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EPIGRAPH

I wanted a perfect ending. Now I’ve learned, the hard way, that some poems don’t rhyme,

and some stories don’t have a clear beginning, middle, and end. Life is about not

knowing, having to change, taking the moment and making the best of it, without

knowing what’s going to happen next.

Gilda Radner
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Computing
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Implementing an application on a FPGA remains a difficult, non-intuitive task

that often requires hardware design expertise in a hardware description language (HDL).

High-level synthesis (HLS) raises the design abstraction from HDL to languages such as

C/C++/Scala/Java. Despite this, in order to get a good quality of result (QoR), a designer

must carefully craft the HLS code. In other words, HLS designers must implement the

application using an abstract language in a manner that generates an efficient micro-

architecture; we call this process writing restructured code. This reduces the benefits of

implementing the application at a higher level of abstraction and limits the impact of HLS
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by requiring explicit knowledge of the underlying hardware architecture. Developers must

know how to write code that reflects low level implementation details of the application

at hand as it is interpreted by HLS tools. As a result, FPGA design still largely remains

job of either hardware engineers or expert HLS designers. In this work, we aim to take

a step towards making HLS tools useful for a broader set of programmers. To do this,

we made following contributions: 1) we study methodologies of restructuring software

code for HLS tools; 2) we provide examples of designing different kernels in state-of-

the art HLS tools; 3) we described a theoretical framework for parameterizable HLS

templates for composing restructured HLS code based on design patterns, 4) we present

a domain-specific framework that generates efficient FPGA designs using pre-optimized

HLS templates and design patterns.
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Introduction

Two clear trends have emerged in computing in the past 5-10 years: power

consumption and processing massive amounts of data. Power consumption become a

major metric in all areas of computing platforms from mobile devices to datacenters. We

want our smart phones to last longer and datacenters to consume less power while still

achieving massive computation.

Big data has reached into almost all industries to improve the quality of service.

Machine learning algorithms process thousands of images to create classifiers, search

engines analyse billions of search queries to find relevant data, and weather forecast sys-

tems analyse massive amounts of historical data to make better predictions. Massive data

processing comes at a price. It requires huge computational power or high-performance

computers. Thus, we need high-performance computers with efficient power consumption

to run computationally demanding applications. The state of the art high-performance

platforms (built using CPUs or GPUs) for computational expensive applications are not

energy efficient.

Recently researchers have suggested using specialized hardware accelerators as

one of the solutions to the worsening power consumption of computational platforms [127,

40, 111], among others. Specialized hardware is developed on different platforms such

as FPGA (Field-Programmable Gate Array) or ASIC (Application-Specific Integrated

Circuit). Designing an ASIC is expensive and have low time-to-market. Flexibility

and programmability of FPGA makes it a primary platform to develop specialized

1
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hardware. FPGAs are seeing widespread adoption in applications, including wireless

communication, image processing, and datacenter (e.g., [111]). Despite the increasing

use in these application domains, programming an FPGA largely requires an expert

hardware designer. This severely inhibits the widespread use of these devices.

We aim to raise the level of programming abstraction to allow designers that have

limited or ideally no understanding of the underlying hardware architecture to implement

their application of choice on an FPGA. This has been the goal of numerous academic

and industrial projects, many of which fall into the domain of high-level synthesis

(HLS). There has been tremendous progress in the development of HLS tools since its

introduction over three decades ago; however, there are several existing challenges that

still hinder the ability for any designer to program an FPGA using HLS.

First and foremost, designers cannot effectively use existing HLS tools unless

they have intimate knowledge of micro-architectural trade-offs. Even the best HLS

tools require at least a two stage code transformation to generate efficient hardware.

The initial design process converts a “normal” C application description to code that is

synthesizable by the HLS tools. This is done by removing unsupported programming

constructs, e.g., dynamic memory allocation [137, 57]. Then this synthesizable C code

undergoes an additional conversion where it is rewritten to take advantage of specific

micro-architectural features; we call this process developing “restructured” code. This

must adhere to strict coding styles that are dictated by the HLS tool and the target device

[13, 113]. This two stage code transformation process presents several challenges. It

requires that the designer understand how to develop code that exploits low-level micro-

architectural features using an abstract language. These are often not easily specified

using that language, and typically require intimate knowledge of the HLS tool as well as

significant hardware design expertise.

In summary, while HLS tools are meant to be used by a larger number of designers
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and increase productivity, creating an optimized implementation requires substantial

hardware design skills. Thus in order to successfully use today’s HLS tools one needs to

have: 1) domain knowledge about the application, 2) hardware design expertise, and 3)

the ability to translate the domain knowledge into an efficient hardware design.

The goal of this dissertation is to make specialized hardware design process (built

on FPGAs) easier so that wide variety of people (scientists and software programmers)

can benefit from FPGA’s high-performance and low power. Our approach is based on the

observation that certain application domains have a number of basic kernels that share

similar computational primitives. This indicates that these kernels can and should be

generated from highly optimized templatized architectures. Based on this observation,

we develop an approach based upon parameterizable templates that can be composed

using common design (computational and structural) patterns. These templates describe

an efficient hardware architecture for a wide variety of commonly occurring kernels for

certain application domains. Common design patterns orchestrate these templates in

different ways to build large complex applications.

Patterns take advantage of the fact that the task-level parallelism in many appli-

cations is organized in a structured manner. Different kernels of applications designed

with templates communicate in a certain pattern. Examples of patterns are functional

pipelining (bulk synchronous), Fork/Join, Merge, sliding window, and tiled computations

(e.g., tiled matrix multiplication). By using these patterns and templates, we can form

new templates (by composing) which can be added to the existing template pool.

In this dissertation, we present a set of reusable and optimized templates for

HLS that forms a new template based on specific design (computational and structural)

patterns. We propose a domain-specific framework that generates optimized HLS code

without requiring any low level hardware details using reusable templates and patterns.

Next, we list the main contributions of this research in the order they appear in this
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dissertation:

1. Study of several application designs using high-level synthesis. These application

designs provided initial guiding principles for efficient FPGA design using HLS.

Some of these applications are: High Throughput Wireless Channel Emulator, Face

Recognition, and Canonical Huffman Encoding.

2. Building restructured code and coding techniques for a number of application

kernels for different application domains; computer vision, linear algebra and data

processing (sorting).

3. An experimental study about evaluating usage of pre designed templates to design

FPGA hardware.

4. A theoretical treatment of the composibility and parameterization of templates

(based on patterns) in order to combine basic templates into more complex ones

that can be used to build complex applications based on specific computational

patterns.

5. A case study of generating optimized FPGA designs from templates based on

a domain-specific framework. Specifically, we presented a framework, Resolve,

which generates optimized HLS code from a simple domain-specific language

written in python using templates.

6. The development of basic templates across application domains and their open

source implementations.

To assist the reader of this thesis, we now give a brief overview of each chapter.

Chapter 1 presents a brief overview of high-level synthesis. We first discuss the force-

directed scheduling algorithm, then we introduce Vivado HLS, a high-level synthesis



5

tool used in this dissertation. Finally, we will present a simple ”‘Hello World”’ in Vivado

HLS and give an overview of some of the issues in current HLS tools.

Chapter 2, Chapter 3 and Chapter 4 present three application case studies using

high-level synthesis to design FPGA hardware. These applications demonstrate issues

and promises of the current high-level synthesis design approach. In Chapter 2, we

present a design flow of using high-level synthesis for a wireless channel emulator.

The goal of this chapter is to introduce the design flow of high-level synthesis for real

world application and to demonstrate a variety of results obtained by HLS optimization.

