a single toolchain. The

result of our work is a library of higher-order functions that mimics the behavior of modern

productivity languages.

A complete listing of the functions used in this chapter are shown in Table 3.1. The

remaining functions can be found in our repository.

3.2.1 Templates (Parametric Polymorphism)

In this section we describe how to use C++ templates to provide the polymorphism

required by higher-order functions. Polymorphism is the ability of a data type or function to be

written generically. For example, the higher-order function map must be written generically so

that its array argument can be a array of integers, array of arrays, array of classes, or an array of

any other type. map must also have a generic output type so that it can produce any type of output

array. Container classes such as arrays must be able to store integers or booleans. Polymorphism

provides the ability to represent repeatable patterns across various input and output types.
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Class Templates

Class templates are used to parameterize container classes and algorithms with types,

length, and functions. They are pervasive in the C++ the Standard Template Library (STL). We

use templated classes like those shown in Figure 3.3 extensively in our work.

Three examples of the the STL array class are shown in Figure 3.3a. arr1 is an array

of four integers, arr2 is an array of four floats, and arr3 is a array of two array classes,

each with four integers (a 2-by-4 matrix). This example demonstrates how template parameters

provide generic classes.

Figure 3.3b shows how templated classes are defined. Template parameters can be type

names, class names, values, or functions. Template variables can be used to define the type of

other template variables. For example T is used to define the type of the template parameter

VALUE.

1 int main(){

2 array <int , 4> arr1 = {1, 2, 3, 4};

3 array <float , 5> arr2 = {1.0, 2.0, 3.0, 4.0};

4 array <array <int , 4>, 2> arr3 = {arr1};

5 return 0

6 }

(a)

1 template <typename T, T VALUE >

2 class foo{

3 T fooval = VALUE;

4 };

(b)

Figure 3.3. (a) Three parameterized instances of the STL array class. (b) Defining a templated
class foo.

Function Templates

Templates are also used to implement polymorphic functions that can handle multiple

types with one definition. For example, the higher-order function map must be written generically

so that its array argument can be a array of integers, array of arrays, array of classes, or an array

of any other type. Templates can also be used to pass compile-time constants to a function. This
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functionality is required for functions that use the STL array class and will be used heavily in

our higher-order functions.

1 template <typename T>

2 T add(T l, T r){

3 return l + r;

4 }

5

6 template <typename T, unsigned long LEN >

7 int arrayfn(array <T, LEN >& arr){

8 /* Do some array processing */

9 return 0;

10 }

11

12 int main(){

13 array <int , 3> arr = {0, 1, 2};

14

15 // Three examples without template inference

16 int res1 = add <int >(0, 1);

17 float res2 = add <float >(0.0f, 1.0f);

18 int res3 = arrayfn <int , 3>(arr);

19

20 // The same examples with template inference

21 int res4 = add(0, 1);

22 float res5 = add (0.0f, 1.0f);

23 int res6 = arrayfn(arr);

24 return 0;

25 }

Figure 3.4. Two templated functions: add and arrayfn.

Lines 1-10 in Figure 3.4 show two templated functions: add and arrayfn. The template

parameter T provides static type polymorphism to both functions. This means they can be applied

to integers, floats, or classes. arrayfn has an additional parameter LEN that specifies the length

of its array argument. These functions are called without template inference on Lines 16-19.

Template Inference

Template parameter inference allows template parameters to be inferred from the call

site, and is critical for creating succinct higher-order functions that mimic dynamically typed

software languages. Template inference starts with the last template parameter, and stops when a

parameter cannot be inferred, or all parameters have been inferred.

Figure 3.4 also demonstrates an example of template inference on Lines 21-24. The

template parameters of calls add and arrayfn infer the T and LEN based on the types of the
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input arguments at those callsites. The effect of template inference is to allow designers to write

less verbose code.

Functions as Template Parameters (First-Class Functions)

C++ functions can also be passed as template parameters. Unlike software languages,

where functions are passed as pointers and dynamically resolved during runtime, functions

passed as template parameters are static and synthesizable.

Figure 3.5 demonstrates how the function truncate can be passed to the higher-order

function apply as the template parameter FN.

1 template <typename TI >

2 unsigned char truncate(TI IN){

3 return (unsigned char)IN;

4 }

5

6 template <typename TO , typename TI, TO (FN)(TI)>

7 TO apply(TI IN){

8 return FN(IN);

9 }

10

11 int main(){

12 int i = 0x11223344;

13 unsigned char res;

14

15 res = apply <unsigned char , int , truncate <int > >(i);

16 // res = 0x44

17 return 0;

18 }

Figure 3.5. A C++ function passed as a template parameter.

Template inference cannot be applied to the example in Figure 3.5. truncate depends

on the type parameters TI and TO, so it must follow those parameters in the parameter list.

truncate is not a function argument to apply it cannot be inferred. Figure 3.6 demonstrates

how we can can aid template inference by wrapping the truncate function inside of a struct.

Figure 3.6 demonstrates how the body of the function truncate and its template pa-

rameters are relocated to the () operator inside of the Truncate struct. This is often called a

class/struct-wrapped function, or functor. By passing the struct Truncate we “hide” the template

parameters of its function from the template parameter list in array. Instead, the compiler infers
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1 struct Truncate{

2 template <typename TI >

3 unsigned char operator ()(TI IN){

4 return (unsigned char)IN;

5 }

6 };

7

8 template <typename TO , class FN , typename TI>

9 TO apply(TI IN){

10 return FN()(IN);

11 }

12

13 int main(){

14 int i = 0x11223344;

15 unsigned char res;

16 // Previously: apply <unsigned char , int , truncate <int > >(i);

17 res = apply <unsigned char , Truncate >(i);

18 // res = 0x44

19 return 0;

20 }

Figure 3.6. Wrapping a function inside of a struct.

them when Truncate is instantiated and the () operator is called on Line 10 of Figure 3.6.

We can simplify this example further and deduce FN by passing it as an argument to

apply, as shown in Figure 3.7. In Figure 3.7, Truncate is defined and instantiated as the

variable truncate. The variable truncate is passed as a function argument to apply. Passing

truncate as an argument allows the compiler to infer the template parameter FN. Because the

variable ignored is never used the example in Figure 3.7 is synthesizable. However, we still

cannot infer TO unless it is passed as a function argument. To deduce TO we must use a new

feature from the C++ specification covered in Section 3.2.1.

Type Inference

Section 3.2.1 we showed that we can automatically infer input types using template

inference, but could not infer output types since output types are not arguments. Higher-order

functions like map can return a multitude of types depending on what function is provided. To

correctly mimic the behavior of dynamically-typed software languages we must be able to infer

the output types automatically.

Figure 3.8 demonstrates how we can remove the TO template parameter from apply
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1 struct Truncate{

2 template <typename TI >

3 unsigned char operator ()(TI IN){

4 return (unsigned char)IN;

5 }

6 } truncate;

7

8 template <typename TO , typename TI, class FN>

9 TO apply(FN __ignored , TI IN){

10 return FN()(IN);

11 }

12

13 int main(){

14 int i = 0x11223344;

15 unsigned char res;

16 // Prev: apply <unsigned char truncate <int > >(i);

17 res = apply <unsigned char >(truncate , i);

18 // res = 0x44

19 return 0;

20 }

Figure 3.7. Class-wrapped-functions can be inferred by passing them as instances at the callsites.

using the new auto keyword. This causes the compiler to deduce the return value from the type

of FN. Figure 3.8 is functionally identical to Figure 3.7, but the call to apply is now less verbose.

1 struct Truncate{

2 template <typename TI >

3 unsigned char operator ()(TI IN){

4 return (unsigned char)IN;

5 }

6 } truncate;

7

8 // Previously: <typename TO, typename TI, class fn>

9 template <class fn, typename TI >

10 // Previously: TO apply(fn _, TI IN)

11 auto apply(fn _, TI IN){

12 return fn()(IN);

13 }

14

15 int main(){

16 int i = 0x11223344;

17 unsigned char res;

18 // Previously: apply <unsigned char >(truncate , i);

19 res = apply(truncate , i);

20 // res = 0x44

21 return 0;

22 }

Figure 3.8. Applying the new auto keyword to Figure 3.7 allows us to remove the template
parameter TO
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1 int main(){

2 // Constructing three arrays

3 array <int , 10> arr = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

4 array <int , 10> arr1 = range <10, 0, 1>(); // {0...9}

5 array <int , 2> arr2 = construct(1, 2); // {1, 2}

6

7 // Manipulating arrays

8 int h = head(arr); // 0

9 array <int , 9> t = tail(arr); // {1...9}

10 array <int , 10> arr3 = prepend(h, t); // {0...9}

11 array <int , 10> arr4 = append(t, h) // {1..9, 0}

12 array <int , 20> arr5 = concatenate(arr , arr); // {0...9 , 0...9}

13 return;

14 }

Figure 3.9. A variety of array constructors and manipulations.

3.2.2 Arrays

Lists are the most common target of higher order functions. In software productivity

languages lists are implemented as dynamically allocated chunks of memory (contiguous or

linked) that can be created, duplicated, resized, and modified during runtime. Lists in hardware

circuits describe static structures that cannot be dynamically modified. To describe these

structures in C/C++ we must use static arrays.

For our higher-order functions we use the array class from the C++ Standard Template

Library to provide list-like functionality for our higher-order functions. The array class has

major benefits over pointers. Unlike pointers an array is parameterized by its length, and

propagates this parameter through function arguments and for template inference. Second,

array is a class with a copy operator. This means it can be returned from a function directly,

unlike pointers, which must be passed as an argument to be modified in order to be “returned”.

This maintains a more Python-like feel for our functions.

Figure 3.9 shows severals examples of how C++ array objects are constructed and can

be manipulated. While these arrays cannot be dynamically resized, our library also provides a

collection of functions for static list manipulation. A few simple examples of list manipulations

are shown in Figure 3.9. Thus, the array class allows us to provide software-like syntax for C++

hardware tools.
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3.2.3 Recursion and Looping

Higher-order functions use loops or recursion to iterate over list elements. Dynamically

typed languages like Python can use loops to implement recursion since intermediate type state

is propagated during runtime. Statically typed languages like C++ must use recursion since

the output of the previous iteration must type-check with the current at compile time. Since

C++ hardware development tools are statically typed and no dynamic stack, we must use static

recursion.

1 int main(){

2 array <int , 10> arr = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

3 int s = sum(arr); // s = 45

4 return 0;

5 }

Figure 3.10. Using the recursive array-sum from Figure 3.11

C++ static recursion uses a technique known as template metaprogramming [57]. Tem-

plate metaprogramming is synthesizable because its is unrolled at compile time, bounded by

compile-time template parameters, it eliminates the need for a dynamic stack. Template metapro-

gramming makes the resulting functions concise. This is shown in Figure 3.10, which calls sum

to obtain the sum of an array of elements, and sum’s implementation in Figure 3.11.

1 template <size_t LEN >

2 struct _sum{

3 auto operator ()(array <int , LEN > IN){

4 return head(IN) + _sum <LEN -1>()(tail(IN));

5 }

6 };

7

8 template <>

9 struct _sum <0>{

10 int operator ()(array <int , 0> IN){

11 return 0;

12 }

13 };

14

15 template <size_t LEN >

16 int sum(array <int , LEN > IN){

17 return _sum <LEN >()(IN);

18 }

Figure 3.11. An array-summation implementation using recursive class templates.
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Figure 3.11 shows an implementation of sum that uses template recursion to iterate

through the array. Lines 15-18 define the sum method with the template parameter LEN. This

is preceded by two definitions of the sum helper class. The first definition on Lines 1-6 is

the recursive definition that is used when the template parameter LEN is non-zero. The second

definition on Lines 8-13 is the base case for when LEN is zero. Together these implement the sum

method.

When the sum method is called in Figure 3.11 the function creates an instance of

sum<LEN> and calls its () operator. The () operator instantiates an instance of sum<LEN-1>

and calls sum<LEN-1>’s () operator. This process continues until LEN is equal to 0 and sum<0>

return 0. When the program is run in software the program unwinds the call tree and adds the

elements together. Since LEN is a static template parameter this recursion is bounded at compile

time and can be synthesized.

3.2.4 Higher-Order Functions

1 template <size_t LEN >

2 struct _rhelp{

3 template <typename TI , typename TA, class FN>

4 auto operator ()(FN F, TI INIT , array <TA, LEN > IN){

5 return _rhelp <LEN -1>()(F, FN()(INIT , head(IN)), tail(IN));

6 }

7 };

8

9 template <>

10 struct _rhelp <0>{

11 template <typename TI , typename TA, class FN >

12 TI operator ()(FN F, TI INIT , array <TA , 0> IN){

13 return INIT;

14 }

15 };

16

17 template <size_t LEN , typename TI, typename TA, class FN>

18 auto reduce(FN F, TI INIT , array <TA, LEN > IN){

19 return _rhelp <LEN >()(F, INIT , IN);

20 }

Figure 3.12. Implementation of the function reduce using all of the features described in this
section.

We now have all of the pieces to develop our synthesizable higher-order functions:

templates, arrays, functions, and recursion. We emphasize that the implementations of our
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higher-order functions are complex but that using our functions is quite simple as demonstrated

in these examples.

We demonstrate our techniques by implementing the higher-order function reduce in

Figure 3.12 and follow with an example in Figure 3.13. reduce is defined on Lines 17-20.

When the function reduce is called templates are inferred as described in Section 3.2.1. The

template parameter LEN specifies the length of the array, parameters TI and TA provide input

polymorphism on the initial value and the array value respectively, and FN is the function class

from Section 3.2.1. The output type is deduced by the auto keyword. LEN parameterizes the

recursive class rhelp defined on Lines 1-7. The base case when LEN is zero is defined on

Line 9-15. The recursive behavior follows the description in Section 3.2.3.

Figure 3.13 shows how the array summation function from Figures 3.10 and 3.11 can

be re-written using reduce. Again, this demonstrates that using our functions is quite simple

despite the implementation complexity.

1 int main(){

2 array <int , 10> arr = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

3 int s = reduce(add , arr , 0); // s = 45

4 return 0;

5 }

Figure 3.13. Array summation from Figure 3.10 re-written using reduce defined in Figure 3.12

3.3 Examples

We demonstrate our work by implementing the Fast Fourier Transform (FFT) algorithm

with our higher-order function library. We use this example to demonstrate our library and

compare its syntax to Python, a modern, dynamically-typed productivity language. We have

chosen FFT because it uses many of our higher order functions, is a well-known algorithm

in the hardware development community, and has been used as a motivating related hardware

development language work, [56, 58]. Further examples are available in our repository, and

results are shown in Section 3.4.
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The FFT algorithm is developed in several parts. Section 3.3.1 demonstrates interleave,

which is used in the bitreverse function in Section 3.3.2. Section 3.3.3 demonstrates how to

implement an N-point FFT Stage function. Section 3.3.4 combines the previous sections into an

implementation of the FFT algorithm.

3.3.1 Interleave

The interleave function interleaves two lists as shown in Figure 3.14. Figure 3.14a

shows a graphical example of interleaving two lists. Figure 3.14b demonstrates a C++ implemen-

tation using our synthesizable library, and Figure 3.14c demonstrates a Python implementation.

{0,2,1,3} {4,6,5,7} 

{0,4,2,6,1,5,3,7} 

(a)

1 struct Interleave{

2 template <typename T, size_t LEN >

3 auto operator ()(array <T, LEN > L, array <T, LEN > R){

4 auto pairs = zipWith(construct , L, R);

5 return rreduce(concatenate , pairs , array <T, 0>());

6 }

7 } interleave;

(b)

1 def interleave(L,R):

2 pairs = zip(L, R)

3 concatenate = lambda p, lst: list(p) + lst

4 return rreduce(concatenate , pairs , [])

(c)

Figure 3.14. (a) Interleaving two lists graphically (b) Interleaving two lists in C++ (c) Interleav-
ing two lists in Python

Figure 3.14b uses zipWith to apply the construct function to combine both arrays into

a pair-wise array of arrays. Then, rreduce applies the merge function to attach the front of each

2-element array to the end of the previous array and produce an interleaving. The corresponding

Python implementation is shown in Figure 3.14c, with zip instead of zipWith because Python

tuples are easily converted to arrays.
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3.3.2 Bit-Reverse

Figure 3.15 shows a bit-reverse permutation for arrays. In the permutation, the element

at index N is swapped with the value at P, where P is equal to the a reversal of the bits of N.

For example in an 8-element list, if N = 1 = 3′b001, then P = 4 = 3′b100. Figure 3.15a shows

a bit-reversal permutation applied to the list {0,1,2,3,4,5,6,7} as a recursive interleaving.

This is followed by the synthesizable C++ implementation in Figure 3.15b and the Python

implementation in Figure 3.15c. Figure 3.15b implements the bit-reverse permutation using

{0} 
{0,1} 

{1} {2} {3} 
{2,3} 

{0,2,1,3} {4,6,5,7} 

{4} 
{4,5} 

{5} {6} {7} 
{6,7} 

{0,4,2,6,1,5,3,7} 

(a)

1 struct Bitreverse{

2 template <typename T, size_t LEN >

3 auto operator ()(array <T, LEN > IN){

4 return divconq(interleave , IN);

5 }

6 } bitreverse;

(b)

1 def bitreverse(in):

2 return divconq(interleave , in)

(c)

Figure 3.15. (a) Bit-reverse permutation of a list graphically (b) Bit-reverse in C++ (c) Bit-
reverse in Python

the higher-order functions we have developed. divconq from Table 3.1 is used to divide the

input array into single-element arrays. The function interleave from Section 3.3.1 is used to

interleave the resulting arrays to produce the result. A Python implementation is in Figure 3.15c.

3.3.3 N-Point FFT Stage

The FFT algorithm is implemented by recursively applying an N-Point FFT function to

two outputs of two N/2-Point functions in the previous stage. The N-point FFT stage is shown

graphically in Figure 3.16a. In an N-point FFT inputs from the “left” and “right” inputs are passed

60



with the context (tree level and index) to the fftOp function. fftOp performs computation and

then produces two outputs that are de-interleaved in a similar fashion.