Chapter 3 demonstrates design and implementation of face recognition on an FPGA. The

goal of this chapter is to introduce designing regular applications with HLS. Chapter 4

presents design and implementation of Canonical Huffman encoding used for datacenter

applications. The goal of this chapter is to demonstrate design and implementation of

irregular applications using high-level synthesis. Based on experiences gained designing

these applications, we present restructured code in following chapter.

In chapter Chapter 5, we formally define restructured code and present examples

of restructured code. First, we present a study on the importance of restructuring code

to obtain an efficient FPGA designs with good QoR (Quality of Result). We present

several case studies of code restructuring in different levels (instruction and task level) for

different kernels. We also present a small survey about using HLS to design applications

on an FPGA.

Chapter 6 presents a composable template based on the restructured code pre-

sented in chapter Chapter 5. The main contribution of this chapter is providing a

theoretical framework for the treatment of the composibility and parameterization of

templates in order to combine basic templates into more complex ones based on patterns.

Chapter 7 presents a framework that generates sorting architectures automatically

by composing existing templates. In this chapter, we cover design and implementation
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of sorting architectures. Then we present a domain-specific framework that generates

sorting architectures automatically based on sorting templates and patterns.

Chapter 8 presents conclusion and future research directions of this thesis.



Chapter 1

Background

1.1 Introduction

There are many embedded applications such as computer vision/graphics, digital

signal processing, wireless communications which benefit from field-programmable

gate arrays (FPGAs). An FPGA is a reconfigurable hardware platform which can be

configured after manufacturing. Due to their reconfigurable nature, FPGAs are good

platform for many of these applications because they provide a good trade-off between

performance and power consumption. Traditionally, FPGA systems are programmed

using low level Hardware Description Languages (HDL) such as Verilog/VHDL. While

programming an FPGA with HDL gives a designer finer granularity control, it has

drawbacks such as it requires expertise, it is expensive, and it has long time-to-market.

An alternative way of designing an FPGA system is using High-Level Synthesis (HLS)

tools. HLS tools allow designers to use high level languages such as C/C++ to design

FPGA systems. HLS tools promise to increase productivity (decrease design time) of

FPGA design, increase portability/flexibility of design, and to allow more design space

exploration.

Due to its promising features, HLS has attracted the interest of both industry

and academia. The first HLS tools emerged in the 1970’s and targeted application-

7



8

specific integrated circuits (ASICs), before FPGA chips were introduced in 1985 [134].

Early works include HLS tools from academia such as HAL [108], Olympus\Herculeus

[44, 45, 78] and HLS tools from industry such as Cathedral 2/3 [58], Yorktown Silicon

Compiler [29], and Amical [73]. These works contributed largely on basic HLS research

and influenced development of other tools. For example, one of the best known HLS

scheduling algorithms, Force-Directed Scheduling, was first developed for the HAL

system and is still used in several academic and industrial HLS works.

Since FPGA arrived on the market, many HLS tools targeting FPGA have emerged

both from academia and industry. Academic efforts include SPARK [63], LegUP [30],

ROCCC [129], SA-C [65], Chisel [18], NAPA-C [60], Stream-C [59], Trident [124].

Industry efforts include Vivado HLS [41] (formerly known as AutoESL), Synopsys

Synphony C Compiler [9] (former name PICO), Catapult-C (Calypto) [22], Cynthesizer

[92], CyberWorkBench [133], C-to-Silicon [19] DIME-C [49], Impulse-C [3], Mitron-C

[6], Bluespec System Verilog [102], Synplify DSP [120], Simulink HDL Coder [118],

and AccelDSP [68].

Many of these tools are based on C− like language while others are based on

MATLAB, Haskell and Scala. The MATLAB based tools include Synplify DSP [120],

Simulink HDL Coder [118], and AccelDSP [68]. Bluespec System Verilog [102] and

Chisel [18] are based on functional programming languages such as Haskell and Scala.

Most HLS tools accept source code and optimization directives as inputs. Initial

input code is usually first modified to target strict HLS requirements. This is because some

constructors in the language are not supported by HLS tools such as dynamic memory

allocation. This is done by replacing an unsupported part of code with equivalent code

that is synthesizable. (e.g., a double pointers in C is translated into a two dimensional

arrays.)

Optimization directives tell the HLS tool which part of code to optimize. In
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general, most HLS tools have similar optimization directives with slightly different

names. One common optimization directive is pipeline. This directive is given as a

pragma in C code and pipelines loops or functions. Next, we start an introduction of

basic HLS concepts followed by introduction of the Force-Directed Scheduling algorithm.

1.2 High-Level Synthesis

HLS tools create an architecture through several steps such as scheduling, allo-

cation and binding process that generate different components to create a datapath [?],

and each of these steps are deeply covered in [93, 54]. The general flow of high-level

synthesis is shown in Figure 1.1. Initially, the HLS compiler front-end takes C/C++/Java

code and transforms it to a data flow graph (DFG). The DFG is fed into high-level

synthesis tool chain that does scheduling, resource allocation and binding. Scheduling is

the assignment of each operation to a time slot (identifying start and end time). Resource

Allocation is the process of identifying types of hardware components and the number for

each type to be included in the final implementation. Binding is the process that allocates

hardware components to specific operations. The final step of HLS tools is to generate

HDL (Hardware Description Language) in the form of VHDL/Verilog.

In the HLS design process, designers are required to give hints and constraints in

order to optimize performance. This is typically done through pragmas or other language

features. Essentially, constrains are hints to a scheduler to identify the part of algorithm

to optimize. Once it has its inputs (DFG, Constraints), it is the scheduler’s job to define

the final hardware.

In general, scheduling is most important part of any HLS tool. In next the sections,

we cover one of the important HLS scheduling algorithms known as Force-Directed

Scheduling.
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Figure 1.1. High-Level Synthesis tool flow.

1.2.1 Scheduling

Scheduling is an essential component of high-level synthesis. It determines the

start and end time of each operation for a given data flow graph [93, 54]. By determining

start and end times of individual operations in a given data flow graph, it extracts

concurrency of the resulting implementation which affects the performance and area of

the final hardware.

One of the most used scheduling algorithms for high-level synthesis is the force-

directed scheduling (FDS) by Paulin and Knight. [107]. The FDS algorithm employs a

heuristic approach which can be applied to resource constrained scheduling as well as

time constrained scheduling. The FDS algorithm is based on a concept called ”‘force”’

where operations with least force are scheduled. The FDS algorithm works by first

identifying time frame of an operation. The time frame is the time interval where the

operation can be scheduled. In FDS, the time frame of operation is determined by ASAP
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Figure 1.2. An example data flow graph.

(As soon as possible) and ALAP (As late as possible) scheduling algorithms. We show

how ASAP and ALAP schedules are used to determine the time frame of a data flow

graph in Figure 1.2. In the following, we give examples that will explain ASAP, ALAP

and FDS scheduling based on [107, 93]. Figure 1.2, Figure 1.3, Figure 1.4, Figure 1.5,

Figure 1.6 are also based on the same example given in [107, 93] for ASAP, ALAP and

FDS scheduling.

The ASAP Scheduling Algorithm: The ASAP schedule works by topologically

sorting operations in a given data flow graph [93]. Topologically sorted operations are

scheduled as soon as all of their dependencies (predecessors) are scheduled. The goal

of this scheduling algorithm is to minimize latency (number of clock cycles) under

unconstrained resources. (This does not take into account area constraints.) To illustrate,

how ASAP scheduling works we use an example data flow graph in Figure 1.2 from [107].

The ASAP schedule of the data flow graph given in Figure 1.2 is show in Figure 1.3. The

detailed algorithm is given in Algorithm 1.