{L0, L1, L2, L3} {R0, R1, R2, R3} 

FFT Op 0 FFT Op 1 FFT Op 2 FFT Op 3 

{O0, O1, O2, O3, O4, O5, O6, O7} 

(a)

1 struct NPtFFTStage{

2 template <typename T, size_t LEN >

3 auto operator ()(array <T, LEN > l, array <T, LEN > r){

4 static const std:: size_t LEV = log2(LEN) + 1;

5 auto contexts = zip(replicate <LEN >(LEV), range <LEN >());

6 auto inputs = zip(l, r);

7 auto outpairs = zipWith(fftOp , contexts , inputs)

8 auto outputs = unzip(outpairs);

9 return concatenate(outputs.first , outputs.second);

10 }

11 } nPtFFTStage;

(b)

1 def nptfftstage(L, R):

2 lev = log2(len(L) + 1)

3 contexts = zip([lev]*L, range(len(L)))

4 inputs = zip(L, R)

5 outpairs = map(fftOp , zip(contexts , inputs))

6 outputs = zip(* outpairs) # Unzip

7 return outputs [0] + outputs [1]

(c)

Figure 3.16. (b) N-Point FFT Stage using synthesizable higher-order functions (c) N-Point FFT
Stage using Python

We define an nPtFFTStage function in Figure 3.16b. This function first computes its

level (LEV) using the LEN template parameter. LEV is replicated and paired with an index to

produce a context for each fftOp function. The function calls the fftOp function using zipWith

to pass the context and input data. The output is de-interleaved using unzip and merge.

3.3.4 Fast Fourier Transform

We now have all the tools we need to implement widely-used Fast Fourier Transform

(FFT) algorithm from Figure 3.2. The divide and conquer, recursive structure of the FFT
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algorithm is shown in Figure 3.2a. Each N-point stage of an FFT combines the results of two

N/2-point transforms.

The FFT algorithm is implemented in Figure 3.17 using the higher-order function

divconq with the nPtFFTStage function. The input list is bit-reversed to obtain the correct

output ordering.

1 template <typename T, size_t LEN >

2 auto fft(array <T, LEN > sig){

3 return divconq(nPtFFTStage , bitreverse(sig));

4 }

Figure 3.17. FFT Implementation using the functions described in this section

As demonstrated, we have created a library of higher-order functions with a syntax that

is similar to a modern productivity language, Python. This is evident from comparing examples

in Figures 3.1, 3.2, 3.14, 3.15, 3.16, and 3.17. In all examples, the syntax and structure of the

C++ code is very similar to Python. This is in spite of extensive use of C++ templates. More

examples can be found in our repository, and in Section 3.4.

3.4 Results

We report the quantitative results of our work by synthesizing six application kernels

with our higher-order functions and compare them to loop-based implementations. The kernels

we target are described in Section 3.4.1, followed by the experimental setup in Section 3.4.2 and

results in Section 3.4.3.

3.4.1 Application Kernels

Fast Fourier Transform

The Fast Fourier Transform (FFT) kernel was presented in Section 3.3.4. The FFT kernel

is widely used in signal analysis, often for compression. As demonstrated in Section 3.3, the

FFT kernel can be implemented with the higher-order divconq and zipWith functions. The

loop-based equivalent is written with a pair of nested loops.
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Argmin

Argmin is a function to compute value and index of the minimum element in an array.

This function can be used in many streaming data processing applications such as databases

[50, 53]. The Argmin kernel can be written using the higher-order function divconq and function

argminop as an input. The argminop function returns the value and index of the minimum

value from its subtrees. The loop-based equivalent is implemented with a pair of nested loops.

Finite Impulse Response Filter

A Finite Impulse Response (FIR) filter is a common signal processing kernel that takes

samples from an input signal and performs a dot-product operation with an array of coefficients.

These filters can be used for simple high-pass, and low-pass audio filtering. Our FIR filter

is composed of two zipWith to perform the element-wise multiplication of the input signal

array and coefficient array, and divconq to produce an addition tree to take the sum of all

of the elements. The loop-based equivalent is written as a single for-loop that computes the

element-wise multiplication, and a pair of nested for loops to implement the addition tree.

Insertion Sort

Insertion Sort is a streaming function that computes sorted lists. In our kernel, an array

of values is streamed into the kernel. The kernel maintains a sorted order for the N minimum

or maximum values seen and ejects others. This is identical to the implementation in [54]. The

Insertion Sort kernel can be written using the higher-order function reduce, and a compareswap

function. The compareswap function is applied to each element in the list and swaps the element

depending on the sort criteria. The ejected element is carried forward for further comparison.

Bitonic Sort

Bitonic sort is a highly parallel sorting function used widely on GPU and FPGA architec-

tures [54]. It’s structure can be described recursively as a tree of butterfly networks.
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Smith-Waterman

A systolic array is a common hardware structure for solving dynamic programming

problems. In this example we use the Smith-Waterman algorithm from [55]. The systolic array

is written as a composition of zipWith and reduce.

3.4.2 Experimental Setup

For each of the six algorithms described in Section 3.4.1 we developed a loop-based

and higher-order-function-based implementation, resulting in twelve designs. Each design

targeted 16-element arrays, with types described in Table 3.2. For each design we gathered

performance, resource utilization, and maximum frequency results for loop-based and higher-

order-function-based variants of the six algorithms. Our results were gathered in Vivado 2017.4

and implemented on a PYNQ development board with a Zynq XC7Z020 SoC.

Performance results were gathered from the Vivado HLS synthesis tool. The tool targeted

a clock period of 2 nanoseconds (500 MHz) to guarantee that the architecture was fully pipelined

and completely unrolled. These results are reported in Table 3.3.

Table 3.2. Post-Implementation resource utilization for six algorithms on a PYNQ (XC7Z020)
in Vivado 2017.4.

Higher-Order Functions Loop Based
Function Name
(Data Type) FF SRL LUT BRAM DSP FF SRL LUT BRAM DSP

FFT
(ap fixed<32,16>) 21263 2487 8096 0 77 21240 2494 8096 0 77

Argmin
(int) 2670 8 1573 0 0 2666 10 1575 0 0

FIR Filter
(float) 14388 277 7306 0 48 14388 272 7305 0 48

Insertion Sort
(int) 2300 0 935 0 0 2300 0 935 0 0

Bitonic Sort
(int) 11929 1 4869 0 0 11929 1 4869 0 0

Smith-Waterman
(ap int<2>) 895 11 1187 0 0 895 11 1186 0 0
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Resource utilization and Fmax results are reported from a sweep of thirteen Vivado

Implementation goals. Resource utilization did not vary across these thirteen runs and are

reported in Table 3.2. For each goal we performed a binary search for the maximum frequency,

varying the output frequency of the Xilinx Clock Wizard attached to the hardware core. The

resulting statistics are reported in Table 3.4. Finally, Table 3.5 presents a statistical analysis of

the maximum frequency data we collected.

3.4.3 Analysis

Performance results are shown in Table 3.3. Column 1 displays the name for each of

the six application kernels. Columns 2 and 3 show the initiation interval and latency for each

higher-order-function-based application kernel. Likewise, columns 4 and 5 show the initiation

interval and latency for each loop-based application kernel.

Table 3.3. Performance results from Vivado HLS 2017.4 for six application kernels on 16-
element lists

HOFs Loop-Based

Function Name Interval
(Cycles)

Latency
(Cycles)

Interval
(Cycles)

Latency
(Cycles)

FFT 1 59 1 59
Argmin 1 7 1 7
FIR Filter 1 65 1 65
Insertion Sort 1 31 1 31
Bitonic Sort 1 21 1 21
Smith-Waterman 1 16 1 16

From Table 3.3 we conclude that our higher-order functions produce equal performance

to fully-unrolled loop-based designs. This is evident from comparing the initiation intervals of

columns 2 and 4 and the latencies of columns 3 and 5 in Table 3.3. For all designs, higher-order

implementations are equal to fully-unrolled loop-based implementations. We conclude there are

no performance penalties associated with our higher-order functions.
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Post-Implementation resource utilization is shown in Table 3.2. Columns 2-6 in Table 3.2

show resource utilization for applications written with our higher-order functions and columns

7-11 show resource utilization for applications written with fully-unrolled loops.

From Table 3.2 we conclude that our higher-order functions implementations consume

similar resources to loop-based implementations. Higher-order function and loop-based im-

plementations consume equal numbers of DSPs and no BRAMs. The two methodologies also

consume similar numbers of Flip-Flops (FFs), Look-Up-Tables (LUTs), and Shift-Register-

Look-up-tables (SRLs): The maximum resource difference between the two implementation

methodologies is less than 10 resources, a less than 1% difference in most cases. Given these

small differences, we conclude that our functions do not produce significant differences in

resources consumed.

We have a theory for this behavior. Vivado HLS and SDSoC use an LLVM backend to

generate verilog circuits. This verilog is emitted from LLVM IR. We theorize that this behavior is

because LLVM IR produced by our higher-order functions is identical to the LLVM IR produced

by loop-based designs after code transformations have been performed. However, the designs

above generate large LLVM IR files, and it is difficult to differentiate the structures. However,

results shown here are consistent with this theory.

Post-Implementation frequency statistics are shown in Table 3.4. The statistics in Ta-

ble 3.4 are gathered from a sweep of 13 Vivado Implementation goals. Columns 2-4 show the

mean, median, and standard deviation of frequency results for application kernels implemented

with higher-order functions, and columns 5-7 show corresponding statistics for loop-based

designs.

To determine whether the average maximum frequency of higher-order-function-based

kernels differs statistically from loop-based kernels we perform an exact permutation test with

the null hypothesis of equal means [59, 60]. In considering whether to reject the null hypothesis,

we adjust for multiple comparisons using Holm-Bonferroni (H-B) correction, this is necessary

because we test each of the six designs independently. The resulting p-values and α = 0.05 H-B
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Table 3.4. Maximum frequency statistics from 13 implementation runs of Vivado 2017.4

HOFs Fmax (MHz) Loop Based Fmax (MHz)

Function Name Mean Median Std. Mean Median Std.

FFT 123.56 124.22 3.35 123.56 123.44 3.18
Argmin 110.64 110.94 2.51 110.91 109.77 2.89
FIR Filter 166.80 165.63 3.12 165.56 166.41 3.57
Insertion Sort 162.83 162.11 3.22 166.47 164.84 5.02
Bitonic Sort 112.77 112.11 3.50 113.85 115.63 2.76
Smith-Waterman 103.73 104.69 4.19 103.58 105.47 5.34

rejection thresholds are reported in Table 3.5.

Table 3.5. p-values and H-B rejection thresholds from a permutation test with the null hypothesis
of equal means

Function Name p-value α = 0.05 thresh.
FFT Algorithm 0.97656 0.05
Argmin 0.74976 0.01667
FIR Filter 0.22267 0.01
Insertion Sort 0.00830 0.00833
Bitonic Sort 0.23193 0.0125
Smith-Waterman 0.91406 0.025

Out of the six designs, only one (Insertion Sort) would be rejected at the α = 0.05 level,

and only just barely. Given the results of the Table 3.5 analysis, we conclude that our functions

produce maximum frequency results that are generally statistically indistinguishable from those

of loop-based designs.

3.5 Related Work

3.5.1 Hardware Development Languages

There have been several hardware-development projects that bring functional languages to

bring higher-order functions to hardware development. Lava [56] and Cλash [58] are functional
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hardware development languages embedded in Haskell that provide higher-order functions and

polymorphism to users. Lava is interesting because the operators are composed from functional

definitions of Xilinx primitives, which provides a function abstraction for the user and context

for the compiler to improve synthesis.

Higher-order functions originate from, but are not limited to purely-functional languages.

The Chisel project [16] uses Scala and provides higher-order functions. Several projects have

used Python for hardware development, for example, PyMTL [17] is a project that embeds

a hardware development language in Python to raise the level of abstraction. These projects

provide higher-order functions, imperative syntax, and polymorphism to generate circuits.

However, HDL projects fail to raise the designer’s level of abstraction. The notion of

wiring together operations, scheduling, registers, and clocks is pervasive. These concepts are

unfamiliar to software developers. In addition, HDL languages do not generate complete systems.

C/C++ synthesis tools completely abstract the detailed wiring, scheduling, and clocking concepts

and automate core integration with communication and memory interfaces [29, 25, 28].

3.5.2 High-Level Synthesis Languages

High-level synthesis tools were developed to eliminate scheduling, wires, and registers

from designer control - but few support higher-order functions. The Bluespec [61] language is

one tool that provides higher-order functions. Bluespec is written written as a set of rules that

are executed when prerequisites are met. These rules are scheduled by the Bluespec compiler to

create a Verilog circuit.

Despite its obvious advantages the syntax and structure of the Bluespec language is

substantially different than modern software languages. Our work provides a syntax that is

similar to modern software languages and still provides higher-order functions, and automatic

scheduling.

68



3.5.3 Domain-Specific Languages

In [52] the authors develop a domain-specific language with higher-order functions to

generate parallel hardware. This domain-specific language is scheduled, translated into Maxeler’s

vendor-specific dataflow hardware development language, and finally deployed onto the vendor

system. By using higher-order functions the authors can deploy highly-parallel systems, with

low verbosity and high productivity for software engineers.

Our work does not use a domain specific language. Instead, we provide a familiar

software API within C++ synthesis tools. By targeting the C++ compiler toolchain we can rely

on a large body of existing work on optimization passes to improve our quality of result.

In addition, papers by [52] and [51] highly complementary to our own. In [52] the

authors state: “generating imperative code from a functional language only to have the HLS tool

attempt to re-infer a functional representation of the program is a suboptimal solution because

higher-level semantic knowledge in the original program is easily lost.” Similarly, [51] motivates

the need for parallel patterns in C++. We believe our work is a basis for both of these works.

We have generated higher-order function interfaces for C++ synthesis, eliminating the need to

“re-infer a functional representation”.

3.5.4 Our Work

In our work we develop a library of higher-order functions for C/C++ synthesis tools.

Using C/C++ synthesis tools avoids the pitfalls of HDLs: low-level wiring, registers, scheduling,

and interfaces. Unlike prior work in high-level synthesis, our work is synthesizable to hardware

and available in standard tools tools without modifications. Finally, it provides a syntax similar

to a modern dynamically typed productivity language within C++.
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3.6 Conclusion

In this work, we have demonstrated a library of synthesizable library of higher-order

functions for C++. These functions mimic the syntax of a modern dynamically-typed productivity

language despite being written in a statically-typed language, for a tool with limited memory

primitives.

We demonstrated how we build our higher order functions using C++ templates, and new

features in the C++ standard. The library we created uses extensive C++ templates but the API

we produced is simple and has similar syntax to Python.

Our results demonstrate that our code generates highly-similar hardware to traditional

loop-based high-level synthesis: performance results were equal, differences in resources con-

sumed were small, and the distributions of the maximum frequencies were generally statistically

indistinguishable.

There are challenges ahead for this work: First, defining functions is more verbose than

in other languages. Second, our work currently instantiates completely parallel computation

kernels. Further work is needed to break these kernels into iterative sub-problems and provide a

trade-off between performance and area.

In summary, we have made measure steps toward increasing the accessibility of C++

synthesis tools by providing common abstractions that are present in software development

environments.
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Chapter 4

A Lab Curriculum for Hardware/Software
Co-Design

4.1 Introduction

PYNQ is a fantastic tool for embedded education. PYNQ boards have low power ARM

processors and a small form factor with extensive Python libraries. Existing PYNQ Overlays—

FPGA designs with post-bitstream flexibility—provide common communcation interfaces and

are delivered with self-documenting Jupyter notebooks. For these reasons, PYNQ is being rapidly

adopted as a teaching platform across several universities, Tampere University of Technology,

BYU [40], and our own. PYNQ is a natural fit for our classes focus on Hardware/Software

(HW/SW) co-design of wireless embedded systems. It provides easy-to-use drivers from a

high-level language in an embedded form-factor. With High-Level Synthesis (HLS) and the

Vivado block diagram editor PYNQ allows us to avoid low-level tedium and focus on concepts

and algorithm development.

However, despite extensive PYNQ API documentation, we have found that there is little

instructional materials for building complete PYNQ Overlays. A “complete PYNQ Overlay”

comprises a swath of interdependent topics: The Vivado block diagram editor, IP and algorithm

development, hardware interfaces, physical memory, drivers, and Python packagaing. This has

been a conscious (and reasonable) design choice of the PYNQ team to focus on a well-built set

of libraries and APIs to aid all-programmable development. Creating and maintaining a complete
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Figure 4.1. High-level flow for our PYNQ labs: Our labs are installed on the PYNQ board and
accessed from a host computer (1). Jupyter Notebooks direct the reader through the steps of
creating a PYNQ Overlay (2). When the overlay is complete, the PYNQ Overlay is installed and
run on the PYNQ board (3).

set of tutorials is time consuming and would take time away from development. Instead, the task

of developing tutorials and learning materials has been given to the community.

We have created a lab curriculum that teaches HW/SW co-design through building

complete PYNQ Overlays. Our lab curriculum is split into three units where each unit is a set of

independent Jupyter Notebooks teaching a concept. The flow of each unit is shown in Figure 4.1:

Jupyter Notebooks served by the PYNQ board (1) and accessible from a host web browser. The

notebooks instruct readers how to create HLS Cores, Vivado Designs, and Python Classes (2).

These parts are packaged as a PYNQ Overlay and deployed pback onto the PYNQ board for

testing (3). At the end of each unit the readers have created a working PYNQ Overlay.

The notebooks that comprise each unit are our major contribution and are available on

GitHub. We also highlight three contributions that will be useful to the broader embedded
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Figure 4.2. A cell from the demo notebook showing how the 9-tap 1-dimensional filter can be
applied to images.

development community:

1. An example of Jupyter-based instructional materials

2. Re-usable skeleton files for starting PYNQ Projects

3. Instructions for Pip-packing PYNQ Overlays

The remainder of our paper is organized as follows: Section 4.2 describes the three units

we have created and the common hardware/software codesign patterns they target. Section 4.3

describes the 5-part structure of each lab. Section 4.4 discusses related work before concluding

in Section 4.5.
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4.2 Units

Our curriculum is dividied into three units that can be completed in a three-hour lab

session. Each unit teaches readers how to implement a single High-Level Synthesis (HLS) core

and PYNQ Overlay for a common computational pattern: Real-Time and Memory-Mapped IO,

Streaming Communication, and Shared Memory Communication. We chose these topics because

they represent the topics we found most common in our classes and in embedded projects.

Each unit is split into five interactive Jupyter Notebooks described in Section 4.3. Fig-

ure 4.1 shows how these notebooks are served by a PYNQ board for a web broswer on the

reader’s host computer. The reader follows the notebooks to implement a Vivado block diagram

that is then loaded onto the FPGA fabric of the PYNQ board. The final steps in each unit interact

with the overlay the reader has created.