The ALAP Scheduling Algorithm: The ALAP scheduling algorithm is a latency

constrained scheduling algorithm. This means, the ALAP schedule gets an upper bound λ

on the latency input with data flow graph Gs. The ALAP algorithm is given in Algorithm

2. The ALAP schedule of the data flow graph given in Figure 1.2 is shown in Figure 1.4.
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Algorithm 1: ASAP Scheduling
1 Procedure ASAP()

Data: GS(V,E)
/* V: Vertices, E: Edges */

Result: t
2 Schedule v0 by setting t0 = 1
3 repeat
4 Select a vi whose predecessors are all scheduled;
5 Schedule vi by setting ti = max(t j)+d j
6 where j : (v j,vi) ∈ E
7 until vn is scheduled;

* 1 * 2 * 6 

* 3 * 7 

- 4 

- 5 

* 8 

+ 9 

+ 10 

< 11 

TIME 1 

TIME 1 

TIME 1 

TIME 1 

Figure 1.3. ASAP Schedule.

Algorithm 2: ALAP Scheduling
1 Procedure ALAP()

Data: GS(V,E)
/* V: Vertices, E: Edges */

Result: t
2 Schedule vn by setting tn = λ +1
3 repeat
4 Select a vi successors are all scheduled;
5 Schedule vi by setting ti = min(t j)−di
6 where j : (vi,v j) ∈ E
7 until v0 is scheduled;
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Figure 1.4. ALAP Schedule

Using the ASAP and ALAP scheduling results, time frames of each operation are

determined as in Figure 1.5. The next step in FDS algorithm is to calculate the operation

probability and the type distributions for each resource type.

Operation probability is a function that is equal to zero outside of the time frame

of an operation and equal to inverse of the time frame within it (inside the time frame).

We use pi(l) to denote the operation probability of an operation i at time l. For example,

for operation 6, p6(1) = 0.5, p6(2) = 0.5, p6(3) = 0 and p6(1) = 0. (Operation 6 can

only be scheduled in time slot 1 or time slot 2.) Similarly, we can determine p1(1) = 1,

p1(2) = p1(3) = p1(4) = 0 and p2(1) = 1, p2(2) = p2(3) = p2(4) = 0.

The type distribution is the sum of probabilities of an operation that can be

executed with a specific hardware resource at time l. We use qk(l) to denote type

distribution of resource k at time l. For example, in time step 1 operations 1,3,6 and 8

can be executed with a multiplier. Thus the type distribution of the multiplier at time

step 1 is equal to q1(1) = p11+ p2(1)+ p6(1)+ p8(1) = 1+1+0.5+0.3 = 2.8 (k=1

indicates a multiplier). Distribution graph (DG) is constructed by using type distributions

from all time steps for a specific resource. The Figure 1.6 shows a DG of a multiplier

and adder calculated using Equation 1.1.

There will be no horizontal bar graph(type distribution) if no operation can be

schedule at a specific time. For example, no horizontal bar graph (type distribution) is

shown in Figure 1.6 for a multiplier since no multiplier can not be scheduled at time step
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Figure 1.5. Time frames for operations

Figure 1.6. Distribution graphs for a multiplier and adder

4.

DG(l) = ∑Pi(l) (1.1)

The selection of an operation to a specific time step is governed by a concept

called ”‘force”’. Each operation of a data flow graph has a ”‘force”’ associated with each

time step. The algorithm works by a force calculation for each operation in a specific

time step. The operation with the least force is then scheduled.

The force is analogous to Hooke’s law F = Kx, where K is constant of a spring, x

is the displacement and F is the force needed. In FDS algorithm, the value of distribution

graph is acts like the spring constant K and the operation probability is like spring

displacement. In FDS, two kinds of force are calculated for each operation: self-force

and successor/predecessor force. The self-force is associated with assigning operations

to specific time step and the successor/predecessor force is associated with the change
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of operation dependencies. For example, scheduling the operation 6 into time step 1

changes p6(1) from 0.5 to 0.5 (1-0.5) and p6(2) from 0.5 to -0.5 (0-0.5). Assuming

we schedule operation 6 to time step 1, we calculate self-force as 2.8*(1-0.5)+2.3*(0-

0.5)=0.25. Similarly, when operation 6 is scheduled at time step 2, its self-force is

2.8∗ (0−0.5)+2.3∗ (1−0.5) =−0.25.

Assigning operation 6 to time step 2 indirectly implies that operation 7 will be

assigned to step 3. In this case, we calculate successor/predecessor force of time step 7.

This is added to the self-force of 6. The detailed FDS algorithm is given in Algorithm 3.

Algorithm 3: Force Directed Scheduling
1 Procedure ForceDirectedScheduling()

Data: GS(V,E)
/* V: Vertices, E: Edges */

Result: t
2 repeat
3 Compute time frames
4 Compute operation probabilities
5 Compute DG
6 Compute self-force, succ/pred force
7 Schedule the operation with least force
8 until all operations are scheduled;

1.3 Design with HLS

We start this section by introducing of Vivado HLS from Xilinx which is used to

illustrate examples in next sections [10].

1.3.1 Vivado High-Level Synthesis

Vivado HLS takes synthesizable C and C++/SystemC code as input and generates

RTL. Vivado provides directives to optimize area, latency and throughput. In this way,

the system development time is greatly reduced without the need to manually write RTL
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code. The high-level synthesis process in Vivado includes three main steps: synthesis,

RTL simulation and RTL implementation. In the synthesis step Verilog HDL, VHDL

and SystemC code are generated based on the input code, and a report file is generated

which includes design latency, resources and a interface summary of the design. In this

step, various directives can be added by the designers to optimize the input code to meet

the system timing and area requirements. This process is iterative, and eventually RTL

code which meets the design requirements is obtained. Testbench wrappers for SystemC

code and appropriate simulation scripts for Verilog and VHDL code are generated for

simulation. The second step is RTL simulation to verify the behavioural functions of the

RTL code. In this step, designers can simulate the SystemC code and Verilog/VHDL code

with third party RTL simulators to verify the design. The third step is RTL implementation

in which NGC files containing both logical design and constraints are generated for each

module. Table 1.1 and in Table 1.2 listed several of these directives. For complete

description, we refer [10] for details.

Table 1.1. Vivado HLS directives to optimize throughput and latency.

Directive names Description

latency Define a minimum and/or maximum latency for a specified scope.
loop unroll Unroll a loop, flatten a loop, or merge loops automatically.
loop flatten Flatten a loop
loop merge merge loops automatically.
dataflow Indicate blocks of code (functions or loops) operate concurrently.
pipeline Pipeline the computation of a function or loop.
array partition Distribute the array across several memories.
array reshape Combine partitioned arrays into a single array.

The typical design process for Vivado will first optimize throughput and then

focus on area optimizations. Area optimizations include bit-width optimization, removing

design hierarchy, and limiting the number of operations. Table 1.2 describes common

directives used for area optimization.
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Table 1.2. Vivado HLS directives to optimize area.

Directive names Description

allocation Limit the number of operations in scheduling and binding stages.
array map Combine arrays to utilize memory more efficiently.
resource Specify the function unit used for binding.
inline Allows optimization to be performed across function hierarchies.