In the process of completing these notebooks readers are will learn about a diverse set of

topics: virtual memory, direct-memory access, interrupts, memory-mapped IO, and physical IO,

deterministic runtime, and embedded communication.

The high-level learning objectives for our work aree:

1. Teach readers how to create the components of a PYNQ Overlay

2. Interact with an Hardware Core from Python using PYNQ

3. Instruct readers about the different communication types

4. Demonstrate how to package a PYNQ Overlay for distribution

4.2.1 Real-Time IO Unit

In the Real-Time IO unit we describe how to implement a Real-Time control loop in High-

Level Synthesis. The concepts demonstrated in the Real-Time IO unit are: memory-mapped IO,

physical IO, deterministic runtime, interrupts, and embedded communication (UART). These
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are common computaional patterns in many embedded systems: low-latency motor control [38],

industrial circuits [62], sensor fusion, and other applications [63].

The notebooks in this set teach the reder how to implement a HLS core for communicating

with sensors. The core contains an AXI-Master interface that it uses to write to an AXI-Slave

UART controller connected to PMOD A on the PYNQ-Z1. Second, the loop flashes LEDs

attached to the IO Pins. Third, it reads the buttons on the PYNQ board and writes them to

a register location. The HLS Core can operate synchronously, where it executes once and

returnsm or asynchronously where it detatches and loops forever. In asynchronous mode, the

HLS core runs executes every 50K clock cycles. We chose these examples because they are easy

to demonstrate and broadly applicable.

The learning objectives for this unit are:

1. Create an interface for physical input and output in HLS

2. Write an HLS core with a dictated runtime

3. Interact with AXI communication peripherals in HLS

4.2.2 Streaming Communication Unit

The Streaming Communication Unit teaches the reader how to implement a PYNQ

Overlay containing an High-Level Synthesis (HLS) core with AXI-Stream interfaces. This is a

common computational pattern for high-bandwidth video [39, 27] and audio [37] applications.

The concepts demonstrated in this unit are: Memory-Mapped IO and Direct-Memory Access

(DMA).

The notebooks in this set teach the reader how to implement a 9-tap, 1-Dimensional

digital filter witten in HLS. The filter core has an AXI-Stream input and AXI-Stream output and

both interfaces are connected to a Xilinx DMA Engine. The signal length and tap coefficients are

configurable. The core processes AXI-Stream beats until length is reached and then terminates.

Figure 4.2.2 demonstrates an execution of this overlay from Jupyter Notebooks.
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The learning objectives for this unit are:

1. Create a HLS core with an AXI-Stream interface

2. Use a DMA Engine to move high-bandwidth data

3. Learn how to set registers within an HLS Core

4.2.3 Shared Memory Communication

The Shared Memory Communication unit teaches the reader how to implement a matrix-

multiply core operates on data in a memory space shared between the ARM PS and the ac-

celerator. This is a common computation pattern in image processing and video applications,

particularly those with non-streaming, repetitive, or non-linear access patterns [39]. The concepts

demonstrated in the Shared Memory unit are: shared memory, interrupts, and HLS library re-use.

The notebooks in this unit teach the reader how to implement a simple matrix multiplica-

tion core in the FPGA fabric. Further steps demonstrate how to re-use a highly optimized HLS

matrix mutliplication core provided by Xilinx.

The learning objectives for this unit are:

1. Create a HLS core with an AXI-Master interface

2. Re-use highly-optimized HLS libraries for computation

3. How to use interrupts to signal the ARM Processing System

4.3 Unit Structure

Each unit in our work teaches how to build a complete PYNQ Overlay: a Block Diagram

Script (.tcl file), FPGA Bitstream (.bit file), and Python Class, as shown in Figure 4.3. The

bitstream and .tcl are generated by the Vivado Block Diagram Editor, while the Python class is

written by the user. A PYNQ Overlay is loaded by instantiating an instance of the Python class.
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Figure 4.3. The PYNQ Flow. The Vivado Block Diagram editor is used to generate a bitstream
and a TCL script. In parallel, a user generates a Python Class representing their overlay. When
the Overlay is loaded, PYNQ uses the TCL script to discover hardware IP in the bitstream and
load drivers. PYNQ also provides utilities to manage the FPGA.

Underlying PYNQ libraries parse the .tcl file and instantiate driver classes for hardware IP in the

bitstream.

Every unit is designed to lead users through this flow using a set of six Jupyter Notebooks:

A demonstration notebook, and five instructional notebooks. The demonstration notebook shows

the final result using the verified overlay. The five instructional notebooks are organized as

follows:

1. Introduction

2. Creating a Vivado HLS IP Core
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3. Building a Bitstream

4. Overlays and Bitstreams in PYNQ

5. Packaging an Overlay for Distribution

The tutorials require a PYNQ board connected to a host machine running Windows or

Linux with Vivado 2017.1 WebPack edition (free). We recommend an internet connection on the

host, but it is not required if the packages can be pre-installed. An internet connection on the

PYNQ board is not required, but is recommended.

One innovation in our work is providing operating system agnostic instructions using

Cygwin. The reader is required to install Cygwin on Windows (with GNU Make, and Git). On

Linux, a terminal emulator running Bash is required.

4.3.1 Demonstration Notebook and Verified Overlay

Each unit starts with a Demonstration Notebook, delivered with a verified pre-built

overlay. Each notebook contains at least one example demonstrating the final product. The

demonstration notebook for the Streaming Communication unit described in Section 4.2.2 shows

how the 1-Dimensional filter can be applied to an image as shown in Figure 4.2, the Shared

Memory demonstration notebook peforms a Matrix Multiply computation, and the Real-Time

IO demonstration notebook interacts with LEDs, buttons, and peripherals.

The Verified Overlay is the source of known-working files for “skip cells” in the instruc-

tional notebooks. The instructional notebooks are described below.

4.3.2 Introduction

The Introduction notebook of each lab describes the concepts to be taught, sets up the

reader’s host environment, and verifies correct installation. The reader clones our repository on

their PYNQ board using an internet connection or SAMBA. The notebook also highlights the
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Figure 4.4. A Vivado Block Diagram from the Real-Time IO lab showing the AXI Interface
connections. This figure demonstrates how we use layers to break down block diagram wiring
into manageable steps.

typography that indicates commands to be run on the host versus commands to be run on the

PYNQ board.

4.3.3 Creating a Vivado HLS IP Core

Creating a Vivado HLS IP Core leads the user through creating a Vivado HLS IP Core on

their host machine. Our labs assume that the reader is already familiar with High-Level Synthesis

(HLS) tools and design optimization.

Each unit provides a C/C++ skeleton, a testbench, and a makefile. Readers are required

to provide a working C/C++ impelementation. The final step of this notebook runs the testbench

and builds the final IP for the next notebook.

We assume that readers are already familiar with the Vivado HLS flow so the main goal of

this notebook is to instruct readers how to create different interface types: Physical IO interfaces

in the Real-Time IO lab, AXI-Stream interfaces in the Streaming lab, and AXI-Master interfaces

in the Shared Memory lab. Our labs focus on the use of HLS INTERFACE pragmas and what

interfaces can be created.

4.3.4 Building a Bitstream

The third notebook of each lab describes how construct an FPGA bitstream and .tcl script

in Vivado. It covers how to create a Vivado block diagram, configure the block diagram IP, set

the address map, export the block diagram .tcl file, and compile a bitstream. The .tcl and .bit file
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generated in this step are critical components of a PYNQ Overlay as shown in Figure4.3.

Readers are provided with a makefile, a skeleton .tcl file, and verilog top level. These

files create a Vivado project and block diagram on the host machine. The block diagram initially

contains the correctly-configured ARM Processing System and top-level IO ports for the PYNQ-

Z1 board. These files allow users to skip the tedious and error-prone steps of creating a Vivado

project, creating a block diagram, instantiating and configuring the ARM processing system,

creating a block diagram ports, and wiring the top level file.

Once the step above has been completed, the reader opens the Vivado block diagram.

A complete block diagram for the Real-Time IO Overlay is shown in Figure 4.4. Pictures in

the notebook demonstrate how to instantiate and configure and block diagram IP, and verify

the correctness. The pictures show wiring Layers, to break down the wiring into steps: Clocks,

Resets, GPIOs, and Interfaces. When complete, the reader exports the block diagram .tcl file and

compiles the bitstream using the same makefile described above.

An innovation we provide is infrastructure that simplifies the block diagram export

process. We provide a flow that uses unmodified .tcl files exported from the block diagram

editor. Our flow sets custom IP paths, sets top-level files, and copies the bitstream to meet PYNQ

requirements. As a result, unlike the current PYNQ flow, the .tcl files do not need to be modified

after export from Vivado.

4.3.5 Overlays and Bitstreams in PYNQ

The penultimate notebook guides readers through the process of creating a complete

PYNQ Overlay - manually loading a bitstream and .tcl file onto a PYNQ board, creating a Python

Class that inherits from Overlay, and finally instantiating an Overlay object to interact with the

bitstream. These steps are necessary for any PYNQ overlay.

In the first step, readers are directed to copy the outputs of Building a Bitstream onto their

PYNQ board using the SAMBA. Notebook cells verify that this process has been completed

correctly.
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Next, readers are directed to create an python class that inherits from the PYNQ Overlay

class to interact with their compiled bitstream. The notebook describes how the Overlay class

parses the .tcl file and instantiates basic drivers for the HLS core. Once this is finished the

notebook loads the and runs verification cells to confirm that the bitstream and Python class work

correctly.

In this notebook we provide an innovation that allows users to specify relative paths.

Non-PYNQ provided bitstreams require an absolute path (e.g. /opt/python3.6/.../

pynqhls/stream/stream.bit). We provide a method that searches for bitstreams co-located

with the Python class so that the user only needs to specify the name of the bitfile (e.g.

’stream.bit’). This vastly reduces the by abstracting the details of the underlying Python

package structure.

4.3.6 Packaging an Overlay for Distribution

The final notebook teaches users how to distribute their work using the Python package

manager, Pip. Distribution is useful for any academic PYNQ project, and can also be used for

grading final projects pulled from a GitHub repository.

The notebook creates a setup.py file on the PYNQ board. The setup.py file specifies what

files are installed as part of a Python package: the .tcl file and .bit file from Section 4.3.4, the

class from Section 4.3.4, and notebooks. Relevant parts of the file are analyzed, such as how to

install python packages, naming dependencies, and destinations for non-python files.

The concepts taught by this notebook are useful outside of the classroom. Many Python

projects are distributed using Pip, however it is unfamiliar to our community and the traditional

use-cases do not describe how to install and distribute non-python files (.bit, .tcl, and .ipynb files)

that are used by PYNQ.
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4.4 Related Work

In this section we describe related work in two categories: Embedded Projects using

FPGA SoC’s and Related Tools. We will demonstrate that our tutorials fill an existing need in

the embedded and educational FPGA computing space.

4.4.1 Embedded Projects Using FPGA SoCs

Many academic projects have used SoCs. Low-latency control has been implemented on

Quadcopters [38], and computationally-demanding power controllers [62]. The computational

benefits of FPGAs also make them good for embedded computer vision projects [39] where

low-latency compuation on streams is needed for smooth tracking. FPGA SoCs have been used

in Software Defined Radio projects, such as GNURadio [37]. The applications these projects

target are exemplary of common FPGA computational patterns: streaming for audio, video, and

signal encoding, and batch processing for images and video, and low latency control loops.

Our work is useful for embedded projects like the ones shown above. By creating

accessible, interactive tutorials that avoid verilog, and provide skeleton projects we believe we

have reduced the learning curve for PYNQ and widened its appeal.

4.4.2 Related Tools

Our work intersects with several system-design tools: SDSoC by Xilinx [29], Intel

(Altera) OpenCL, and LegUp[25] from University of Toronto. All tools take C/C++ code and

emit complete systems for Intel SoCs. Unlike these tools, our tutorials teach users how to

integrate HLS into complete systems once an C/C++ core has been developed.

Our demonstrate external communication, which is difficult to implement in the tools

described above. No tool above can currently drive external IO pins directly. This concept is

demonstrated in our Real-Time IO lab in Section 4.2.1. Vendor tools allow users to communicate

with AXI/Avalon peripherals - but this is not the default use case. In SDSoC users must develop
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a new SDSoC platform and in Intel OpenCL users must develop Board Support Packages

[64]. We feel that easy external communication is necessary for embedded development. For

example, Three-Phase motor controllers require direct access to IO pins, and external IMU chips

communicate over I2C or SPI. We conclude that there is a gap in applications that is not covered

by existing tools.

4.5 Conclusion

In this paper we have described our work to create a lab curriculum for Hardware/Software

Co-Design that uses PYNQ. These tutorials cover a diverse set of concepts that are relevant in

our classes and projects we are involved in. This fills a gap in existing PYNQ resources that

can be reused, modified, and extended in other settings. We hope that other people find these

tutorials useful, and that they find time to explore our work and contribute feedback.
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Chapter 5

Everyone’s a Critic: A Tool for Evaluating
RISC-V Projects

5.1 Introduction

The RISC-V specification is an open Instruction Set Architecture (ISA) standard for

flexible low-cost processors[30]. The specification defines 32-bit, 32-bit embedded, 64-bit, and

128-bit base ISAs and optional extensions for compressed, multiplication, atomic, single, double,

and quad-precision floating point instructions. This is flexibility is a major benefit for designers,

who choose extensions to fit their design goals and reuse popular open-source software toolchains

for compilation.

The flexibility of RISC-V lends itself to highly-parameterized FPGA implementations,

but the flexibility of RISC-V also makes comparing these projects difficult. Most projects deviate

from the base specification, implement different versions of the specification, or implement

different sets of extensions. These changes can cause code that runs on one processor to hang on

another. It is even more difficult to compare RISC-V projects to wide-spread and commercially

available processors like MicroBlaze - which have different instructions, interfaces, and features.

These challenges beg the question: How do we evaluate RISC-V soft-processor projects?

We need an evaluation tool for studying RISC-V soft-processors. Such a tool must

faciliate experiments by providing an interface to run tests and benchmarks. In addition, it should

provide a seamless interface for users to write and run code. Next, it must provide a library
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of processors with the ability to switch, modify, and add. Finally, this tool should be flexible

enough to handle inter-ISA variations for comparisons within the RISC-V family.

The impact of such a tool would be widespread: Prospective users can make informed

choices about RISC-V projects; Researchers can use collections of processor designs for com-

parative analysis, such as building ISA comparisons[] or for building hardware security metrics;

Educators can use this tool to build RISC-V curricula [65]; and the RISC-V community can

grow using a flexible testing and development tool that encourages competition

ISA Tests 

rv32ui 
rv32um 
rv32mi 

… 

dhrystone, 
spmv, 
mm 
qsort 

 int main() 
  { 
   …; 
  } 

Benchmarks 

ISA Tests 

Development 
Environment 

Processor  
Libraries 

PYNQ 
Libraries 

FPGA Board 

Figure 5.1. Our work presented in this paper. Our tool provides a web interface for compiling
C/C++ code, benchmarks, and ISA tests targeting a library of RISC-V soft processors. This
project is built on top of other widely used software tools and is easily extensible to other RISC-V
projects and soft processor ISAs using our Tutorial
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In this paper we demonstrate our open-source tool for evaluating RISC-V soft-processors

shown in Figure 5.1. Our tool provides users with an interface for writing and compiling

user C/C++ code, standard ISA tests, and benchmarks. Users can choose from a library of

RISC-V processors. Our environment uses Jupyter Notebooks, IPython, and standard GNU

C/C++ toolchains. All of this is built on top of PYNQ - a collection of Python libraries for

ZYNQ All-Programmable Systems on Chip (APSoCs). We use PYNQ to upload bitstreams

and executables to the FPGA fabric. Together these parts provide a flexible environment for

evaluating RISC-V soft-processor designs.

We use our tool to evaluate 10 soft-processor designs from 5 RISC-V projects. We

report report area, frequency, testing, and benchmark results. We find substantial variation

in maximum frequency, area, and throughput across RISC-V projects. We also find that few

RISC-V processors completely pass the standard RISC-V ISA tests.

We extend our tool to compare these RISC-V soft-processors with 3 MicroBlaze soft-

processors and find that the RISC-V projects are competitive with MicroBlaze. One RISC-V

project has higher performance with and similar area and frequency across all architectures.

Another RISC-V project has higher FMax and smaller area than a corresponding MicroBlaze

design. Regardless of architecture, we find that the RISC-V ISA retires fewer overall instructions

that MicroBlaze when executing the same benchmark.

We conclude with a summary of our experiences working with RISC-V and MicroBlaze

processors. We find that while RISC-V is techincally competitive with MicroBlaze, most RISC-V

projects lack sufficient documentation, have non-standard interfaces, and lack integration with

standard vendor tools. Despite these, we found that RISC-V was still substantially easier to

integrate and work with than MicroBlaze.

Our main contributions are:

• A environment for soft-processor comparison.

• A survey of 13 processors implementing RISC-V and MicroBlaze ISAs.
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Figure 5.2. A block diagram the soft processor evaluation infrastructure as described in Sec-
tion 5.2.2.

• An tutorial for adding RISC-V processors to our library.

• A summary of our experience working with RISC-V and Microblaze.

All the work in this paper can be found in our open source repositories, under a BSD-3

license.

This paper is organized as follows: Section 5.1 introduces our paper and the environment

we have created. We describe our environment in Section 5.2. Finally, we describe the RISC-V

projects we have chosen and report results in Section 5.3. Section 5.4 describes related work in

web-based IDEs and soft-processor research. We conclude in Section 5.5

5.2 A RISC-V Soft-Processor Evaluation Tool

In the last few years an overwhelming number of RISC-V cores have been released by

academia, industry and hobbyists. For example, the Rocket-Chip from UC Berkeley implements

the canonical RISC-V System-on-Chip for architecture research. The academic start-up Vector-

Blox has produced Orca to host the MXP vector processor. RoaLogic has developed RV12 a

commerical RISC-V IP. Finally, the VexRiscV project implements a high-performance RISC-V

processor for FPGAs. These projects are just a small fraction of the list shown in Section 5.4.