Among above directives, dataflow is one of the important features provided by

Vivado HLS. The dataflow is used to implement task level parallelism (both streaming

and none-streaming) of functions or loops. For example, if we need to design a system

with two blocks working as follows: the first block produces an output after multiplying

the input with a constant, and the second block (consumer block) reads an input from

the producer and decides if input is odd or even. Task level parallelism between the

producer and the consumer block is achieved by using dataflow. This means the first

instance of the consumer block can be parallelized with the second instance of producer

block. This increases throughput of design by a factor of 2X. When multiple tasks are

parallelized as in this case, a memory is created between the producer and the consumer

tasks. The memory can be a block RAM or a FIFO. If the tasks are not streaming, then a

memory that is large enough to store all the output of producer must be created. if the

tasks are streaming, then a FIFO must be created. In this case the size of FIFO must be

large enough to store outputs of producer in a given rate. Streaming in Vivado HLS is

supported by hls :: stream < TY PE > class. Here TY PE is any primitive types such as

int, char or

Initiation Interval (II) as a measurement of throughput in HLS. II is used as

a measurement of instruction level parallelism (provided by pipeline) or as task level

parallelism (provided by dataflow). Ideally, II = 1 is the optimal and II > 1 means

suboptimal. II = 1 means the task (design) can accept new data every clock cycle.
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1.4 HLS Hello World

In this section, we provide a brief overview of HLS design process. A HLS design

must contain at least two modules. The first module is the top level design. A hardware

will be generated for the top level design. The second module is the testbench. The

testbench is where application programmers or HLS users write the ”‘main()”’ function.

Modern HLS tools (e.g., Vivado HLS) allows designers to use a C testbench to verify

the functionality of top level design. Listing 1.1 and Listing 1.2 shows an example a top

level design and a testbench. Design in Listing 1.1 has two inputs namely A[] and B[].

In the given codes, each of A[] and B[] has size of SIZE. Let us assume SIZE = 8 for

now. Having a design like the one in Listing 1.1 is the starting point of using HLS. Next,

we synthesis the top level function (in this case ”‘HelloWorld”’). The input to the HLS

tool is a top level function, a clock period, the FPGA device and optimization directives.

Depending on the target clock period, the target FPGA device and the optimization

constraints, HLS tool generates different HDL code. For example, synthesizing the code

in Listing 1.1 without any optimization constraints produce a sequential hardware as

in Figure 1.7. Assuming the loop body takes 3 clock cycles (1 clock cycle for reading

data, 1 for addition and 1 for storing the data), the loop will complete in 8∗3 = 24 clock

cycles.

1 void HelloWorld(int A[SIZE], int B[SIZE]) {

2 #pragma HLS UNROLL factor =8

3 for(int i=0;i<SIZE;i++){

4 B[i]=A[i]+3;

5 }

6 }

Listing 1.1. HLS Hello World: HLS code for top level design

1

2 // Software code for verification

3 void Software_HelloWorld(int A[SIZE], int B[SIZE]) {

4 for(int i=0;i<SIZE;i++){
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5 B[i]=A[i]+3;

6 }

7 }

8

9 int main() {

10 std::vector <int > input(SIZE , 0);

11 std::vector <int > output_hw(SIZE , 0);

12 std::vector <int > output_sw(SIZE , 0);

13 Boolean fail =0;

14

15 for(int i=0;i<SIZE;i++) {

16 A[i] = ,...;

17 }

18

19 // Call Hardware HelloWorld

20 void HelloWorld(input , output_hw);

21

22 // Call Software HelloWorld

23 void Software_HelloWorld(input , output_sw);

24

25 // Functionality Verification

26 for(int i=0;i<SIZE;i++) {

27 if(output_hw[i]!= output_sw[i]) {

28 fail =1;

29 }

30 }

31

32 if(fail ==1) {

33 printf("‘FAILED\n"’);

34 }

35 else {

36 printf("‘PASSED\n"’);

37 }

38

39 return 0;

40 }

Listing 1.2. HLS Hello World: HLS code for testbench

Now let us assume that we want to generate an architecture like in Figure 1.8 (a).

In other words, we want to parallelize all additions and finish the computation in 3 clock

cycles. This can be achieved by using partition and unroll directives provided by HLS.

Using partition we put elements of A[] and B[] into separate memories (registers) in order
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Figure 1.7. HLS Hello World Hardware Architecture
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Figure 1.8. Hardware architectures for hello world HLS code. a) Hardware architecture
created by Listing 1.1 b) Hardware architecture that we want to create.

to access them at the same clock cycle. Using unroll we fully unroll the loop. These

optimizations can be seen in Listing 1.3. The design generated by this code finishes in 3

clock cycles. Since we are partitioning input arrays (in this case into individual elements),

actual architecture will look like as in Figure 1.8 (b).

1 void HelloWorld(int A[SIZE], int B[SIZE]) {

2 #pragma HLS ARRAY_PARTITION variable=A complete dim=1

3 #pragma HLS ARRAY_PARTITION variable=B complete dim=1

4 for(int i=0;i<SIZE;i++){

5 #pragma HLS UNROLL factor =8

6 B[i]=A[i]+3;

7 }

8 }

Listing 1.3. Optimized HLS Hello World

1.5 Conclusion

Increasing design cost of accelerated hardware is pushing the design community

to develop tools that shorten the time-to-market duration beyond RTL design. High-Level
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Synthesis has been one such a tool that provides promise in increasing productivity. In

this chapter, we provided quick overview of concepts behind HLS tools and provided

basic HLS optimizations with ”Hello World” HLS. We demonstrated basic optimization

pragma usage giving an example. While current HLS tools provide handy optimizations

(pragmas) to generate optimized hardware, some real world application design flow

involves several stages in order to get optimized hardware from HLS. In next chapter,

we demonstrate generally accepted design flow of current HLS tool. We will do this by

presenting wireless channel emulator design with HLS tool.



Chapter 2

Wireless Digital Channel Emulator

2.1 Introduction

In this chapter, we will introduce generally accepted design flow using high-level

synthesis. Since HLS accepts C-like code, many HLS designs start from a legacy code

written in high level languages by a domain expert. These languages can be classic

programming language such as C/C++, MATLAB. The general flow of using HLS tool is

shown in Figure 2.1. This flow has several code transformations.

Current HLS tools require at least a two stage code transformation to generate

efficient hardware. The initial design process converts a unsynthesizable legacy appli-

cation code (Initial software code) to code that is synthesizable (baseline) by the HLS

tools. We name the result of synthesizable code baseline. Baseline design is obtained

differently based on initial software code. For example, if the initial software code is

a legacy C/C++ application, then this is done by removing unsupported programming

constructs, e.g., dynamic memory allocation [137]. If the initial legacy code is written in

MATLAB, then designer must convert the MATLAB code into synthesizable HLS code.

Then this synthesizable C code (baseline) undergoes an additional conversions. In the

next code transformation, designers manually modify the code in order to assist HLS

tool to generate efficient hardware; we call this process developing “restructured” code.

22
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Restructured code can be done in different way depending on memory access pattern,

communication between different modules and complexity of the application. We will

cover restructured code in deep in Chapter 5. In software design, designers use primitive

types such as int, char, long which have fixed number of bits. In hardware design, we

can use arbitrary number of bits for variables and arrays. In the bit-width optimization

stage, we set required bit widths for variables and arrays. This stage will reduce area and

increase frequency. The final stage (Optimizations or PUP) is where designers use HLS

provided pragmas such as pipeline, unroll and partition (PUP).

Baseline Restructured 
Bit Width 
Optimized 

Optimized 
(PUP) 

Initial 
Software 

Synthesizable Designs 

Figure 2.1. Overview of HLS design flow

Next we are going to demonstrate the design and implementation of wireless

channel emulator using the aforementioned HLS design flow. For this particular appli-

cation, we are given a specific throughput to achieve. Next we discuss importance of

implementing a wireless channel emulator on an FPGA.

One of the many challenges in the development and evaluation of wireless systems

is testing and verification. Ultimately, radio systems need to be field tested to ensure that

they satisfy the stated requirements. However, this is expensive, time consuming, and

difficult to repeat. Simulation can overcome these problems, but is ultimately limited

by fidelity issues and/or excessive run times; thus it is more suited to the early stages

of development. Real-time hardware in the loop (HWIL) radio frequency (RF) channel

emulation fills the gap left between simulation and field testing. A good RF channel

emulator will provide repeatability, high-fidelity, and the opportunity to test complete

radio systems in different network scenarios. This is especially important for state-of-the-



24

art wireless systems which incorporate complex link adaptation algorithms with the goals

of improving spectral efficiency, reducing inter-symbol interference (ISI), and increasing

resilience against multipath, Doppler shift, and fading.

Software defined radios (SDR) use agile spread spectrum, ultra wideband and

other techniques to cognitively utilize the available spectrum. They can operate over

different frequency band and have been proposed for next generation military and civilian

voice, video and data links. In order to evaluate the effectiveness of SDR networks in

responding to adverse link conditions, an appropriate real-time, accurate RF channel

emulator is required. A channel emulator simulates the antenna and propagation of the

signal, modifying it depending upon a predetermined scenario. It works directly with a

variety of existing radios, and thus must handle a wide range of frequencies with rapidly

varying channels over a range of distances.

To meet the challenging requirements in testing and evaluating the state-of-the-art

wireless systems, we look at a portion of this overall system. We designed a digital

wireless channel emulator (DWCE) on an FPGA platform. This is high fidelity and

broadband. It provides real-time emulation for radios operating in a frequency range of 2

MHz to 2 GHz. It has a range resolution of 0.25 km. It also provides link losses of up to

130 dB and has a resolution of 0.5 dB.

A major focus of this work is to evaluate the suitability of implementing our

DWCE using the AutoESL high-level synthesis (HLS) tool. Our DWCE has to handle

wide range of dynamically changing parameters such as Doppler effect fast fading,

and multipath. We carefully describe the optimization process (baseline, restructured,

bit-width, PUP) that we used to obtain a design that meets the required specification

requirements. This was done solely through modification to the code given to the HLS

tool. And only through careful optimization of this code, with an understanding of how

this code effect the HLS process, were we able to meet the required performance metrics.



25

We initially started form a legacy MATLAB code which is several hundred lines. Thus it

provides an interesting example of a complex, high throughput design using high-level

synthesis tools targeting FPGAs. We show how to effectively use the HLS tools to

achieve the target design goal.

The specific contributions of this paper include:

1. Designing an FPGA implementation of a wireless channel emulator operating

across a 2 MHz - 2 GHz spectrum with a range resolution of 0.25 km and link

losses up to 130 dB with 0.3 dB resolution.

2. Studying the effectiveness of the AutoESL HLS tool to design a complex, high

throughput application. The emulator has three major modules, PathDelays, Path-

Gains, and ChannelFunction with over 180, 500, 120 lines of code, respectively.

Each module has C×M2 complexity where M is the number of paths in each

channel and C is the number of loops in each module.

3. Describing the benefits of different optimization techniques on the area and through-

put of the emulator. Starting with a naive implementation (MATLAB), we utilize

and analyze a number of optimizations in order to reach to target performance

metrics.

The remainder of this chapter is organized as follows: Section 2.2 describes the

wireless channel emulator model in detail. In Section 2.3.1, we give detailed description

of hardware design and implementation of wireless channel emulator. Section 2.5

presents experimental results. We provide an overview of related work in Section 2.7,

and we conclude in Section 2.8.



26

2.2 Wireless Channel Model

This section provides a description of the wireless channel model and algorithms

that our emulator uses.

Figure 2.2 provides a graphical description of the proposed channel emulator.

The emulator connects to N radios using analog-to-digital (ADC) and digital-to-analog

converters (DAC) in series with an RF module. The radios connect to the RF module in

lieu of an antenna. The RF module down converts the radio signal to baseband signal.

Then the ADC converts the baseband signal to digital signal as the input to the emulator.

The emulator combines all the digital signal inputs and processes them with the wireless

channel model (described in the next subsection) to produce the digital outputs for each

radio. The digital output signals are converted to an analog signal by the DAC and up

converted to radio frequency by the RF module. Finally, each radio receives an RF signal

as if it is in a real field testing environment with N−1 other radios. We designed the

emulator to accept signals within a 2 MHz to 30 MHz range.

The wireless channel can be broken down into a set of receive/transmit paths. For

example, an emulator with 8 radio ports has up to 56 channels with the assumption that the

receive/transmit paths are non-symmetric. A transmitted RF signal encounters reflection,

diffuse scattering, and diffraction due to the ground and the obstacles in the environment.

There is also a Doppler effect which is caused by the motion of the transmitter and the

receiver. The emulator is responsible for calculating these environment effects in the

digital signal domain.

A single wireless channel is described in Eq (2.1), where sit−i∆τ are the previous

n input complex samples, w(t)i is a dynamically changing set of complex weights, and

sot is the complex output of the channel at the present sample time. The weights w(t)i

control the delays and the gains of output signals to emulate the environment effects of
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Figure 2.2. System overview of the wireless channel emulator.

the simulated scenario.

sot =
n

∑
i=0

sit−i∆τw(t)i (2.1)

The methods PathDelays and PathGains are used in tandem to compute w(t)i.

PathDelays emulates the real field testing path delay phenomenon by integrating the path

velocity. In this model, we use tapped delay line (TDL) model. A TDL model stores

input samples in a FIFO. Then, it computes the delay of ADC samples in the FIFO. The

output of PathDelays is a series of sample numbers from the delay line representing the

first ADC sample of a consecutive group for each path and a series of weight vectors for

each path. In order to access the samples in the delay line, PathDelays calculates the

index for each path. Thus, the output of PathDelays is index[N] and weight[K][N] where

N is the number of paths and K is predefined constant.

PathGains emulates the simulated scenario’s path gain. It implements a statistical
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method to model the effect of many independent scatters near the receiver where none

of them is dominant. PathGains filters a complex white noise source for each path. The

result of the filter represents the path gain considering the effect of reflections, obstacles,

etc. PathGains also computes the Doppler effect by controlling the coefficients of the

white noise filter. The result of PathGains is a series of complex gains used to multiply

the output digital signals of PathDelays. The output signal of PathGains is equivalent

to the signal as it is transmitted across a real fading environment. In our model, we use

complex signals. Thus the output of PathDelays is the matrix gains[2][N]. After getting,

index[N], weight[K][N], and gains[2][N], we can calculate real and imaginary part of

complex sample output using Eqs (2.4) and (2.5),

taplinei j = delaylineindex (2.2)

tapsi =
N,K

∑
i, j=0

taplinei j ∗weight ji (2.3)

so ri =
N

∑
i=0

gains ri ∗ taps ri−gains ii ∗ taps ii (2.4)

so ii =
N

∑
i=0

gains ri ∗ taps ii−gains ii ∗ taps ri (2.5)

where gains r, taps r and gains i, taps i are the real and imaginary part of the complex

signals for each path.

As shown above, each channel between the various radios are modeled as de-

scribed in Equation (2.1) which is further describe in Equations (2.2), (2.3), (2.4), (2.5).

The remainder of the paper focuses on implementing a single channel emulator. This

can be duplicated to model N channels.
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2.3 Hardware Design and Optimization

In this section, we introduce the architecture of the emulator and discuss the

design process using HLS. We provide an algorithmic description of the emulator, and

present how different optimization of AutoESL affects area (BRAM, DSP48E, FF, LUT)

and latency. We present four different results of different design optimizations (Baseline,

Restructured, Bit-width, and PUP).