Choosing a RISC-V core from the growing list of projects is a daunting task. The

RISC-V specification is highly flexible and lends itself to highly-parameterized projects. Many
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projects deviate from the base specification, implement different versions of the specification,

or implement different sets of ISA extensions. As we show in Table 5.1 RISC-V projects are

also written in many hardware development languages. What users need is a tool for evaluating

RISC-V projects that allows them to experiment and test projects with minimal committment.

An ideal tool for evaluating RISC-V projects has several components: It provides a library

of RISC-V processors for evaluation with a variety of features and ISA extensions. To allow

growth, it has an automated path for adding new processors with standard hardware interfaces

(AXI, Avalon, and Wishbone). To aid in testing this tool provides standard benchmarks and tests

to be run. To encourage development this tool provides an interface for writing, compiling, and

uploading code to a processor – much like Arduino or mbed environments. This tool should

also provide a software debugger for analyzing faults. Such a tool would help users navigate the

overwhelming buffet of RISC-V projects available.

We have developed a tool for RISC-V experimentation that meets many of these require-

ments. We use FPGAs because they are an ideal platform for prototyping and evaluation. We

have chosen to use PYNQ as our delivery platform because it provides low-cost boards, and

accessible user interface on top of well-engineered Python libraries.

The components of this tool are descibed in the next sections: Section 5.2 describes

the hardware infrastructure we use in our soft-processor bitstreams. Section 5.2.2 describes

our our interface for writing, compiling, and running user code, tests, and benchmarks from a

browser-based interface. Finally Section 5.2.3 covers our interactive tutorial for adding RISC-V

projects to our library.

5.2.1 Hardware Infrastructure

The hardware infrastructure architecture is a test harness for the FPGA Soft-Processor

and is shown in Figure 5.2. The components of this test harness are shown below:

• 1 ZYNQ ARM Processing System
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• 1 FPGA Soft Processor

• 1 Soft-Processor AXI Interconnect

• 1 ARM PS AXI Interconnect

• 1 64KB on-FPGA Memory

• 1 4KB on-FPGA Memory

• 2 Reset Controllers (Power-On-Reset, and Warm-Reset)

Our infrastructure to designed to provide fair comparisons by minimizing variations

introduced by external factors. We use on-FPGA memories instead of DDR memories because

they provide a fixed memory latency. One the cacheable memory, and one un-cacheable is

provided for all processors so that processors without caches do not benefit from reduced area

pressure during compilation. This decision has an added benefit of unifying our standard library

functions across processors. These decisions create fairer comparison across soft-processor

projects and across architectural variations within a project.

The test infrastructure is controlled by a Python class running on the ARM Processing

System. This python class has methods for restarting and running the arm processor, and issuing

memory commands to the two soft-processor memories.

5.2.2 Development Environment

Modern embedded IDEs like Arduino and mbed provide the ability to write, upload, and

run code from a single interface. The Python class briefly described above can upload program

binaries to the 64 KB memory in the test infrastructure. These binaries are compiled in the linux

terminal provided on the PYNQ board, or on a separate machine. While this may be trivial for

readers with extensive linux knowledge it is far from the modern development environment most

have come to expect. What is needed, is an environment to write, test, and develop code from an

IDE and push it to the soft-processor.
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Figure 5.3. Our development environment. The %%riscv IPython magic takes three arguments:
The PYNQ MMIO obect representing the soft-processor memory, the PYNQ GPIO object
representing the soft processor reset, and the name of the program to be created in the namespace.
If compilation succeeds, the program can be run in subsequent cells.

We have created a web-based Development Environment (IDE) using IPython Magics

in Jupyter Notebooks that allows users to write, compile, upload, and run high-level code on a

RISC-V soft processor. Our work is based on the work in [66].

IPython Magics change the functionality of code cells in Jupyter Notebooks. IPython

Magics can be used to run shell commands or change the environment; we use IPython Magics to

provide a web interface for C/C++ code complete with syntax highlighting. IPython integration

is delivered as two Python classes: RISCVMagics and RISCVProgram.

The RISCVMagics class implements the IPython Magic comands %%riscvc (shown in

Figure 5.3 and the similar %%riscvasm. When one of these commands is typed, this class

performs syntax highlighting on C/C++ and assembly in a Jupyter Notebook cell. When the

cell is run this class reads the code and compiles it into a RISC-V binary. When the Jupyter

Notebooks cell is executed, the cell will compile the program and print SUCCEEDED, or

FAILED (and a compiler error message) depending on the compilation outcome.

If the compile succeeds, the RISCVMagic class will insert a RISCVProgram object repre-
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senting the compiled binary into to the local namespace. This is shown in Cell 2 of Figure 5.3.

The RISCVProgram object represents a compiled instance of a RISCVMagic cell and can be used

to, start, stop and run a compiled cell.

We also provide GNU Newlib standard libraries, which allow host-board host-board

communication with printf and scanf. When combined with the IPython Magics, and the RISC-V

GNU toolchain the Newlib libraries provide an easy-to-use IDE for compiling and running code

on a RISC-V processor that can be used in classrooms and in research labs.

Table 5.1. Project summary of selected soft-processor projects

Design Name Language Target Memory Intf. ISA Ver.
ORCA[67] VHDL FPGA AXI, Wishbone, Avalon v1.7
PicoRV32[68] Verilog FPGA AXI, Wishbone v1.9
Rocket[30] Chisel VLSI AXI* v2.0
RV12[69] SystemVerilog VLSI AHB, Wishbone v1.9
VexRiscV[70] Spinal HDL FPGA AXI*, Avalon v1.9
MicroBlaze N/A FPGA AXI, LMB, ACE N/A

Table 5.2. Architectural feature summary of selected soft-processor projects

Design Name IRQ Handler Debug Intf. I & D Cache Branch Pred.
ORCA[67] Custom No No Static
PicoRV32[68] Custom No No No
Rocket[30] Standard Required Required Optional
RV12[69] Standard Required Optional Optional
VexRiscV[70] Standard Optional Optional Optional
MicroBlaze N/A Optional Optional Optional

5.2.3 Tutorial

Creating a RISC-V overlay can be a daunting process for a variety of reasons: the

inaccessibility of HDLs, interface standards, and complexity of vendor tools. In our work alone,

we survey 5 RISC-V processors, written in 4 languages, and providing 3 interface standards as

shown in Table 5.1.
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To address this problem we have created a a tutorial to lead users through the process

of adding a RISC-V processor to our library of processors. Our tutorial is a set of interactive

Jupyter Notebooks that teach the reader how to build a soft-processor overlay for PYNQ. Each

notebook directs the user through a conceptual step in building an overlay, and concludes with

notebook cells that verify the notebook has been completed successfully.

By the end of the tutorial readers should understand how the PYNQ libraries use Vivado-

generated .tcl files, FPGA .bit files, and user-generated Python files in an Overlay package.

Readers will should also be able to trivially extend this tutorial to other soft-processor projects.

Our tutorial is organized as follows:

Configuring the Development Environment

The first notebook of the tutorial teaches the reader how to install dependencies both on a

development machine and then on the PYNQ board. The user is directed through installing the

Vivado tools, cloning the soft-processor git repository, installing a visual-difftool (such as Meld).

On the PYNQ board the user is directed through installing packages from APT, and cloning the

necessary RISC-V GNU Toolchain repository.

Building a Bitstream

The second part of the tutorial teaches a reader how to build an FPGA bitstream from

a RISC-V processor project. It is divided into three parts three parts: Packaging a RISC-V

project as a Vivado IP, Creating a Block Diagram, and Building a Bitstream From .tcl. These

components are necessary to use the PYNQ framework.

The notebook begins by teaching the reader how to package the picorv32 RISC-V

Processor from [68] as a Vivado IP through pictures. We chose this processor because of its ease

of use and integration with Vivado.

The second part of this notebook describes how to build a Block Diagram for PYNQ

inside of Vivado IP Integrator. The tutorial provides a “skeleton” .tcl file that creates a project,
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instantiates the configured ZYNQ Processing System (PS). The reader then adds the PicoRV32

processor IP and the remaining soft-processor environment IP from Section 5.2 and assigns an

address map.

In the final section, the reader validates the design and updates the “skeleton” .tcl file

with these modifications. The reader is then asked to compile their RISC-V design using the .tcl

file they have created to verify that there are no errors.

Compiling the RISC-V Toolchain

The third notebook of this tutorial teaches the reader how to compile the RISC-V GNU

Toolchain. When the compilation is complete subsequent cells update the PATH environment

variable on the reader’s PYNQ board.

Packaging a Bitstream into an Overlay

The fourth notebook of the tutorial teaches the reader how to package the .tcl file, .bit file,

and other newly-generated files into a PYNQ Overlay. The notebook is divided into three parts.

In the first section, this notebook demonstrates how to create a RISC-V overlay class, and

declare it as part of a package. This requires creating two files: an init .py file that declares

the directory as a Python package, and a riscv class that inherits from pynq.Overlay

Next, the tutorial leads the reader through building the notebooks directory. The note-

books directory holds the .ipynb metadata files for Jupyter Notebooks, but in our tutorial it also

holds the RISC-V compilation scripts. The compliation scripts consists of three files: A Makefile

for compilng RISC-V code, a reset.S assembly script for initializing the RISC-V processor at

reset, a riscv.ld linker script describing the memory layout for the GNU linker tool.

Finally, the tutorial walks the reader through the step-by-step process of creating a

setup.py script that will automatically install their overlay alongside PYNQ.

This notebook finishes by verifying the user work: First, the notebook verifies that the

RISC-V compilation files function as expected. Second, the notebook notebook verifies that the
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Overlay can be imported as a Python package (pre-installation), and finally the notebook runs

Pip and then verifies that the overlay is installed correctly post-installation.

Writing and Compiling RISC-V Code

The tutorial concludes in the fifth section by walking the reader through compiling

RISC-V code, running the resulting programs, and reading results from the processor memory. In

the final step, this tutorial uses the web-based environment described in Section 5.2.2 to compile

and upload code to a RISC-V processor.

The tutorial starts by demonstrating how to write programs in assembly, or C/C++,

compiling, and then reading the results back from memory. These simple code snippets are

loaded into the notebook directory and compiled using the makefile from the previous step.

Communication between the ARM PS and RISC-V processor is simple: either “spin” on a

memory location, or “sleep” until the program is guaranteed to terminate. Once the RISC-V

Program is complete, the ARM processor can read the results from the RISC-V memory space.

Finally, the tutorial introduces the development environment described in Section 5.2.2.

Users are directed through installing the IDE package using Pip. These final cells verify that the

user has completed the entire tutorial successfully.

5.3 Results

We now use the environment we have developed to gather compilation and performance

results for selected RISC-V projects. The scripts and makefiles necessary for recreating our

results can be found in our repository [71].

5.3.1 Projects

The projects we have chosen are summarized in Table 5.1. We selected these projects

based on several criteria: Source availability, parameterization, documentation, and provision of

1This MicroBlaze design includes resources added by the parameter C DEBUG ENABLED = 2, which is
needed for performance counters used in Table 5.6
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Table 5.3. Soft-Processor FMax (MHz) and Resources Consumed

Simple FMax(MHz) LUT FF BRAM DSP
ORCA 87.11 1873 1097 1 4
PicoRV32 176.95 1426 833 0 4
RV12 118.36 3517 2612 0 4
VexRiscV 133.59 1861 1377 1 4
MicroBlaze 133.59 1148 872 0 3
MicroBlaze1 133.59 1898 1948 0 3
Cached FMax(MHz) LUT FF BRAM DSP
Rocket 95.31 6166 3360 3 0
RV12 68.75 4393 3037 5 4
VexRiscV 133.59 2146 1807 6 4
MicroBlaze 133.98 1708 1353 6 3
MicroBlaze1 133.59 2397 2321 6 3
Predicted FMax(MHz) LUT FF BRAM DSP
Rocket 95.31 6803 4305 3 0
RV12 68.75 4400 3054 5 4
VexRiscV 133.59 2146* 1807* 6 4
MicroBlaze 133.59 1990 1485 7 3
MicroBlaze1 133.59 2639 2456 7 3
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standard memory interfaces (AXI4, AXI4Lite, AHB, and Avalon). All projects are configured to

implement the RV32 Integer instruction set with Multiply/Divide extensions (RV32IM).

Three of the RISC-V projects are FPGA targeted: ORCA, PicoRV32, VexRiscV. The

PicoRV32 processor is unique because it is a multi-cycle processor optimized for area and FMax.

The ORCA processor is the only surveyed processor that targets all four FPGA vendors: Xilinx,

Intel, Mirosemi, and Lattice. Finally, the VexRiscV processor demonstrates the scala-based

SpinalHDL language.

Two of the RISC-V designs above are VLSI silicon designs: RV12, and Rocket-Chip.

The Rocket-Chip project is the canonical RISC-V implementation[72]. The RV12 is a silicon IP

core created by RoaLogic[69] for the eASIC process.

For a fairer area comparison we remove parts from both chips: We modified the Chisel

source to remove the Debug module and Boot ROM from the Rocket-Chip processor, and added

a top-level parameter to remove the Debug module from the RV12 processor. Both designs

provide parameters for multiply latency which is set to 3 in all experiments.

We compare these designs to the standard Xilinx MicroBlaze processor. This processor

has been configured for a 32-bit 5-stage pipeline (Performance) and AXI Interfaces. We have

enabled the hardware multiply, divide, and barrel-shift instructions for the fairest comparison

with the RV32IM implementations above.

For area and FMax results shown in Table 5.3 we show two MicroBlaze results: Mi-

croBlaze, without performance counters (C DEBUG ENABLED = 0), and MicroBlaze*, with

performance counters (C DEBUG ENABLED = 2). Performance counters are necssary for

gathering results in Table 5.6 but may not be included in a final MicroBlaze design. Nonetheless,

we show these results to highlight the difference between RISC-V and MicroBlaze processors.

From these projects we generate 13 soft-processor overlays for comparison as described

in Section 5.2. We group the 13 overlays into 3 categories:

• Simple: No caches, no predictor
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• Cached: 8 KB I & D caches, no branch predictor

• Predicted: 8 KB I & D caches, with branch predictor

L1 Instruction and L1 Data caches are each 8 KB, corresponding to a 512-entry direct-

mapped cache with a 16 byte line size. A 16-byte line size is the minimum possible for a

Xilinx MicroBlaze cache, and 512 entries fits in a 36 KB cache without cascading. With this

configuration each cache should consume 3 BRAMs: 2 BRAMs for cache line data, and 1 BRAM

for tag data.

Branch predictors are sized to match Xilinx primitives on a per-processor basis. The Mi-

croBlaze processor implements a 4 KB Branch Target Cache to fit in one 36-KBit Xilinx BRAM

as recommended by the MicroBlaze user guide. VexRiscV and RV12 processor implement a

direct-mapped, 64-entry table of 2-bit counters to fit inside a RAM64M primitive. Rocket-Chip

implements a direct-mapped 64-entry Brach History Table of 2-bit counters and fully-associative

8-entry Branch Target Buffer.

5.3.2 Compilation Results

Table 5.3 shows compilation results for 13 FPGA soft-processor designs. These re-

sults were gathered using Vivado 2017.1 on Ubuntu 16.04 targeting a PYNQ-Z1 board with a

XC7Z020-1 chip. Synthesis and Implementation objectives were set to default.

Frequency results were gathered using a binary search algorithm as part of the overlay

.tcl compilation script. Resource utilization results were taken from the maximum frequency

compilation result. Only the resources consumed by the FPGA soft-processor are shown.

We highlight three interesting results from our data:

RISC-V designs can be competitive with MicroBlaze

The Simple PicoRV32 design is the only design that consumes less FFs, and produces

a higher Fmax than an equivalent MicroBlaze design. However, it uses 300 more LUTs and 1

more DSP than the MicroBlaze design.
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All VexRiscV designs produce Fmax results that meet equivalent MicroBlaze designs.

However, the VexRiscV design is larger by the worst-case 700 LUTs and 500 FFs for the Simple

design, and this difference decreases monotonically to the best-case of 250 LUTs and 300 FFs in

the Predicted design.

All RISC-V designs use one more DSP than an equivalent MicroBlaze design, except the

Rocket-Chip design which uses 0 DSPs. It is not clear whether this can be recovered through

design optimization or if this is a limitation of the ISA.

All VexRiscV designs are smaller than MicroBlaze the MicroBlaze is configured with

performance counters. These performance cannot be read without enabling the MicroBlaze

debugger and come at substantial cost of 600-700 LUTs, and 1000 FFs.

FPGA-Targeted does guarantee minimum area

Of the five RISC-V projects we surveyed three were FPGA-Targeted and two were

VLSI-Targeted (Table 5.1). The two silicon-targeted variants produce designs that are almost

twice as large as FPGA-targeted variants. These results are likely the consequence of different

design tradeoffs.

With the exception of the Simple Orca design, the VLSI-targeted designs also produce

the slowest designs out of all the designs surveyed.

Scala-based languages can produce efficient hardware

The VexRiscV project uses SpinalHDL, a new scala-based language similar to Chisel. As

shown in Table 5.1, the VexRiscV processor is the most competitive RISC-V processor design

we surveyed.

5.3.3 ISA Tests

We tested each RISC-V processor with the standard rv32ui (User-level Integer), rv32um

(User-level Multiply) ISA tests from the riscv-tests repository. These correspond to all the

minumum required implementation level tests for RISC-V processor [30].
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Table 5.4. RISC-V ISA Test Results for surveyed processors. Results are reported as: (Pass —
Fail — Unknown)

Simple rv32ui rv32um
P — F — U P — F — U

ORCA 27 — 12 — 0 3 — 5 — 0
PicoRV32 38 — 0 — 1 8 — 0 — 0
RV12 28 — 11 — 0 5 — 3 — 0
VexRiscV 38 — 0 — 1 7 — 1 — 0
Cached rv32ui rv32um

P — F — U P — F — U
Rocket 39 — 0 — 0 8 — 0 — 0
RV12 0 — 0 — 39 0 — 0 — 8
VexRiscV 38 — 0 — 1 7 — 1 — 0
Predicted rv32ui rv32um

P — F — U P — F — U
Rocket 39 — 0 — 0 8 — 0 — 0
RV12 26 — 13 — 0 5 — 3 — 0
VexRiscV 38 — 0 — 1 7 — 1 — 0

The results of our tests are shown in Table 5.5. The ISA tests report Pass (P) or Fail (F).

We also report Unknown (U) to indicate when a test didn’t complete or produced anomalous

behavior.

Our ISA Test results demonstrate that RISC-V projects vary widely in their correctness.