2.3.1 Architecture

The block diagram of the system is shown in Figure 2.3. It consists of three

modules: PathDelays, PathGains and ChannelFunction.

ChannelFunction accepts an input signal, path velocities, and carrier frequency,

and calculates the complex output sample signal. It sends path velocities to PathDelays

and gets the index of starting signal and weight. The index is used to retrieve the delayed

signal samples from the input signal as described in Eq (2.2). The results are used to

calculate taps for each path using Eq (2.3). The samples from the input signal, weight and

gain from PathGains are used to calculate the complex signal (SampleOut) as described

in Eqs (2.4) and (2.5).

The PathDelays module takes as input the path velocities of each path in a channel.

It computes the indexes of the input samples and the weights to calculate the expected

sample at the specified path distance for all paths. It has three sub blocks as shown in

Figure 2.3. Each sub block depends on results from the previous. It outputs vectors

index[N] and weight[K][N]. PathDelays and ChannelFunction require a throughput of

2-30 MHz in order for the emulator to meet the required operating characteristics.

PathGains generates a random signal, interpolates the signal with a filter, and

calculates the gain by multiplying the Doppler effect, interpolation and CORDIC outputs.
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PathGains has a throughput requirement of 100kHz-200 kHz to meet the operating

characteristics. The result matrix gain[2][N] is integrated with every 80 results of

PathDelays.

SampleOut 

pathDelays 

indexStart weight 

X 

tapline 

X 

taps X 

SampleIn 

ChannelFunction 

gains 

CarrierFreq,… 

Signal 
generator 

FIR (Filter) 

Interpolate cordic 

Doppler 

X 

pathGains 

Path velocities 

Figure 2.3. A block diagram of the channel emulator, which includes three main
functions ChannelFunction, PathGains and PathDelays.

We started with Matlab source code for the three modules. We converted these to

synthesizable C code, e.g., limited pointers, no dynamic memory, and writing our own

standard C functions (max, min, pow, sin, cos). Then, we implemented the functions

with AutoESL. We achieved the target design goal using the following steps: code

restructuring, bit-width optimization, and pipelining, unrolling and memory partitioning.

These steps are discussed in detail in the following.

2.3.2 Baseline

The baseline architecture uses the synthesizable C code “as is” and implemented

it with AutoESL. Additionally, we created testbenches and top modules for each of

PathDelays, PathGains and ChannelFunction. The primary goal of this step is to get

an initial, functionally correct design with AutoESL. Typically, the area of design is
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large; it is not uncommon for this to be millions of times larger than the area of final

optimized version. The throughput at this stage can be worse than original software im-

plementation due to large clock period difference between CPU and FPGA. Additionally

the manual implementation of standard C functions may incur additional cost since the

standard C functions are highly optimized. To wit, the baseline design of PathDelays,

PathGains and ChannelFunction are 106, 17, 4.8 times slower than their equivalent

software implementations as in Figure 2.10. Again, the goal here is to make sure that the

translated synthesizable C code is functionally correct. Once we have this, we perform

optimizations that can significantly improve both the area and throughput.

In the following, we briefly describe the baseline implementations of PathDelays,

PathGains and ChannelFunction.
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Figure 2.4. The final restructured PathDelays code. There are three blocks: (a) sample
delay calculation, (b) index calculation, (c) weight calculation.
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PathDelays: This module calculates the sample delay by multiplying the path

velocity by a constant for each of the N paths. Then the maximum of sample delays and

pre-computed index is selected. This procedure is shown in Figure 2.4 (a). Then using

the previous sample delay, it calculates the indexStart, polyDelta and polyIndex as shown

in Figure 2.4 (b). Finally, it calculates the weight for each path as shown in Figure 2.4

(c). The initial PathDelays function had seven blocks of code where each block is a loop.

The result of each block is used in the subsequent block.

- * 
/ 

linearGradient[0] 

* 

LinearOut[0] 

* 
+ 7. LinearOut 

6. LinearGradient 

5. POLY out 

4. POLY shift 

3. FIR out 

2. Shift 

* 
+ 

FIR-out[0] 

8. Doppler/Gain calculation 

1. Signal Generator 

Figure 2.5. The computation involved in the PathGains module.

PathGains: This module has several steps. The first step involves signal genera-
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tion through interpolation and Doppler effect calculation. Initially, it generates a random

signal based on a linear feedback shift register (LFSR). Then the signal is filtered by FIR

and POLY phase shaping filters to perform a linear interpolation. In the signal generation,

we generate NxMxK random values where N is the number of paths, M = 256 (M is

fixed and same as number of elements in Jake’s spectrum), and K = 2 since we need to

generate a value for a complex signal (real and imaginary parts). The final interpolation is

a matrix of size 1xN. The interpolation results are used to calculate the gain for each path.

Figure 2.5 shows the signal generator, interpolation and Doppler/gain calculation. In the

Figure 2.5, Step 1 is signal generation, Steps 2-7 are interpolation and Step 8 is Doppler

and gain calculation. To implement the base code for PathGains module, we converted

216 lines of Matlab code to 700 lines of C. Then we removed loops that have variable

number of bounds. In one case, we used the TRIP COUNT directive to describe the

minimum and maximum range of the loop. We wrote code for the standard C functions.

For some functions, we removed them from design since they are use only few times

with constant inputs, e.g., pow(2,32) was replaced with constant.

ChannelFunction: This module did not require much optimization.

2.3.3 Code Restructuring

The goal of this stage is to perform optimization on the code itself without using

AutoESL directives. In this step, we performed two optimizations; 1) loop merging,

unrolling and loop flattening, and 2) removing computations that can be done offline.

Loop merging, unrolling and loop flattening saves clock cycles if used properly. AutoESL

also provides directives to merge/flatten loops automatically.

As discussed in the previous section, we implemented some of standard C func-

tions in baseline stage. In the design, some of those functions are used for a limited

number of times. For example, we are using pow function 11 times in PathDelays module
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with constant input. Therefore, replaced these with a constant.

We describe the code restructuring optimizations for each of the modules in the

following.

PathDelays: We optimized PathDelays in software using loop merging and

removing functions that can be calculated offline. First, we removed two of the seven

blocks because they are doing initialization. Then we did loop merging to reduce the

number of blocks to three. Figure 2.4 shows the final structured code of PathDelays.

Each block uses data from the previous block. Therefore, the optimal hardware will

implement this design in three clock cycles. We unrolled the loops in each block as

shown in Figure 2.4. Unrolled loops decreased number of clock cycles, however, this

is limited by the access to the array. In AutoESL, arrays are implemented as block

ram. Code restructuring of PathDelays reduced BRAMs, FF and LUT usage by 8 to

5(36%), 7581 to 4070 (46%) and 10170 to 4631 (54%) respectively. The number of

clock cycles decreased from 12430 to 2000 due to loop merging and removing some of

the initialization step to offline. Decreased number of clock cycles resulted in increase in

throughput drastically by 83%. The code size reduced from 300 lines to 180 lines.

PathGains: The initial code had 17 blocks. Figure 2.5 shows most but not all of

these blocks. Each block is embedded inside a loop. 4 of 17 blocks are responsible for

80% of computation. These are blocks 1, 2, 3 and 8 in Figure 2.5. Block 1 initializes

an N×256×2 array with random values from a linear feedback shift register. Blocks 2

and 3 perform shifting and FIR filtering operations. Block 8 applies the Doppler effect

and calculates the gain for each path. We focused on these blocks and performed loop

merging, expression balancing, and loop unrolling. In Figure 2.6, we presented some of

the optimizations. In Figure 2.6 (a), we merged two loops. This is a snippet of code for

FIR output calculation. This merging reduced the number of clock cycles from 50215 to

41250, a 20% reduction. Then, we performed expression balancing and loop unrolling
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Figure 2.6. Optimizations on the PathGains module including: (a) Loop merging, (b)
Expression balancing, (c) Loop unrolling.

as shown in Figure 2.6 (a) and (b). We applied expression balancing to FIR calculation

and gain calculation. We unrolled the innermost loop of the FIR initialization and FIR

shifting as shown in Figure 2.6 (c). These two optimizations reduced the number of

clock cycles from 41250 to 29730, and then from 29730 to 20785. The area before and

after restructuring code did not change significantly. The number of BRAMs and DSP48

remained same, and number of FF and LUT decreased slightly. All designs had the same

clock period. In general, optimizing the code in software resulted in a 59%(20215 to

20785) reduction in the number of clock cycles. Due to code restructuring, C code was

reduced to 700 lines to 600 lines.

ChannelFunction: Once again this module did not require much optimization

since we coded this module with restructured way. This module uses 7 BRAM, 56 DSP,

4448 FF, and 4968 LUT.
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2.3.4 Bit-Width Optimization

Bit-width optimization impacts both throughput and area. We manually calculated

the required bits for all major variables and arrays. We achieved this by calculating values

of variables and arrays using floating type. Then we find out needed bit width for each

variable by analyzing the max/min range for each variable. Then using the AutoESL’s

internal arbitrary precision integer and fixed-point data types (ap int, ap fixed), we

defined new types. This step required more time and effort than any other step.

PathDelays: We applied bit-width optimization on the restructured code. This

reduced DSP48E, FF and LUT by 51% (39 to 19), 89% (4070 to 424), 87% (4631 to 563)

respectively from the previous stage (Restructured). It also increased the throughput by

90% due to decreased number of clock cycles from 2000 to 191. The number of BRAMs

remained same.

PathGains: We performed bit-width optimization on top of restructured code for

the PathGains module. PathGains is largest module, and bit-width optimization took a

substantial amount of time. This optimization increased throughput by 56%. Again the

throughput increase is resulted from decrease in number of clock cycles from 20785 to

7967. Bit-width optimization reduced the number of BRAMs, DSP48E, FF and LUT by

50% (84 to 42), 58% (112 to 47), 69% (67088 to 20399), and 65% (64176 to 22121)

respectively.

ChannelFunction: Finally, we applied bit-width optimization to ChannelFunc-

tion. It decreased number of clock cycles from 902 to 529 which resulted in increased

throughput by 40%. This step also reduced the number of DSP48E, FF and LUT by 78%

(56 to 12), 84% (4448 to 702), and 79% (4968 to 994) respectively. Number of BRAM

remained same.
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2.3.5 Pipelining/Unrolling/Partitioning (PUP)

AutoESL provides a pipeline directive to pipeline functions and loops. AutoESL

partitions small arrays inside the region and unrolls the loop where the pipeline directive

is used. If there are large arrays (not automatically partitionable), then the user can

specify that they be divided into separate memories (BRAMs) or as registers. AutoESL’s

dataflow directive performs coarse grain pipelining at the function and loop level. The

dataflow directive increases concurrency between functions and loops by executing the

function or loop as soon as the data is available. Thus, it creates a memory between the

blocks. Currently, the dataflow directive has limited capabilities. For example, it can be

used where data is accessed in a FIFO order. We tried using the dataflow directive in our

designs, and it significantly reduced the performance (by a factor of approximately 40X);

it did result in a smaller design, but overall this tradeoff was not beneficial. Therefore we

did not use the dataflow directive in our final design.

We describe the specific optimizations that we performed on each of the modules

in more detail in the following.

PathDelays: We applied pipeline and partiiton on the bit-width optimized code.

We partitioned 5 BRAMs into registers. In AutoESL, complete partitioning a BRAM

results discrete registers. We used one pipeline directive on top of function with initiation

interval (II) = 1. The final design is shown in Figure 2.4. Our design had 4 clock cycles

with 5.394 ns of clock period. Since partitioning BRAM and pipelining increase amount

of parallelism, it also increased area. The number of DSP48E, FF and LUT increased by

57% (19 to 30), 85% (424 to 786), and 651% (563 to 4230).

PathGains: Since large BRAMs limit the pipelining, we partitioned the BRAMs

that are accessed frequently within a pipelined region. We partitioned 12 of the 42

BRAMs by mapping them to registers. We pipelined the entire function, thus all of the
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loops were unrolled. This increased the throughput by 93% due to decreased number

of clock cycles from 7967 to 501. The area also increased due to duplicated hardware

resources. The BRAMs decreased by 12 since moved this data into registers. DSP48E

usage increased by 82% (47 to 86), FF increased by 68% (20399 to 34421), and LUT

increased by 75% (22121 to 38893).

ChannelFunction: We applied pipelining with an II=1 and partitioned seven

BRAMs in ChannelFunction. This improved throughput by 98% and resulted higher

area. DSP48E usage increased from 12 to 40, FFs increased from 702 to 2392 and LUTs

increased from 994 to 5008.

2.4 Results

The experimental results are obtained using Xilinx AutoESL (Version 2011.1)

and ISE (Version 13.1). For each design we report the number of BRAM, DSP, FF, LUT,

and the latency. The latency is calculated by multiplying number of clock cycles with

clock period. We compare the latency of the software version against the hardware for

each design. Then we present the speedup of final hardware version over optimized

software version. For each experiment we target an xc6vlx240t FPGA.

2.4.1 Verification/Integration

After applying each optimization, we verify the correctness of each hardware

design against the original software using the AutoESL simulator (autosim). After

verifying the correctness of each module in each step, we integrate the final optimized

version of the three modules from PUP stage to make a complete emulator. This is done

to understand how the HLS tools handle large designs. Theoretically, the tools should

be able to optimize the complete design in an optimal manner. But this is not always

possible due to the complexities of the HLS problems. There are two different ways to
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integrate three sub modules into one.

Integration using AutoESL: In this case, we create a top level function in C

(which we call emulator) for the three modules. Then we synthesis the emulator with the

optimization pragmas from the PUP stage. This may create a slower and larger design if

AutoESL is unable to correctly optimize the resulting large data flow graph in an optimal

manner.

Manual Integration: Here, we create a top module in Verilog and manually

integrate the optimized designs for PathDelays, PathGains and ChannelFunction. Then

we synthesis the top module using ISE. It is a divide and conquer method using a hand

partitioned method for synthesizing the sub modules.

The block diagram of the emulator is shown in Figure 2.12. In the integrated

design, we use two different clocks. One clock for PathGains which is 100 Mhz, and

other clock for PathDelays and ChannelFunction which is 151 Mhz. We use two different

frequencies as described in Table 2.2. The modules PathGains and PathDelays run in

parallel and their outputs (gain, weight, indexstart) are consumed by ChannelFunction

function to calculate SampleOut complex signal.

The PathDelays module calculates indexstart and weight. In each case four

and six clock cycles, respectively, are required to calculate the SampleOut signal. This

requires a total 62 ns is needed to calculate SampleOut with 10 clock cycles at 151 Mhz

(151 Mhz=6.62 ns period, 10×6.62 = 62ns). The PathGains runs slowest and it outputs

results every 4994 ns (0.2 Mhz). In our statistical channel model, we use the same result

of the PathGains (same gains) for every 80 SampleOut calculation. (PathGains runs in

0.2 Mhz (4994 ns and 4994/62 ns =80). The PathGains module writes output to registers.

We represented it with FIFO as shown in the Figure 2.12.