The Rocket-Chip project implements all expected arithmetic instructions correctly. Conversley,

the RV12 Cached design fails to complete any of the ISA tests, and fails a significant number in

the Simple and Predicted designs. The RV12 is hardly unique, Orca fails a significant number of

the ISA tests. The VexRiscV and PicoRV32 also perform well but do not achieve perfection.

5.3.4 Dhrystone Benchmark

We benchmark our designs with the Dhrystone benchmark[73] and other benchmarks in

the riscv-tests repository. The Dhrystone benchmark is a synthetic benchmark used extensively

to measure integer performance [68, 74]. We only show Dhrystone results for space.

We modified the the riscv-tests repository to handle RISC-V ISA version-specific and
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project-specific performance counter variations shown in Table 5.5. MicroBlaze performance

counters were obtained from the MicroBlaze Debug Module IP.

Table 5.5. Implementations of RISC-V Performance Counters. No performance counter is
implemented in all projects.

utime ucycle uinstret mtime mcycle minstret
ORCA 0xC01 N/A N/A 0xF01 N/A N/A
PicoRV32 0xC01 N/A 0xC02 N/A N/A N/A
Rocket 0xC01 0xC00 0xC02 N/A 0xB00 0xB02
RV12 0xC01 N/A 0xC02 N/A 0xB00 0xB02
VexRiscV N/A 0xC00 N/A N/A 0xB00 0xB02

Our benchmark results are shown in Table 5.6. We report the metrics: Cycles Elapsed, In-

structions Retired, Number of Dhrystone Runs, Cycles per Instruction, and Cycles per Dhrystone.

The FPGA fabric ran at 50 MHz for this experiment.

We highlight three interesting results:

RISC-V processors execute less instructions

MicroBlaze processors execute about 33 Million instructions to complete 50000 runs of

Dhrystone while RISC-V processors execute approximately 20 Million instructions for 50000

runs of Dhrystone. This is a 40% decrease in instructions executed.

A RISC-V processor has a lower CPI than MicroBlaze

The VexRiscV project obtains a Cycles Per Instruction metric of 8.83, 1.70, and 1.70 for

Simple, Cached and Predicted designs respectively. In comparison, MicroBlaze obtains a CPI of

9.77, 1.97, and 1.81 for Simple, Cached, and Predicted.

Small, Sub-scalar RISC-V designs can outperform other designs

The PicoRV32 processor has a higher MIPS @ FMax than any of the other designs in its

class, despite being a multi-cycle processor. When memory latencies dominate this processor
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can outperform other processors because of its significantly higher FMax that was reported in

Table 5.3.

5.3.5 Experience

In this final subsection we relate some of our experiences when developing this project.

Our feedback is based on the previous open source projects we have contributed to and our

observations of the community at large.

We found that RISC-V processors are substantially easier to bring-up, debug, and measure

than their MicroBlaze counterparts for several reasons:

First, the MicroBlaze processor has numerous interface ports to local BRAMs (LMB),

to IO Peripherals (AXILITE), and next-level memory (AXI4/ACE). How memory requests are

assigned to ports can lead to corrupt data and erroneous results. In contrast, the RISC-V designs

we surveyed typically provided one shared port, or one instruction and one data port where all

memory requests were issued.

Second, we found that the presence of an active open-source community developing

RISC-V tools and processors was a huge benefit. For example, when we discovered a bug in

MicroBlaze GCC on the PYNQ board we had to resort to compiling MicroBlaze binaries from

Vivado 2017.1 on our host computer. When the same thing happened with RISC-V we simply

re-compiled the toolchain on the board.

Finally, we found RISC-V easier to measure because performance counters are part of the

base specification and implemented by most projects. For contrast, the MicroBlaze performance

counters can only be read through an indirect read and write of registers in the MicroBlaze

Debug Module.

Even though we found RISC-V projects easier to use we still encountered issues that the

RISC-V community should work to improve.

In general, the RISC-V projects we surveyed did a poor job of implementing interface

standards. One project provided a non-standard AXI interface where the AXI Address ports
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were multiplexed between read and write commands. Two projects provided non-standard

AXI naming conventions. Providing standard interfaces that match the interface specification

simplifies the process of wrapping a RISC-V processor into a PYNQ Overlay. The standard

interfaces provided with the PicoRV32 was the main reason we chose it for our Tutorial in

Section 5.2.3.

We also found that most projects did not provide sufficient documentation. All projects

documented top-level parameters but few projects provided documentation describing the inter-

nals of the RISC-V core, or in-line comments to help users read and understand the underlying

HDL. For example, when determining how a particular branch predictor was implemented we

often had to read the source code to discover details. The RV12 project from RoaLogic should

be commended in this respect for providing extensive top-level and sub-module documentation.

Finally, work needs to be done to expose the top-level parameters of Scala-based HDL

languages to vendor tools. This paper is not the first to show the power of new HDL languages

like Chisel and SpinalHDL. However, we felt that the need to constantly re-generate the HDL

when changing parameters was error-prone and hard to version control. In contrast, changing

parameters in traditional HDL languages meant modifying the top-level parameter in the relevant

.tcl file where it could be tracked.

5.4 Related Work

We survey related work in three fields: Computer Architecture Education, Web-Based

IDEs, and soft-processor projects.

The MIPS32 ISA is pervasive in the computer Architecture curriculum. However, there

has been a movement to the RISC-V ISA as demonstrated in [75] which has coincided with the

publication of the well-known Patterson and Hennessy book [65] for the RISC-V ISA.

With this movement we are presented with opportunities for re-thinking old tools and

integrating new tools into the Computer Architecture curricula. For example, the lowRISC
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organization supported a Google Summer of Code project to develop a RISC-V simulator [76] to

complement the ubiquitious MIPS-32 simulator, SPIM [77]. Our tutorial would complement

these simulators very well.

Browers-based simulation and development environments have also seen adoption in

recent years. The most familiar example is the mbed platform [78], though academic examples

have been created as well [79]. [80] creates a browser-based simulation environment for MIPS.

Our work is derived from the upcoming IPython-Microblaze feature [66], which allows users to

program PYNQ Microblazes using Jupyter Notebooks.

RISC-V is not the first soft processor architecture. MIPS32 is the most common soft-

processor ISA for education. OpenRISC [81, 82] has also been proposed as the open hardware

replacement for closed ISAs.

However, RISC-V is Growing and many groups have released their RISC-V proces-

sors online as open-source repositories. A considerable number of projects are academic:

Taiga[74, 83], BOOM [84], and rocket [72]. More targeted research projects have tested security

extensions [85, 86, 87] while others have sought smallest implementation size [68, 88], or highest

performance [74]. Commercial projects address a particular application, like Pulpino [89] or

Orca [67], while other commercial companies, like RoaLogic, provide general-purpose RISC-V

IP RV12 [69]. Finally, there projects that demonstrate HDL languages like VexRiscV [70]

(SpinalHDL) and riscy (Bluespec). This proliferation of open-source RISC-V projects has led to

increasinly humorous names, like the YARVI project.

In this paper we present a framework for RISC-V exploration that can potentially be

used on all of these soft processor processors. This framework includes a tutorial that can be

adapted for any RISC-V curricula. Our framework can be used to explore the RISC-V ISA

across languages, across architectures, and across projects in one familiar environment.
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5.5 Conclusion

In the previous sections we demonstrated our for evaluating and comparing FPGA soft-

processors. Our tool provides an Arduino-like interface for writing, compiling, and running

code that allows users to experiment and evaluate processors. In addition we provide a library of

soft-processors and a complete tutorial for adding adding new processors to this library.We also

demonstrated that this environment is flexible enough to handle ISA specification variations and

deviations.

Using this tool we surveyed 13 processor designs: 10 processors implementing the RISC-

V ISA and 3 processors implementing the MicroBlaze ISA. Our results showed that RISC-V

designs are competitive with the MicroBlaze processor and can beat the MicroBlaze processor in

certain situations.

Further work is needed to fully understand whether RISC-V can ever be a categorical

win over other soft processor ISAs, but our work is the first step along that path.
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Chapter 6

A General-Purpose Pipeline Architecture

6.1 Introduction

The throughput of modern processors has steadily increased with improvements in

frequency, transistor density, and multi-core scaling. Processors have continued to improve

as these trends have slowed with architectural optimizations and ISA extensions. Vectorized

instructions have improved throughput by executing multiple independent operations, and fused

instructions execute several dependent operations. Crypto instructions and other application-

specific ISA extensions execute entire functions. However, the traditional fetch-execute-store

architecture of processors has inherent inefficiencies in modern applications like video processing,

machine learning, and linear algebra [41]. Data movement and re-use in these applications does

not map well to modern processor register files and instruction sets.

This has driven computer architects to develop custom hardware pipelines and other non-

traditional architectures to overcome these inefficiencies with reuse buffers and deep pipelines.

Such architectures improve metrics in video processing [90], signal processing [91], machine

learning [92, 10], text processing [8], and genomics [55]. These architectures have demonstrated

substantial power savings, increases in throughput, and latency decreases. However, many

architectures are highly-customized for a single application and this forces engineers to develop

a new pipeline for each application.

Unfortunately hardware development is widely accepted as tedious [16], inabstract [93],
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and slow [44]. Hardware development languages require designers to implement clocks, registers,

and schedule operations. High-level synthesis tools abstract these in C/C++ [29, 36, 25] but

still require detailed understanding of the underlying hardware architecture [94]. Optimized

application libraries such as OpenCV [95, 96] can provide more abstraction but still require long

compilation iterations. These challenges have limited hardware development to select companies

like Google [42], Microsoft [8, 10], and Audi [13] that can afford the associated costs [35]. What

is needed is a pipeline architecture that overcomes the inefficiencies of modern processors and is

general enough to eliminate hardware development.

In this chapter we propose a pipeline architecture for accelerating general computations

on System-on-Chip devices. Our accelerator is implemented with interconnected RISC-V

processors in a map-reduce parallel structure [30]. Our architecture allows us to build efficient

hardware pipelines, and reprogram them from high-level software tools using the RISC-V ISA.

We study our architecture to understand its performance relative to optimized libraries on an

ARM processor and hardware pipelines on twelve common functinos. We demonstrate that our

architecture out performs an ARM processor with NEON instructions.

This work has four main contributions:

• A study of the trade-offs between processor and pipeline computations

• A set of RISC-V extensions for implementing interconnected RISC-V processors

• A proposal for a general-purpose pipeline accelerator built from interconnected RISC-V

processors

• A quantitative comparison between our architecture, and an optimized library implemented

in software and hardware pipelines

This chapter is organized as follows: Section 6.2 describes the background for our work.

Section 6.3 describes our proposed architecture. Section 6.4 presents our results. We describe

related work in Section 6.5. Finally, we conclude in Section 6.6.
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6.2 Background

Data-Flow Graphs (DFG) like the one shown Figure 6.1 represent branch-less computa-

tions and are useful representations of loop bodies. Each node in a DFG represents an operation,

while each edge represents data dependency. We define NE as the number of entry nodes in a

DFG, Figure 6.1 and ND as the maximum number of nodes from an entry node to the output

node, and NT as the total number of nodes in a DFG. Studying DFGs and their execution can

reveal information about the performance of different architectures.

LOAD

LOAD

LOAD

LOAD

/𝑁"

𝑁#

*

*

*

*

+

+

+ STORE

CONSTANT

CONSTANT

CONSTANT

CONSTANT

CONSTANT

Figure 6.1. A simple Data-Flow Graph (DFG) with NE = 4, ND = 6, and NT = 13.

Data-Flow Graphs are implemented as instruction sequences by a compiler. Figure 6.2

demonstrates a sequence of RISC-V instructions that implements the DFG in Figure 6.1. The

memory pointer is in register x1, the multiplication constants are in registers x8-x11, and the

division constant is in register x12. In Figure 6.1 the load operations are on Lines 2-5, multiply

operations are on Lines 6-9, the addition operations are on Lines 10-12, followed by the division

operation on Line 13, and store operation on Line 14.
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1 dfg_impl:

2 lw x2, 0(x1)

3 lw x3, 4(x1)

4 lw x4, 8(x1)

5 lw x5, 12(x1)

6 mul x2, x2, x8

7 mul x3, x3, x8

8 mul x4, x4, x10

9 mul x5, x5, x11

10 add x2, x2, x3

11 add x4, x4, x5

12 add x2, x2, x4

13 div x2, x2, x12

14 sw x2, 0(x1)

Figure 6.2. The instruction sequence from Figure 6.1 in the RISC-V ISA

The Initiation Interval (II) of a computation is the number of cycles between iterations.

The Initiation Interval of a processor (IIp) depends on the number instructions executed, which is

related to the number of operations (NT ) in the DFG and how the operations map onto instructions

provided by the processor Instruction Set Architecture (ISA).

For example, if a processor provides a Fused-Multiply-Add (fma instruction the sequence

in Figure 6.2 can be shortened by combining mul and add instructions into the fma instruction

as shown in Figure 6.3.

1 fma_impl:

2 lw x2, 0(x1)

3 lw x3, 4(x1)

4 lw x4, 8(x1)

5 lw x5, 12(x1)

6 ;; fma rd , rs1 , rs2 , rs3 ->

7 ;; rd = ((rs1 * rs2) + rd)

8 fma x2, x2, x8 , x0

9 fma x2, x3, x9 , x2

10 fma x2, x4, x10 , x2

11 fma x2, x5, x11 , x2

12 div x2, x2, x12

13 sw x2, 0(x1)

Figure 6.3. The instruction sequence from Figure 6.1 in the RISC-V ISA with a hypothetical
Fused-Multiply-Add (FMA) instruction that computes (A∗B)+C

Likewise, a processor can provide vectorized instructions to execute multiple unconnected

operation nodes in the same instruction as in Figure 6.4. The hyopthetical vld instruction on

Line 2 simultaneously loads four registers. The vmul instruction performs four simultaneous

multiplication operations. Vectorized instructions reduce IIp, but they can also be used to produce
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P parallel outputs by executing multiple DFGs.

1 vec_impl:

2 vld x2:x5 , 0(x1)

3 vmul x2:x5 , x2:x5, x8:x11

4 add x2, x2, x3

5 add x4, x4, x5

6 add x2, x2, x4

7 div x2, x2, x12

8 sw x2, 0(x1)

Figure 6.4. The instruction sequence from Figure 6.1 with hypothetical vectorized instructions
vld, which simultaneously loads four registers, and vmul, which simultaneously performs four
multiplication operations.

Initiation Interval can be used to derive the throughput of a computation as shown in

Equation 6.1. This equation computes the throughput (T ) in outputs per second, as a function of

the frequency (F), output parallelism (P), and Initiation Interval (II). This equation assumes that

memory bandwidth is unlimited and all operations take one cycle to complete.

T =
1
t
=

F ∗P
II

(6.1)

Where:

• t Period, time per result

• II Initiation Interval, the number of cycles between sequential iterations

• F Frequency of the underlying hardware (in MHz)

• V Maximum number of parallel operations provided by vectorized instructions

• P Number of parallel outputs produced by an iteration (P≤V )

• T Throughput in outputs per second

6.2.1 Inefficiencies in Modern Processor

Modern processors have been optimized to reduce the Initiation Interval II using fused

instructions that execute multiple dependent DFG nodes in the same instruction or by increasing
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P and V with vectorized instructions. Years of silicon process development have maximsed F .

Despite this, modern processors still have high Initiation Intervals on important workloads.

These inefficiencies have been studied in numerous papers [41, 97, 91]. These papers

have found that processor register files do not support common data movement and re-use

patterns. Furthermore, while fused and vectorized instructions reduce the number of instructions

issued, they have complex issue rules and often cannot be issued on consecutive cycles [98].

These overheads increase the Initiation Interval (II) and reduce the throughput (T ) of these

workloads.

These inefficiencies are particularly acute in convolution-like computations that are

prevalent computer vision, machine learning, and linear algebra. These computations are slow

because their DFGs have a a large number of load instructions relative to useful computation

instructions. To address these inefficiencies, many projects have developed custom architectures

specifically tailored to to these issues [92, 91, 99, 100, 101, 102]. These projects develop

efficient memory buffers that leverage memory re-use to minimize overheads and deep pipelines

to improve performance.

6.2.2 The Benefits of Pipelines

Pipelines overcome the inefficiencies of processors by implementing operations in stages.

Operation results move between stages on every clock cycle. Stages can read memory, manage

efficient re-use buffers, perform arithmetic operations, and execute custom functions concurrently.

Stages execute operations concurrently, unlike processors which execute operations serially.

The Initiation Interval for a pipeline IIp is equal to the maximum number of cycles any

stage takes to execute. Figure 6.5 demonstrates a 5-stage pipeline implementing the DFG from

Figure 6.1. The II of the pipeline is 4, equal to the maximum II of the pipeline in Stage 4.

In [90] the authors propose a convolution engine to address situations when IIp is large

for image processing computations. The authors demonstrate a 2-3x efficiency improvement, and

a 8-15x improvement in performance over a general-purpose core with vectorized instructions.
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Figure 6.5. A 5-stage pipeline implementing the data-flow graph in Figure 6.1 with II = 4

This architecture is integrated as an extension to the Tensillica ISA. Similar architectures have

been developed for accelerating convolutional neural networks [42, 92]. These papers fabricate

chips, Application-Specific Integrated Circuits (ASIC) to implement their pipelines.

Hardware pipelines can be implemented as ASICs with Fh comparable to Fp but ASICs

are time consuming and expensive to manufacture [103]. Increasingly, pipelines are implemented

on Field Programmable Gate Arrays (FPGA) [101, 102, 100, 99, 8, 10, 9]. FPGAs have a lower

maximum frequency (Fh) and can have high II on complex operations like division. However,

theycost substantially less money and provide increased flexibility. This leads to a trade-off.

6.2.3 Processors Versus Pipelines

Figure 6.6 displays the throughput curves for a processor (subscript p), and hardware

pipeline (subscript h) using Equation 6.1. The vertical axis measures throughput (T ) in results

per second and the horizontal axis displays the processor initiation interval (IIp). The blue line

charts the performance of a single processor and the orange line charts the performance of a

hardware pipeline with a constant initiation interval IIh =C. The blue region highlights when a

processor has higher performance than a hardware pipeline, and the orange region highlights

when a hardware pipeline has higher performance.
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Figure 6.6. Performance curves for a Processor (subscript p) with vector instructions and a
Hardware Pipeline (subscript h) with a constant IIh. These are computed using Equation 6.1.

Figure 6.6 demonstrates that pipelines have higher throughput when Fp ∗Pp > Fh ∗Ph or

when IIp� IIh. Alternatively, a processor has higher performance when Fp ∗Pp > Fh ∗Ph, and
IIp
IIh
→ 1. This is the case in high-performance computing where there are multi-core processors

and vectorized processing units. In this space it is more difficult to find applications for hardware

pipelines that can overcome the low frequencies of FPGAs.

Hardware pipelines are necessary in mobile environments where Fp ∗Pp is small due to

power constraints and, computer vision, machine learning, and linear algebra applications with

high IIp are prevalent. This has led to the growth of System-on-Chip (SoC) devices like Zynq.

SoCs provide low-power ARM processors for high-level integration, and FPGAs for building

efficient hardware pipelines.

However, FPGA hardware development is substantially more time consuming, difficult,

and costly than software development. Software compilation takes seconds, while FPGA

compilation takes minutes or hours [44, 43]. Development languages are inabstract, forcing

designers to consider low-level details of FPGA architecture [93]. Finally, developing hardware

requires experienced engineers [35]. What is needed, is an architecture for exploiting pipeline
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parallism in mobile devices that can be programmed quickly, and at a high-level.

6.3 Proposed Architecture

We propose an architecture of interconnected RISC-V processors, shown in Figure 6.7.

In our architecture NH Head (H) processors read data from the L2 cache. NH Map processors

operate on data fetched by the Head processors. N − 1 Reduce (R) processors form a 2:1

reduction network. Spine (S) processors operate on the result of the Reduce processors. Finally,

a Tail (T) processor writes results back to memory. Data is moved between processors with

elastic First-In-First-Out (FIFO) buffers.
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Figure 6.7. Our proposed multi-processor architecture of heterogeneous interconnected RISC-V
processors.

The processors are organized in a map-reduce parallel structure that is common in

video processing, machine learning, and linear algebra applications [104, 90]. This architecture

overcomes the inefficiencies of modern processors: the L2 cache increases data-reuse, and the

interconnect allows deep pipelines of interconnected arithmetic units.

Each processor implements the RISC-V ISA with a set of RISC-V extensions described

in Section 6.3.1. We use standard extensions to implement the base architecture and functionality.

We augment the standard RISC-V extensions with our own custom extensions that enable inter-

processor communication, and efficiently execute common patterns. The extensions selected for
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each processor are described in Section 6.3.3.

6.3.1 RISC-V Implementation

Figure 6.8 demonstrates our proposed RISC-V processor implementation. Our proposed

processor has seven stages: Instruction Fetch (IF), Instruction Decode (ID), FIFO Read and

Configuration (FIFO/CSR), Execute 1 (EX1), Execute 2 (EX2), Memory & Look-Up-Table

(Mem/LUT), and Write-Back (WB). We have added the FIFO/CSR stage to avoid large, complex

multiplexers in the decode stage. The traditional 1-cycle Execute stage has been split into two

cycles to maximize frequency.

IF ID FIFO/CSR EX1 EX2 Mem/LUT WB

512 
Entry 
LUT

SRC1 FIFO

SRC2 FIFO

16-Entry 
Register 

File

Hazard 
Detector

9

CSR Bank

OUT FIFO 

Write-Back Path

Program 
Counter

Memory Interface

RS1

RS2
SRC2

SRC1

Branch Computation Path

Decoder

CSR Bits

Memory 
Interface

ALU

Figure 6.8. Our proposed RISC-V architecture. Dashed lines highlight our custom extensions.
Dotted lines indicate configuration bits

Our processor architecture is designed to operated as part of a feed-forward pipeline and

implement limited data forwarding logic for Read-After-Write (RAW) hazards. Each processor

implements a Hazard unit that is responsible for detecting data or control hazards and causing

flushes or forwards.

Each processor in the architecture uses the RISC-V 32-bit ISA with the standard Integer

(I) instructions. We select the Embedded (E) extension which provies 16 general-purpose

architectural registers instead of 32. This reduces the size of each core by an estimated 25% in
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ASIC designs [30]. Each processor operates only at machine level and implements a subset of the

Configuration Status Registers (CSR) as shown in Table 6.1. The MCYCLE[H] and MINSTRET[H]

registers monitor performance. The remaining registers are used for performance analysis and

exceptions.

Table 6.1. Standard RISC-V Configuration Status Registers (CSR) used in our work.

Register Name Purpose
MCYCLE[H] Machine Cycle Counter
MINSTRET[H] Machine Instruction Counter
MSCRATCH Machine Scratch Register
MTVEC Machine Trap Vector
MEPC Machine Exception Program Counter
MCAUSE Machine Cause Register
MBADADDR Machine Bad Address Register

6.3.2 Extensions

Each processor is augmented with a selection of extensions. These extensions allow us to

efficiently communicate between multiple processors, avoid branch instructions, and implement

other non-linear logic that would increase the II of our processor designs.

Multiplication

We provide 16-bit by 16-bit multiplication with the MUL[S[U]] instructions to fit in a

single FPGA DSP slice. Supporting 32-bit multiplication multiplication and larger doubles and

quadruples the DSP cost on FPGAs. We feel that the costs outweigh the benefits in this situation:

The 16-bit multiplication is sufficient for 8-bit pixel processing and fixed-point computations

that are prevalent in many image processing applications.

Atomics

We implement the Load-Reserved (LR) and Store-Conditional ((SC)) instructions from

the RISC-V Atomic (A) extension. This allows data to be safely written back to memory by the
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Tail processor and read by the Head processor which is necessary for some image processing

kernels.

FIFO Extensions

We define three FIFO extensions for the RISC-V ISA that are shown in Figure 6.8: the

SRC1 extension adds the “SRC1 FIFO” that is connected to the SRC1 input of the ALU; the

SRC2 extension adds the “SRC2 FIFO” that is connected to the SRC2 input of the ALU; the

the OUT extension adds the “OUT FIFO” connected to the WB stage. Each FIFO extension

operates independently and they can be implemented selectively.

The FIFO extensions allow processors within our architecture to communicate data

efficiently. For example, Head processors in Figure 6.7 load data and transfer it to Map proces-

sors through the OUT FIFO extension. Map processors read data from SRC1 FIFO, apply a

transformation, and transmit it to a Reduce processor. Reduce processors transmit data to the

Spine processors and eventually to the Tail processor for writeback. This effectively allows us to

build deep pipelines where each processor is a programmable pipeline stage.

The FIFO extensions add a CSR named fifoctrl at address 0xFF0. The bit-map is

shown in Table 6.2. The function of these bits are described below with the corresponding

extension.

Table 6.2. CSR fifoctrl bit map

Bit Name Capability Description
0 SRC1 EN WR SRC1 Implicit Enable Bit
1 SRC1 VALID RD SRC1 Input Valid Signal
2 SRC1 LAST RD SRC1 Input Last Flag
3 SRC2 EN WR SRC2 Implicit Enable Bit
4 SRC2 VALID RD SRC2 Input Valid Signal
5 SRC2 LAST RD SRC2 Input Last Flag
6 OUT EN WR Output Enable Bit
7 OUT READY RD Output Ready Signal
8 OUT LAST WR Output Last Flag
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SRC1 and SRC2 Extensions

The SRC1 and SRC2 extensions add the “SRC1 FIFO” and “SRC2 FIFO” shown in the

CSR/FIFO stage of Figure 6.8.

The “SRC1 FIFO” and “SRC2 FIFO” can be explicitly read with the fsrc1rd and

fsrc2rd instructions shown in Table 6.3.

Table 6.3. FIFO read instructions added by SRC1 and SRC2 Extensions

Name Use Extension Description
fsrc1rd fsrc1rd rd SRC1 Read SRC1 FIFO into Register rd
fsrc2rd fsrc2rd rd SRC2 Read SRC2 FIFO into Register rd

SRC1 FIFO and SRC2 FIFO can be implicitly read by arithmetic, load, and store

instructions by setting bits of the fifoctrl CSR in Table 6.2. When SRC1 EN is set, all set all

load and arithmetic that instructions use rs1 will read and use data from the SRC1 FIFO instead.

When SRC2 EN is set, all store and arithmetic instructions that use rs2 will read and use data

from the SRC2 FIFO instead. The processor stalls when data is not available during implicit or

explicit reads from either FIFO. Implicit reads improve the throughput of computations on the

processors by reducing the II of each stage.

Figure 6.9 shows a sequence of instructions using the functionality described above.

Lines 2 and 3 demonstrate the fsrc1rd and fsrc2rd instructions from Table 6.3. Lines 5-

9 demonstrate implicit reads of the SRC1 FIFO on arithmetic commands, and Lines 11-18

demonstrate corresponding reads for the SRC2 FIFO. Finally, Lines 20 and 21 demonstrate

simultaneous implicit reads from SRC1 and SRC2 FIFOs.

OUT Exension

The OUT extension adds the output “OUT FIFO” in the Write-Back (WB) stage of

Figure 6.8. This FIFO can be explicitly written with the foutwr instruction shown in Table 6.4

The processor stalls when no space is available during writes.
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1 input_demo:

2 fsrc1rd x1 ;; Read a value from SRC1 FIFO into x1

3 fsrc2rd x2 ;; Read a value from SRC2 FIFO into x2

4

5 csrwi fifoctrl , 0x1 ;; Set SRC1_EN

6 add x3, x4, x0 ;; Implicit read of SRC1 FIFO

7 ;; (x4 data is not changed)

8 add x5, x0, x1 ;; The SRC1 FIFO is not read when rs1 is x0

9 addi x6, x1, 1 ;; Read SRC1 FIFO and add 1

10

11 csrwi fifoctrl , 0x8 ;; Set SRC2_EN

12 add x6, x0, x4 ;; SRC2_EN causes the instruction to read

13 ;; SRC2 FIFO and replace the data from x4

14 ;; (x4 data is not changed)

15

16 add x7, x2, x0 ;; The SRC2 FIFO is not read when rs2 is x0

17 addi x6, x1, 1 ;; The SRC2 FIFO is not read

18 ;; (addi does not use rs2)

19

20 csrwi fifoctrl , 0x9 ;; Set SRC1_EN and SRC2_EN

21 add x8, x4, x0 ;; Add values from SRC1 FIFO AND SRC2 FIFO

22

23 csrwi fifoctrl , 0x0 ;; Clear all bits

Figure 6.9. A sequence of input FIFO operations using a processor with SRC1 and SRC2 FIFO
extensions of our FIFO extensions

Table 6.4. Instructions added by the OUT extension

Name Use Extension Description
foutwr foutwr rs OUT Write Register rs into OUT FIFO

OUT FIFO is implicitly written by arithmetic and load instructions when OUT EN bit of

the fifoctrl CSR in Table 6.2 is set.

Figure 6.10 demonstrates the functionality of the OUT FIFO. Line 3 demonstrates how

the foutwr instruction explicitly writes data to OUT FIFO. Lines 5-13 demonstrate how the

OUT FIFO is written when the OUT EN bit of the fifoctrl register is written. OUT EN is set on

Line 5. Line 6 adds the register x0 and the immediate value 0x2C, and writes the result to register

x2 and OUT FIFO. Line 10 demonstrates that OUT FIFO is not written when the destination

register is x0.

SRC1/SRC2 and OUT FIFO Co-Operation

SRC1/SRC2 and OUT extensions can be enabled concurrently when multiple extensions

are present. This allows each processor to act like a programmable pipeline stage, where data
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1 output_demo:

2 li x2 , 42 ;; Load 42 into x1

3 foutw x1 ;; Write the value from x1 into the OUT FIFO

4

5 csrwi fifoctrl , 0x40 ;; Set OUT_EN

6 addi x3, x0, 0x2C ;; Add register x0 (0) and 0x2C and implicitly

7 ;; write it to OUT FIFO in addition to storing

8 ;; it in x2

9

10 addi x0, x0, 0xFF ;; No Operation , OUT FIFO is not written when

11 ;; rd is x0

12

13 csrwi fifoctrl , 0x0 ;; Clear all bits

Figure 6.10. A sequence of FIFO operations using a processor with the OUT extension present

is read from and written to FIFOs by arithmetic instructions. Connecting multiple arithmetic

units in series or in a tree like in Figure 6.8 allows programmable multi-stage pipelines to be

built from simple RISC-V processors.

Figure 6.11 The FIFO extension allows us to build piplines and program them using the

RISC-V ISA. These pipelines meld the high-level programmability of a RISC-V processor with

the performance of hardware pipelines, and avoids the drawbacks of both.

1 inout_demo:

2 li x1 , 0x4000 ;; Load 0x4000 into x1

3

4 csrwi fifoctrl , 0x49 ;; Set SRC1_EN , SRC2_EN , OUT_EN

5

6 add x3, x1, x2 ;; Implicitly read values from RS1_FIFO and RS2_FIFO ,

7 ;; Add them together and store the result in OUT_FIFO

8 ;; (x2 is modified as well)

9

10 csrwi fifoctrl , 0x0 ;; Clear all bits

Figure 6.11. A sequence of simultaneous Input and Output FIFO Operations.

Min/Max Extension

We extend the RISC-V ISA with minimum and maximum instructions defined in Ta-

ble 6.5. These instructions compare rs1 and rs2, and write the minimum or maximum into

rd.

Hazards and branching are expensive in our architecture and the min and max instructions

are useful for transforming branch instructions (control dependencies) into min/max instructions

(data dependencies). In Section 6.4 we use min and max to saturate pixel values when adding
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Table 6.5. min and max instructions added by the Min/Max extension

Name Use Description
min min rd, rs1, rs2 Compare rs1 and rs2 and write the minimum into rd

max max rd, rs1, rs2 Compare rs1 and rs2 and write the maximum into rd

images, implement median filters, and perform non-maxima suppresion in non-linear filters.

Figure 6.12 shows three examples of using min and max. Lines 3-6 demonstrate how

min and max can be used to find the minimum and maximum of 42 and 13 without branching.

Lines 9-12 and 14-18 and demonstrate how min and max can be used to “clamp” a value to the

range 0 to 255.

1 minmax_demo:

2 ;; Find the min and max of two values

3 li x1 , 42 ;; Load 42 into x1

4 li x2 , 13 ;; Load 13 into x2

5 min x3, x2, x1 ;; min stores 13 into x3

6 max x4, x2, x1 ;; max stores 42 into x4

7

8 ;; Clamp x6 to the range (0 ,255) using Min/Max

9 li x5 , 255 ;; Load the saturation value 255 into x5

10 li x6 , 273 ;; Load the data value of 273 into x5

11 min x7, x6, x5 ;; min stores 255 into x7

12 max x8, x7, x0 ;; max stores 255 into x8

13

14 ;; Clamp x6 to the range (0 ,255) using Min/Max

15 li x8 , 255 ;; Load the saturation value 255 into x8

16 li x9 , -128 ;; Load the data value of -128 into x9

17 min x10 , x6, x5 ;; min stores -128 into x10

18 max x11 , x10 , x0 ;; max stores 0 into x11

Figure 6.12. A sequence of instructions using min and max.

Look-Up Table (LUT)

We extend RISC-V ISA by adding a Look-Up-Table (LUT). The LUT is located in the

LUT/MEM stage in Figure 6.8. When the Look-Up-Table is enabled, the result of any arithmetic

operation is replaced by a value from the Look-Up-Table.

The Look-Up-Table is useful for computing non-linear or complex functions. For

example, the Look-Up-Table can be used to compute Gaussian coefficients on differences in

image intensity for a Bilateral filter, computing the Arctangent function for edge detection, or
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computing absolute differences.

The Look-Up-Table is written using the lutwr instruction shown in Table 6.6. The

register rs1 specifies the 9-bit address, while rs2 specifies the 9-bit value. We do not provide

a readback instruction. The Look-Up-Table is enabled by writing to the CSR address 0xFC0

(luten).

Table 6.6. Definition of the lutwr instruction

Name Use Description
lutwr min rs1, rs2 Write the lower 9-bits of rs2 into the LUT RAM at rs1

Figure 6.13 shows an example using our Look-Up-Table. Lines 2-4 load the value 0xFF

into index 42. Line 6 enables the Look-Up-Table. Line 8 adds register x0 (0), and the immediate

value 42. This result is used as the Look-Up-Table index and exchanged for the value 0x1FF,

which is written back to register x3.

Figure 6.13. A sequence of instructions demonstrating the Look-Up-Table (LUT).
1 lut_demo:

2 li x1 , 0x1FF

3 li x2 , 42

4 lutwr x2 , x1 ;; Write 0x1FF to Index 42 of LUT

5

6 csrwi luten , 1 ;; Enable the LUT

7

8 addi x3, x0, 42 ;; x3 is equal to 0x1FF

9 ;; The value of x0 + 42 is 42.

10 ;; The index 42 is exchanged for 0x1FF

11

12 csrwi luten , 0 ;; Disable the LUT

6.3.3 Processor Variants

Table 6.7 summarizes the selected features of each processor. This heterogeneity allows

us to build an efficient reprogrammable pipeline. The following sections summarize the features

of each processor and motivates their selection.
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Table 6.7. Summary of the features of each processor in Figure 6.7

Name ICache DCache Forwarding Atomic Mult. FIFO Extensions Min/Max LUT
Head (H) Y, 2KB Y, 4KB Y Y N OUT N N
Map (M) N N N N Y SRC1, OUT Y Y
Reduce (R) N N N N Y SRC1, SRC2, OUT Y Y
Spine (S) N N rs2 Only N Y SRC1, OUT Y Y
Tail (T) Y, 2KB Y, 4KB rs1 Only Y N SRC2 N N

Head Processor (H)

The Head processors are annotated with an (H) in Figure 6.7. The Head processors are

are optimized for reading data and transferring it to the Map processors using the OUT FIFO

extension.

Each Head processor has a 4KB direct-mapped data cache with a 1024-byte line size that

amortizes cache miss latency for linear access patterns, and a 4KB direct-mapped instruction

cache with a 16-byte line size. Both caches are connected to main memory via the L2 cache. The

Head processor implements the OUT FIFO extension to send data to the Map processors, and

implements the atomic extension to coordinate with the Tail processor. It does not have Multiply

or Min/Max extensions since it is not expected to do computation. The processor supports full

forwarding to avoid RAW hazards and improve the penalty of pointer updates and loop-branch

calculations.

Figure 6.14 demonstrates how the Head processors act like a streaming direct memory

access engine for the architecture in Figure 6.7. On Line 2 the address 0x4000 is loaded into x1.

The OUT EN bit is set on Line 4. Lines 6-9 load bytes into x2-x5, and store those bytes in OUT

FIFO. These bytes are read by a Map processor.

The Head Processor and L2 Cache are intended to replicate the 2D Buffer and shift

register structures that are common in prior work [90, 91]. The multiplexers necessary to

implement these schemes are costly on FPGAs. We believe a collection of highly-optimized

soft processors fetching data will provide more flexibility in memory access patterns without the
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1 head_demo:

2 li x1 , 0x4000 ;; Load 0x4000 into x1

3

4 csrwi fifoctrl , 0x40 ;; Set OUT_EN

5

6 lb x2 , 0(x1) ;; Read byte 0(x1) and write it to OUT FIFO

7 lb x3 , 1(x1) ;; Read byte 1(x1) and write it to OUT FIFO

8 lb x4 , 2(x1) ;; Read byte 2(x1) and write it to OUT FIFO

9 lb x5 , 3(x1) ;; Read byte 3(x1) and write it to OUT FIFO

10

11 csrwi fifoctrl , 0x0 ;; Clear all bits

Figure 6.14. An example demonstrating lb instructions and OUT FIFO on the Head processor.
Each lb writes the loaded data into OUT FIFO and rd

added comlexity of custom instructions or hardware multiplexers.

Map Processor (M)

The Map processors are annotated with an (M) in Figure 6.7. The Map processors are

are optimized for applying an operation to data from the Head processor via SRC1 FIFO and

writing the result to OUT FIFO for the Reduce processors.

Each Map processor has a 4KB memory space with a 1-cycle access latency. The

memory space is shared between instructions and data and is separate from host memory. The

Map processor implements multiplication, Min/Max, LUT, and the SRC1 and OUT extensions.

The processor does not implement forwarding since it is not useful for the computations we

expect.

Figure 6.15 demonstrates how the Map processor can be used to read data from the SRC1

FIFO, apply arithmetic operations, and write the data to OUT FIFO. Line 2 loads the constant

42 into x1. Line 4 sets the SRC1 EN and OUT EN bits so that arithmetic instructions read from

SRC1 FIFO and write to OUT FIFO. Line 5 demonstrates this behavior – instead of reading the

undefined value in x2, it adds 1 to the value in SRC FIFO. Similar behavior is demonstrated on

Line 9, where the mul instruction multiplies the next value in SRC1 FIFO by the value in x1

(42). The results of both instructions are implicity written to OUT FIFO.

Map processors perform operations on data from the Head processors using immediates

and arithmetic instructions, a useful operation for implementing convolution-like computations.
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1 map_demo:

2 li x1 , 42

3

4 csrwi fifoctrl , 0x41 ;; Set SRC1_EN and OUT_EN

5 addi x3, x2, 1 ;; Read SRC1 FIFO and add 1

6 ;; Implicitly read SRC1 FIFO and add 1

7 ;; Write the result to OUT FIFO

8

9 mul x5, x4, x1 ;; Implicitly read SRC1 FIFO and

10 ;; multiply it by 42 (x1)

11 ;; Write the result to OUT FIFO

12

13 csrwi fifoctrl , 0x00 ;; Clear SRC1_EN and OUT_EN

Figure 6.15. An example demonstrating the SRC1 and OUT FIFOs on the Map processor to
apply two arithmetic operations.

Reduce Processor (R)

The Reduce processors are annotated with an (R) in Figure 6.7. Reduce processors are

implemented to “reduce” results from the Map processors. The result is written to the Spine

processors for final processing.

Each Reduce processor has a 4KB memory space with a 1-cycle access latency. The

memory space is shared between instructions and data. The Reduce processor implements the

RISC-V Multiply extension, our Min/Max extension, our LUT extension, and the the SRC1,

SRC2, and OUT FIFO extensions. The Reduce processor does not have forwarding logic;

accumulates are handled in the Spine processors described next.

Figure 6.16 demonstrates how Reduce processors can “reduce” inputs from SRC1 and

SRC2 FIFOs and write the result to OUT FIFO. Line 2 enables the SRC1, SRC2, and OUT

FIFOs so that arithmetic instructions read from SRC1 and SRC2 FIFOs and the result is written

to OUT FIFO. Line 5 adds together two values from SRC1 and SRC2 FIFO and writes the result

to OUT FIFO and x3. Similar behavior is shown on Line 8, where the or instruction reads from

SRC1 and SRC2 FIFOs, applies a logical or operation and writes the result to OUT FIFO and x6

The Reduce processors can perform a variety of useful operations to collectively transform

an array of parallel inputs into a single output. They can find the local minimum or maximum in

a window for non-linear filters, they can compute an arctangent approximation for edge detection,
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1 reduce_demo:

2 csrwi fifoctrl , 0x49 ;; Set SRC1_EN , SRC2_EN , OUT_EN

3

4 add x3, x2, x1 ;; Implicitly read values from SRC1 FIFO and

5 ;; SRC2 FIFO , add them together and store the

6 ;; result in OUTFIFO (x3 is modified as well)

7

8 or x6 , x5 , x4 ;; Implicitly read values from SRC1 FIFO and

9 ;; SRC2 FIFO , or them together and store the

10 ;; result in OUT FIFO (x6 is modified as well)

11

12

13 csrwi fifoctrl , 0x0 ;; Clear all bits

Figure 6.16. An example demonstrating how the Reduce processor can add two values from
SRC1 FIFO and SRC2 FIFO, and write the result to OUT FIFO

and they can produce the sum of a window for linear filters.

Spine Processor (S)

The Spine processors are annotated with a (S) in Figure 6.7. Spine processors are

designed to perform streaming 1-D computations to transform data output by the network of

Reduce processors.

Each Spine processor has a 4KB memory space with a 1-cycle access latency. The

memory space is shared between instructions and data. The Spine processor implements the

RISC-V Multiply extension, our Min/Max extension, our LUT extension, the SRC1, and OUT

FIFO extensions. The Spine processor implements forwarding logic for rs2 operand RAW

hazards. This allows it to implment multi-cycle accumulates.

Spine processors are useful for performing any final computations before data is stored

in memory. For example, the Spine processors can apply saturation, or round fixed point values.

Tail Processor (T)

The Tail processors are annotated with a (T) in Figure 6.7. Tail processors are designed

to store computation results to memory.

The tail processor has a 2KB direct-mapped, write-back data cache with a 256-byte line

size and 2KB direct-mapped instruction cache. Both caches are connected to main memory

via the L2 cache. The Tail processor implements the SRC2 FIFO and atomic extensions. The
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tail processor uses the SRC2 FIFO extension because RISC-V store instructions store data

from register rs2 and use rs1 for the base address. When when the SRC2 EN bit of fifoctrl

CSR is set data from the SRC2 FIFO is read and stored using storage instructions. It does not

implement multiply, LUT, or Min/Max extensions since those are not related to data storage. The

Hazard unit implements forwarding on the rs1 operand to improve the throughput of pointer

calculations, but does not predict branches.

Figure 6.17 demonstrates how Tail processors act like a streaming DMA write engine by

reading results from SRC2 FIFO and storing the result in host memory. On Line 2 the x1 loads

the address 0x4000. Line 4 sets the SRC2 EN bit which causes store instructions to implicitly

read SRC2 FIFO. Lines 6-13 store a series of bytes from SRC2 to addresses 0x4000-0x4003.

1 tail_demo:

2 li x1 , 0x4000 ;; Load 0x4000 into x1

3

4 csrwi fifoctrl , 0x8 ;; Set SRC2_EN

5

6 sb x2 , 0(x1) ;; Implicitly read SRC2 FIFO and

7 ;; write the first byte to address 0x4000 (0 + x1)

8 sb x3 , 1(x1) ;; Implicitly read SRC2 FIFO and

9 ;; write the first byte to address 0x4001 (1 + x1)

10 sb x4 , 2(x1) ;; Implicitly read SRC2 FIFO and

11 ;; write the first byte to address 0x4002 (2 + x1)

12 sb x5 , 3(x1) ;; Implicitly read SRC2 FIFO and

13 ;; write the first byte to address 0x4003 (3 + x1)

14

15 csrwi fifoctrl , 0x0 ;; Clear SRC2_EN

Figure 6.17. An example demonstrating the use of SRC2 FIFO on the Tail processor

6.3.4 Area Estimate

Table 6.8 shows our estimated resource consumption per processor for Block RAMS

(BRAMS) and DSPs on a Xilinx FPGA. The Xilinx FPGA architecture provides 36 KBit BRAMs

that can be fractured into two independent 18 KBit BRAMs. A 36 KBit BRAM is counted as 2

BRAM, and a 18 KBit BRAM is counted as 1. We estimate BRAM and DSP consumption using

which is derived from our architecture description in 6.3.1.

Table 6.9 demonstrates the processor composition of six architecture sizes from 2 Head

processors (NH = 2) to 64 Head processors (NH = 64). We have chosen to use 5 Spine processors
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Table 6.8. Estimated DSP and BRAM consumption for all processor types

Processor Type Instr. BRAMs Data BRAMs FIFO BRAMs DSPs
Head 1 2 1 0
Map 1 1 1 1
Reduce 1 1 1 1
Spine 1 1 1 1
Tail 1 2 1 0

to implement an efficient medianBlur function as described in our Results. The right-most

column in the table displays the total number of processors in each architecture.

Table 6.9. Processor counts for six architecture sizes, from 2 Head processors (NH = 2) to 64
Head processors (NH = 64).

NH Head Map Reduce Spine Tail Total Processors
2 2 2 1 5 1 11
4 4 4 3 5 1 14
8 8 8 7 5 1 22
16 16 16 15 5 1 38
32 32 32 31 5 1 70
64 64 64 63 5 1 134

Table 6.10 estimates the resource consumption of BRAMs and DSPs for the same six

architecture sizes. The data displayed in this table is the product of the processor estimates in

Table 6.8 and the processor counts in Table 6.9. As described above the Xilinx FPGA architecture

contains 36 KBit BRAMs that can be fractured into two 18 KBit BRAMs. Column 2 shows

the maximum possible BRAM consumption where all 18 KBit BRAMs use a 36 KBit BRAM.

Column 3 reports the minimum BRAM consumption where all 18KBit BRAMs share a 36 KBit

BRAM. The actual BRAM consumption will be somewhere between the two numbers.
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Table 6.10. Estimated DSP and BRAM resource consumption for 6 architecture sizes

NH Total BRAMs (Max.) Total BRAMs (Min.) Total DSPs
2 68 36 8
4 86 44 12
8 134 68 20
16 230 116 36
32 422 212 68
64 806 404 132

6.4 Results

We report quantitative results for 12 OpenCV functions implemented on an ARM Proces-

sor (with and without NEON instructions), an FPGA Pipeline, and our proposed architecture.

The experimental setup for each architecture is described in Section 6.4.1. OpenCV functions

and implementations are described in Section 6.4.2. Finally, we report performance results with

analysis in Section 6.4.3

6.4.1 Experimental Setup

We have gathered processor results two devices: a Pynq Z1 with a Zynq-7000 SoC, and

an Ultra96 board with a Zynq Ultrascale+ SoC. The Zynq-7000 device features a dual-core

Cortex-A9 32-bit processor with NEON instructions running at 650 MHz. The Pynq-Z1 provides

512 MB of DDR3 operating at 533 MHz and a 16-bit DDR interface for a theoretical maximum

throughput of of 2 GBps. The Zynq Ultrascale+ chip features a quad-core Cortex-A53 64-bit

processor with NEON instructions operating at 1200 MHz. The system provides 2 GB of

LPDDR4 memory operating at 533 MHz with a 32-bit DDR interface for a theoretical maximum

throughput of 4 GBps. Both devices have on-die FPGA fabrics with characteristics shown in

Table 6.11.

We collect results from 12 functions in the OpenCV library: meanStdDev, integral,

minMaxLoc, add (8-bit), multiply (16-bit), cvtColor, gaussianBlur, medianBlur,
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Table 6.11. Device resources and maximum frequencies for Zynq-7000 and Zynq Ultrascale+

Device Total BRAMs Total DSPs DSP Max Freq. BRAM Max Freq.
Zynq-7000 140 220 463 MHz 400 MHz
Zynq Ultrascale+ 216 360 571 MHz 645 MHz

Canny, and bilateralFilter. We ran these functions on our test set of 10 images shown in

Figure 6.18. Each image measures 1280 pixels by 960 pixels, larger than the 512 KB L2 cache

on the Zynq-7000, and larger than the 1MB L2 on the Zynq Ultrascale+ device. All functions

operate on 8-bit grayscale pixels except multiply which operates on 16-bit pixel values.

Figure 6.18. Test images used in our experiments

Measurements were gathered in Python 3.6 using the timeit library. The library records

execution times for each run. We ran each function 200 times for each image, and the first 100

iterations were discared. We report the maximum throughput (minimum execution time) from

the last 100 iterations.

ARM Processors

Arm processor results were gathered running from an unmodified version of OpenCV 3.4

compiled locally on each board. The Zynq-7000 device uses g++ 5.2.1 and Ubuntu 15.10. The

Zynq MPSoC uses g++ 5.3.1 and Ubuntu 16.04 LTS. For each device, we report two OpenCV

results: ARM With Neon are results from OpenCV compiled with NEON SIMD instructions;
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ARM Without Neon are results from OpenCV compiled without NEON SIMD instructions.

We report our results in Section 6.4.2.

FPGA Pipelines

We report hardware pipeline performance results using implementations from the Xilinx

XFOpenCV 2017.4 library. The XFOpenCV Library provides two throughput options: 1 pixel

per cycle (FPGA P = 1) and 8 pixels per cycle (FPGA P = 8). The functions integral,

cvtColor, and bilateralFilter are restricted to P = 1 in the XFOpenCV library.

We report maximum frequencies for each function in Table 6.12. We implemented

each throughput option in Vivado 2017.4 with default synthesis and implementation goals and

used a binary search pattern to determine the maximum frequency. The throughput results in

Section 6.4.2 use these maximum frequency bitstreams.

Table 6.12. Compilation Results for our 12 selected OpenCV Functions on Zynq-7000 and Zynq
Ultrascale+ devices

Zynq-7000 Max Frequency Zynq Ultrascale+ Max Frequency
Function Name P = 1 P = 8 P = 1 P = 8
meanStdDev 179.69 MHz 177.34 MHz 351.95 MHz 318.75 MHz
minMaxLoc 192.97 MHz 210.55 MHz 312.11 MHz 317.97 MHz
add 192.63 MHz 178.13 MHz 366.02 MHz 394.53 MHz
multiply 187.50 MHz 201.56 MHz 309.77 MHz 303.52 MHz
integral 183.50 MHz N/A 363.28 MHz N/A
cvtColor 184.38 MHz N/A 359.38 MHz N/A
gaussianBlur (3x3) 145.70 MHz 141.41 MHz 262.11 MHz 246.88 MHz
gaussianBlur (5x5) 189.06 MHz 201.56 MHz 297.60 MHz 275.78 MHz
gaussianBlur (7x7) 191.40 MHz 200.00 MHz 301.55 MHz 264.85 MHz
medianBlur 191.41 MHz 176.56 MHz 357.42 MHz 344.14 MHz
Canny 177.34 MHz 193.75 MHz 350.39 MHz 378.52 MHz
bilateralFilter 155.08 MHz N/A 300.00 MHz N/A
Mean 180.89 MHz 186.76 MHz 327.38 MHz 315.87 MHz
Standard Deviation 15.23 MHz 21.07 MHz 33.78 MHz 53.51 MHz

Table 6.12 demonstrates that most Zynq designs achieve 180 MHz, and nearly all Zynq

Ultrascale designs achieve 300. The exceptions are gaussianBlur (3x3) on all architectures,

gaussianBlur (5x5) and (7x7) at P = 8 on Zynq Ultrascale+, and bilateralFilter on the

132



Zynq-7000 at P = 1. We traced these deviations back to the projected timing in Vivado HLS,

but we were unable to determine the root cause. These anomalies persist across computers,

compilation runs, and sythesis goals.

RISC-V Tree

We estimate results for our architecture at NH = 8, NH = 16, and NH = 32, where

NH is the number of head processors in our architecture. We estimate that these are feasible

architectures based on the resources available in Table 6.11 and the resource consumption

estimates in Table 6.10. Such results based on the 80-processor result on the same Zynq-7000

device in [88].

We report results for our architecture at 150 MHz for the Zynq-7000 device, and 300

MHz for the Zynq Ultrascale device. These estimates are 30 MHz below the mean maximum

frequency for the Zynq-7000 device and 27 MHz below the mean maximum frequency for the

Zynq Ultrascale+ device from Table 6.12, and correspond well to [88].

We compute performance results using a modified version of Equation 6.1 for throughput:

T =
1
t
=

E ∗F ∗P
II

(6.2)

And, the period:

t =
II

E ∗F ∗P
(6.3)

Where E is the the efficiency, a value between 1.0 and 0. Efficiency of computations

on our architecture is determined by how often the Head processor stalls when read data from

memory, and the cache miss penalty. We have determined that the memory read latency is

between 30 and 50 cycles on the Zynq-7000 and Zynq Ultrascale+ devices using the XFOpenCV

Functions. Assuming memory is read linearly with a cache size of 1024 bytes, E = 95% for

1-byte reads, E = 90% for 2-byte reads, and E = 80 for 4-byte reads. Our benchmarks mainly

read 1-byte and 2-byte values so we assume E = 90%.
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Some OpenCV functions are composed from multiple sub-functions, called Passes, and

each pass may have a uniqe Initiation Interval (II) and parallel output (P). To compute the total

throughput for a multi-pass function we use Equation 6.4, derived from Equation 6.2.

Tf unction =
1

∑
i=Passes
i=1 ti

=
1

∑
i=Passes
i=1

IIi
Pi∗E∗F

(6.4)

This equation states that the throughput of an OpenCV function on our architecture is

equal to the inverse of the sum of the periods of the passes. The period of each pass is computed

using Equation 6.3 using the tables in Section 6.4.2.

6.4.2 OpenCV Functions

We have selected 12 common OpenCV functions for implementation. The functions

have diverse computational patterns so we can understand how our architecture compares to

custom hardware pipelines, and an ARM ISA. In the following sections we briefly describe

each function, and provide a detailed description of how the function and its passes map to our

proposed architecture.

Image Mean & Std. Deviation (meanStdDev))

The meanStdDev function computes the Mean and Standard Deviation of the pixels in

an image.

Our proposed architecture computes the result in two passes, µ and sigma, as shown in

Table 6.13. The first pass computes the sum of all pixels in an image using a sliding column

window, where the height of the column is equal to the number of head processors. The ARM

processor is used to compute the quotient to determine the mean since our architecture does not

support divide. The second pass computes the total variance. Two Map processors simultaneously

compute the deviation of each pixel, and the first Reduce stage computes the product to square

the result. The remaining Reduce processors compute the sum. Finally, the ARM processora is

used to compute the quotient and root.
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Table 6.13. Breakdown of images passes to compute the function meanStdDev on different sizes
of our architecture

NH Passes IIµ Pµ IIσ Pσ

8 2 1 8 1 2
16 2 1 16 1 4
32 2 1 32 1 8

Image Min/Max Location (minMaxLoc)

The minMaxLoc function determines the value and location of the minima and maxima

in an image.

Table 6.14 shows how our architecture computes the result in three passes, min, max,

and location. The first and second pass compute the maximum and minumum value in a

sliding column where the height of the column is equal to NH . On the third and final pass, the

architecture iterates through the image to find the minumum and maximum locations.

Table 6.14. Breakdown of images passes to compute the function minMaxLoc on different sizes
of our architecture

NH Passes IImin Pmin IImax Pmin IIlocation Plocation
8 3 1 8 1 8 1 1
16 3 1 16 1 16 1 1
32 3 1 32 1 32 1 1

Image Add (add)

The add function computes the pixel-wise sum of two images. In our tests, each input is

an 8-bit greyscale image, and the output is a saturated 8-bit pixel value.

Table 6.15 demonstrates how our architecture computes the result in one pass. The head

processors load 2 or 4 pixels from each of the two input images. The first Reduce processor

computes the summation and saturation using the output Look-Up-Table. The second level of
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reduce processors shift the result. The remaining Reduce processors form an or-reduction tree to

create a 2-result, or 4-result output.

Table 6.15. Breakdown of images passes to compute the function add on different sizes of our
architecture

NH Passes IIadd Padd
8 1 1 2
16 1 1 4
32 1 1 4

Image Multiply (multiply)

The multiply function computes the pixel-wise product of two images. In our tests,

each input is an 8-bit greyscale image, and the output is a 16-bit pixel value that does not need to

be checked for saturation.

Table 6.16 demonstrates how our architecture computes the result in one pass. In all

architectures, two pairs of Head processors load corresponding pixels from the source images.

The first Reduce processor computes the product. The second level of Reduce processors shift

the result by 16 bits if neccsary. The remaining Reduce processors create an or-reduction tree.

Table 6.16. Breakdown of images passes to compute the function multiply on different sizes
of our architecture

NH Passes IImultiply Pmultiply
8 1 1 1
16 1 1 2
32 1 1 2

Image Integral (integral)

integral computes the integral image of a function, where each pixel in the integral

image is equal to the sum of all pixels to the left and above the current pixel.
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Our architecture computes the result in one pass, as shown in Table 6.17. Two Head pro-

cessors load the left-up-diagonal pixel of the previous result row, and the up pixel of the previous

result row. The Reduce processors add these values. The first Spine processor simultaneously

accumulates the result and sends the current result to the tail processor.

Table 6.17. Breakdown of images passes to compute the function integral on different sizes
of our architecture

NH Passes IIintegral Pintegral
8 1 1 1
16 1 1 1
32 1 1 1

Color Conversion (cvtColor)

The cvtColor function computes colorspace transformation from the RGB colorspace

to the YUV colorspace.

Our architecture computes the result in three passes as shown in Table 6.18. Each pass

computes a single output channel. The computations are fixed point and normalized by the Spine

processors.

Table 6.18. Breakdown of images passes to compute the function cvtColor on different sizes
of our architecture

NH Passes IIY PY IIU PU IIV PV
8 3 1 1 1 1 1 1
16 3 1 1 1 1 1 1
32 3 1 1 1 1 1 1

Gaussian Filter (gaussianBlur)

GaussianBlur computes the result of a 2-D Gaussian kernel convolved with an image.

We report results for a 3x3 kernel, a 5x5 kernel, and a 7x7 kernel.

137



Our architecture computes the result of this function in one pass, as shown in Table 6.19.

However, different sizes of our architecture have different initiation intervals. For example, the

architecture NH = 8 is not large enough to execute the full 9-element stencil multiply on a single

cycle and must use two cycles for IIG = 2.

Table 6.19. Breakdown of images passes to compute the function gaussianBlur on different
sizes of our architecture

Gaussian 3x3
NH Passes IIG PG
8 1 2 1
16 1 1 1
32 1 1 1

Gaussian 5x5
NH Passes IIG PG
8 1 4 1
16 1 2 1
32 1 1 1

Gaussian 7x7
NH Passes IIG PG
8 1 8 1
16 1 4 1
32 1 2 1

Median Filter (medianBlur)

medianBlur computes the result of a 2-D non-linear median filter applied to an image.

The result at each pixel is the median of all of the pixels in a 3x3 window surrounding the pixel.

Our architecture computes the result of this function in one pass, as shown in Table 6.20.

Our architecture computes the median by implementing an insertion sort network [54] using 5

spine processors. However, this means an II of 9 for a 3x3 window since each pixel has to be set

into the “Sorting Network” on each iteration.
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Table 6.20. Breakdown of images passes to compute the function medianBlur on different sizes
of our architecture

NH Passes IImedian Pmedian
8 1 9 1
16 1 9 1
32 1 9 1

Canny Filter (Canny)

The Canny function is a popular non-linear edge detection algorithm [105]. The function

highlights “edges” by detecting regions of with changes in image intensity.

The canny function is computed in six passes: Gauss executes a 5x5 gaussianBlur

filter, Gx,Gy computes the X and Y gradients using 3x3 derivative kernels, atan computes the

angle between the Gx and Gy gradients, ‖G‖ computes the magnitude of the gradient, NM

performs non-max supression, and finally θ performs thresholding.

The subfunctions of the canny filter are quite complex, as shown in Table 6.21.

Table 6.21. Breakdown of images passes to compute the function Canny on different sizes of
our architecture

NH Passes IIGauss PGauss IIGx,Gy PGx,Gy IIatan Patan II‖G‖ P‖G‖ IINM PNM IIθ Pθ

8 6 4 1 4 1 2 1 1 1 2 1 1 1
16 6 2 1 2 1 1 1 1 1 1 1 1 1
32 6 1 1 1 1 1 1 1 1 1 1 0 1

Bilateral Filter (bilateralFilter)

bilateralFilter is a popular non-linear, edge-preserving, de-noising filter developed

by [106]. For each pixel, the function computes the following:

O(x) =
1

Wp
∑

xi∈Ω

I(x) fr(‖I(xi)− I(x)‖)gs(‖xi− x‖) (6.5)

Where the normalization term Wp is:
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Wp = ∑
xi∈Ω

fr(‖I(xi)− I(x)‖)gs(‖xi− x‖) (6.6)

And:

• O is the output image

• I is the input image

• x is the coordinate of the current pixel in the image

• Ω is the window centered on x

• fr is a gaussian function for differences in pixel intensity

• gr is a gaussian function for differences in pixel coordinates

In our results we test performance of a 3x3 bilateralFilter. Our architecture can

compute this function in three passes as shown in Table 6.22. The first pass computes the

numerator: Head processors load image pixels in the 3x3 window. Two Head procesors feed

I(xI) and I(x) to a Reduce processor, which subtracts them and uses the LUT to compute

fr(‖I(xi)− I(x)‖). Adjacent head processors load Ix and compute gs(‖xi− x‖), and pass them

to the first Reduce stage which multiplies them. The subsequent reduce stages produce the

sum. IINumerator is multiple cycles because each window input requires 4 processors meaning

NH ≥ 36 processors for the whole window to be computed with an II of 1. The denominator W

is computed in similar fashion. The final pass computes the quotient of the numerator and the

denominator by inverting the denominator and multiplying.

6.4.3 Results

Zynq-700 MPSoC

Performance results for the Zynq-7000 device are displayed in Figure 6.19. The vertical

axis measures throughput in Frames per Second (FPS), and the horizontal axis shows the function
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Table 6.22. Breakdown of images passes to compute the function bilateralFilter on different
sizes of our architecture

NH Passes IINumerator PNumerator IIW PW IIDivide PDivide
8 3 5 1 5 1 1 1
16 3 3 1 2 1 1 1
32 3 2 1 2 1 1 1

name sorted by ARM without NEON performance. Processor performance results for the ARM

core are shown in two shades of blue, for our architecture in three shades of green, and for two

FPGA pipelines in two shades of orange.
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Figure 6.19. Throughput results for 12 OpenCV Functions on a Zynq-7000 device. The
horizontal axis is sorted by the ARM Without Neon Result

Table 6.23 demonstrates the same results as Figure 6.19 in table form. The first two

columns record ARM processor results without and with NEON instructions, the third and fourth

columns show FPGA results with P = 1 and P = 8, and the final columns present results for our

architecture with NH = 8, NH = 16, and NH = 32 where NH is the number of head processors in
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our proposed architecture.

Table 6.23. Throughput results for our 12 selected OpenCV Functions on a Zynq-7000 device.

Function Name
ARM

w/o NEON
ARM

w/ NEON
FPGA
(P = 1)

FPGA
(P = 8) NH = 8 NH = 16 NH = 32

meanStdDev 102 FPS 116 FPS 138 FPS 792 FPS 176 FPS 352 FPS 703 FPS
add 76 FPS 215 FPS 141 FPS 404 FPS 439 FPS 439 FPS 439 FPS

multiply 53 FPS 102 FPS 133 FPS 216 FPS 110 FPS 110 FPS 110 FPS
integral 48 FPS 48 FPS 121 FPS N/A 110 FPS 110 FPS 110 FPS

minMaxLoc 46 FPS 46 FPS 154 FPS 1122 FPS 88 FPS 98 FPS 103 FPS
cvtColor 19 FPS 37 FPS 140 FPS N/A 37 FPS 37 FPS 37 FPS

gaussianBlur 3x3 19 FPS 27 FPS 112 FPS 609 FPS 55 FPS 110 FPS 110 FPS
gaussianBlur 5x5 10 FPS 20 FPS 144 FPS 682 FPS 27 FPS 55 FPS 110 FPS
gaussianBlur 7x7 7 FPS 7 FPS 146 FPS 681 FPS 14 FPS 27 FPS 55 FPS

Canny 6 FPS 17 FPS 131 FPS 823 FPS 8 FPS 14 FPS 22 FPS
bilateralFilter 4 FPS 4 FPS 59 FPS N/A 10 FPS 16 FPS 27 FPS

medianBlur 3 FPS 73 FPS 146 FPS 668 FPS 12 FPS 12 FPS 12 FPS

We highlight several trends in our Zynq-7000 data:

First, the throughput of ARM (Without Neon) decreases as the function complex-

ity increases. Functions like add and meanSdv have low II loops. Multi-stage filters like

bilateralFilter and Canny have high II loops. This is consistent with our graph in Figure 6.6

Second, ARM (With Neon) throughput is comparable to ARM (Without NEON)

throughput on convolution-like functions. Convolution functions like gaussianBlur, Canny

and bilateralFilter do not benefit from NEON instructions. In contrast, functions like

add and multiply that have low II loops with obvious parallelism benefit from vectorized

instructions. This is consistent with analysis in previous work described in Section 6.2

Fourth, our architecture beats ARM throughput in most cases. The exception is

medianBlur, which uses NEON instructions to create a sorting network.

Third, the throughput of our architecture decreases with the number of stages in

a function. Single stage functions like meanSdv, add, and multiply have throughput that is

comparable to the XFOpenCV. Multi-stage functions like Canny, bilateralFilter cvtColor

have reduced throughput. Our definition of a stage is described in Section 6.4.2.
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Fifth, the performance of XFOpenCV hardware is constant across OpenCV func-

tions when P = 1. The only exception is bilateralFilter, which has a high initiation interval

for the division operation shown in Equation 6.5. This trend is consistent with our graph in

Figure 6.6 where hardware performance is a function of the operation with the largest II in a

function.

Sixth, the performance of XFOpenCV hardware is bandwidth limited when P = 8.

The maximum theoretical bandwidth of the Zynq-7000 device is 2 GBps but is shared between

ports of an OpenCV function. minMaxLoc and meanSdv have one read port, and have the highest

performance. meanSdv has lower performance because it is written (unnecessarily) as two nested

loops which causes the HLS compiler to introduce overheads that we can see on an ILA core.

gaussianBlur, Canny, and medianBlur each have one read port and one write port and have

approximately half the frame-rate of minMaxLoc. The add function has three 8-bit ports, and

the multiply has three 16-bit ports. The number of ports increases contention and lowers

performance.

Zynq Ultrascale+

Performance results for the Zynq Ultrascale+ device are displayed in Figure 6.19. The

vertical axis measures throughput in Frames per Second (FPS), and the horizontal axis shows the

function name sorted by baseline ARM performance (without NEON). Processor performance

results for the ARM core are shown in two shades of blue, for our architecture in three shades of

green, and for two FPGA pipelines in two shades of orange.

Table 6.24 records the results shown in Figure 6.20. The first two columns record ARM

processor results without and with NEON instructions, the third and fourth colum show FPGA

results with P = 1 and P = 8, and the final columns present results for our architecture with

NH = 8, NH = 16, and NH = 32 where NH is the number of head processors in our proposed

architecture.

We highlight several trends in our Zynq Ultrascale+ data:
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Figure 6.20. Throughput results for 12 OpenCV Functions on a Zynq Ultrascale+ Chip.

Table 6.24. Throughput results for our 12 selected OpenCV Functions on a Zynq Ultrascale+
device.

Function Name
ARM

w/o NEON
ARM

w/ NEON
FPGA
(P = 1)

FPGA
(P = 8) NH = 8 NH = 16 NH = 32

add 495 FPS 656 FPS 259 FPS 752 FPS 439 FPS 879 FPS 879 FPS
meanStdDev 239 FPS 239 FPS 261 FPS 1204 FPS 352 FPS 703 FPS 1406 FPS
integral 128 FPS 128 FPS 248 FPS N/A 220 FPS 220 FPS 220 FPS
minMaxLoc 121 FPS 121 FPS 248 FPS 1725 FPS 175 FPS 195 FPS 207 FPS

gaussianBlur 3x3 57 FPS 75 FPS 197 FPS 941 FPS 110 FPS 220 FPS 220 FPS
multiply 52 FPS 270 FPS 218 FPS 437 FPS 110 FPS 220 FPS 220 FPS
cvtColor 51 FPS 185 FPS 198 FPS N/A 73 FPS 73 FPS 73 FPS

gaussianBlur 5x5 40 FPS 53 FPS 221 FPS 995 FPS 55 FPS 110 FPS 220 FPS
Canny 15 FPS 83 FPS 258 FPS 1178 FPS 16 FPS 27 FPS 44 FPS

gaussianBlur 7x7 13 FPS 15 FPS 231 FPS 994 FPS 27 FPS 55 FPS 110 FPS
bilateralFilter 7 FPS 11 FPS 208 FPS N/A 20 FPS 31 FPS 44 FPS

medianBlur 6 FPS 154 FPS 263 FPS 1064 FPS 24 FPS 24 FPS 24 FPS

First, ARM results are consistent with Section 6.4.3. Similar to above, the throughput

of ARM (Without Neon) decreases as the function complexity increases. In addition ARM

(With Neon) througput is comparable to ARM (Without NEON) throughput on convolution-like
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functions. The one exception is Canny which greatly out-performs all hardware except FPGA

pipelines.

Second, our architecture outperforms fewer ARM (With NEON) functions. In addi-

tion to medianBlur, Canny and cvtColor now outperform our architecture as well. In addition,

ARM functions like add and multiply have higher performance.

Finally, FPGA hardware performance is characteristically simliar to the Zynq-

7000. The performance of XFOpenCV hardware is constant across OpenCV functions when

P = 1 and bandwidth limited when P = 8. The Ultra96 board has double the memory bandwidth

so all kernels improve but only minMaxLoc increases by a factor of 8 from P = 1 to P = 8.

6.4.4 Analysis

We draw several conclusions from our results:

First, we corroborate results in [41, 91] and confirm that modern architectures are

inefficient on convolution operations. ARM (With NEON) throughput and ARM (Without

NEON) throughput is approximately equal for all convolution operations in Figure 6.19 and

Figure 6.20. Our results We also confirm that hardware accelerators can be used to out-perform

modern processors even with P = 1.

ARM (With NEON) throughput is improving across generations for simple func-

tions. The throughput for low II operations like add and meanSdv and minMaxLoc improved

relative to our architecture from the Zynq-7000 to the Zynq Ultrascale+ generation.

Our proposed architecture is more efficient on convolution functions than an ARM

processor. We outperform the ARM processor on gaussianBlur, bilateralFilter functions

on both devices, and Canny on the Zynq-7000. Our architecture cannot efficiently implement

medianBlur.

Further increasing NH may not greatly improve performance on these kernels. NH

is similar to increasing the width of vector instructions, and may help support larger convolution

sizes (5x5, 7x7, and even 9x9). Increasing NH exponentially increases the number of processors,

145



and increases memory contention even at NH = 8.

Instead, The largest benefits may come from multiple small NH architectures coop-

erating. Deep pipelines like Canny would benefit more from reducing the number of passes

over increasing NH . Trading one NH = 32 architecture for 4 NH architectures could double the

performance of Canny and other multi-stage functions. This would bring the performance of

our architecture closer to single-pass custom hardware pipelines. Shared-memory architectures

would be necessary to minimize main-memory communication and reduce contention.

6.5 Related Work

6.6 Conclusion

In this chapter we proposed a general-purpose hardware architecture using interconnected

RISC-V processors. The RISC-V ISA of each processor was extended with FIFO interfaces,

Look-up-Table memories, and min/max instructions. The processors were interconnected with

FIFOs in a map-reduce parallel pattern structure[30].

We study our proposed architecture and compared it to an optimized software library,

and an optimized hardware library. We performed our experiments on two devices from different

generations. These experiments gave us insights on our architecture.

We conclude that our architecture out performs an ARM processor on many functions.

However, NEON instructions are improving, and memory contention is an issue. Moving forward

we propose building multiplecooperating small trees instead of larger trees.
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