We verified the correctness of emulator of both designs. The input to the emulator

are the sample input signal, carrier frequency, receiver speed, LOS gain, and path
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velocities. The output of the emulator is the sampled output signal in a complex form.

2.5 Experimental Results

We present area results first. We present this in two figures. The first shows the

number of BRAM with DSP (Figure 2.7). The second displays FF with LUT (Figure 2.8).

This is essentially a graphical recap of the optimizations described in the previous sections.

ChannelFunction has same code for baseline and restructured designs.

One of the biggest application tradeoffs that we explored is the number of paths

per channel. This highly depends on the application scenario. Some situations require

fewer paths than others. For example, communication in a city, or mountainous area

typically require more path to accurately model the channel due to reflections of the

signal. The same is true for indoor communications. Our model uses five paths as a

default parameter; other common models such as Stanford model and ITU model use

three paths and six paths [52, 83].

A big advantage of HLS is design space exploration. In this case it allows us

set parameters such as number of paths using minimal modifications to the C code, and

synthesizing the architecture to determine its design metrics. We studied how different

paths change the hardware implementation. Figure 2.9 shows how the area (in number

of slices) changes as the number of paths increase. In general it is linear relationship,

e.g., an implementation with five paths is 5× larger than the design with one path. In

Figure 2.9, PathGains does not have 5× relationship due to constant area of the CORDIC

core. The throughput does not change since the computation required by adding the

different paths is for the most part independent, and thus can be parallelized. All of

the other reported results use five paths. Table 2.1 shows more detailed area results of

PathDelays, PathGains and ChannelFunction for five path implementation. The slice

results are equivalent to the rightmost three bars in Figure 2.9.
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Table 2.1. Device utilization characteristics for PathDelays, PathGains and ChannelFunc-
tion for five paths.

Slices LUT FF DSP48E BRAM

PathDelays 584 1843 411 30 0

PathGains 2783 8759 7044 53 30

ChannelFunction 1131 3469 1798 40 0

Table 2.2. Clock cycles, clock period and latency of each sub module.

Clock
cycles

Clock period (ns)/
Frequency (MHz)

Latency (ns)/
Throughput (MHz)

PathDelays 4 5.394 /185 Mhz 21 /47 Mhz

PathGains 501 9.97 /100 Mhz 4994 /0.2 Mhz

ChannelFunction 6 6.62 /151 Mhz 37 /26 Mhz

Table 2.3. Device utilization characteristics of complete emulator for emulators inte-
grated by AutoESL and Manually.

Slices LUT FF DSP BRAM

Emulator (Manual) 5020 14221 9564 123 30

Emulator (AutoESL) 14283 47190 30691 70 60

Figure 2.10 compares the latency of the software implementation with the latency

of four designs (Baseline, restructured, bit-width and PUP). The latency of the software

is measured on a Intel i7 3.4GHz multi-core machine. We applied OpenMP on top of

restructuring code to get optimized software implementation. We compared the hardware

performance against the best optimized software performance. The optimized software

version of PathDelays and PathGains has 29X and 18X times better performance than

initial software. This is shown in Figure 2.11. The module ChannelFunction has little

parallelism and the computation in module ChannelFunction is not so complex. Thus,

there was little room for the optimization of ChannelFunction. We used the same
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Figure 2.7. Number of BRAM/DSP for Baseline, Restructured, Bit-width and PUP
optimizations for PathDelays, PathGains and ChannelFunction.

ChannelFunction implementation for all of our comparisons.

In general, as shown in the Figure 2.10, hardware implementations corresponding

to baseline and restructured versions are slower than the optimized software version. This

is due to the clock cycle difference between CPUs and FPGAs. For example, the baseline

implementations are slower than the software equivalents by a factor of 106X, 17X and

4.8X of PathDelays, PathGains, and ChannelFunction.

In Figure 2.10, the final hardware performance results obtained by PUP optimiza-

tion are compared to the software performance. The hardware results are better by 46X,

6X and 42X over the equivalent software version. PathGains gave the worst speedup.

This is largely due to the fact that it uses CORDIC which requires 79 cycles thus limiting

the initiation interval. The comparison of the baseline software code with our final

hardware implementation has significantly better results; the hardware implementation

of PathDelays and PathGains is 200,000X and 2000X faster respectively. In other words,
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Figure 2.8. Number of FF/LUT for Baseline, Restructured, Bit-width and PUP optimiza-
tions of PathDelays, PathGains and ChannelFunction.

restructuring the code gives significant software performance benefits.

Table 2.2 presents the number of clock cycles, clock period (frequency) and

latency of each sub module. The integrated emulator runs in 62 ns (16 Mhz). This is 41X

times faster than software emulator. The software emulator uses the same optimized sub

modules.

In the first row of Table 2.3, we present area results for manually integrated

version of emulator. In the second row of Table 2.3, we present the area results for

AutoESL based integrated version of the emulator. The AutoESL based integration has

5X larger area than manual integrated one while being 2X times slower than manually

integrated emulator.

We spent a total of five weeks to design the emulator. Of that, three weeks went

towards understanding the application and writing the restructured code. Two weeks was

spent performing bit-width optimization and PUP with the majority of this time spent on
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Figure 2.9. Slice numbers for scaling number of paths

bit-width optimization.

2.6 Discussion

Quality of Result: The ultimate way to compare the results from AutoESL is to

compare the final optimized design with hand coded version. This is a difficult endeavor

and one that we would argue is not totally necessary. HLS tools are reaching the point

where if you code the input design appropriately, then you will get a design close to

if you designed it from RTL. And the HLS tools allows you to quickly to change the

architecture to see its effects. This is not to say that HLS tools are a panacea. In fact,

we hope this article relays the fact that HLS tools require a good understanding of how

the hardware and the synthesis process works. At this point these tools are still far from

giving great results on code that was designed by a software programmer. The user of

these tools needs to understand how the tool will synthesis the final architecture in order

to get the best results.

Previous research [23, 98, 27] designed different models and use different fading

and use different parameters. To our best knowledge, this is the first work that implements

statistical model. The emulator by Iskander et al. [71] only gives a software version in
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Figure 2.10. Software versus hardware latency for Baseline, Restructured, Bit width
and PUP optimizations of PathDelays, PathGains and ChannelFunction. Negative (-X)
means slower by X than software(SW). Positive X means faster by X than software.

Matlab. Our performance results are thousands of times better than this Matlab version.

Another way to justify the result is we estimate the optimal performance and area for

each module. However, the estimation may not be accurate for larger modules such as

PathGains. Thus it may not be fair comparison. Therefore, it is not possible to do fair

comparison with other hand coded designs at this point.

2.7 Related Work

There are several previously published wireless channel simulators and emulators

using an FPGA [23, 98, 27]. Borries et al. [23] focused on stationary 802.11 laptop

type wireless connections. Our emulator is looking at broader scope of networks by

modeling longer and dynamically varying channel delays, Doppler effects and fast fading.

This requires accounting for multipath, Doppler effects, and link loss. The emulator

by Murphy et al. [98] uses a Nakagami fading model and accounts for Doppler effects.
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Figure 2.11. Performance of initial and optimized versions of software for PathDelays
and PathGains.

Figure 2.12. Block diagram of the emulator.

However, they do not handle continuously and smoothly varying delays. And while their

emulator can model a Doppler shift, it is an approximation of the Doppler effect. In case

where we do not have to up and down convert, Doppler scaling is handled completely by

the continuous delay model. If we do have to down and upconvert, then that delay model

in combination with our Doppler shift correction gives us the complete Doppler Effect.

Buscemi et al. presented study of scalability of digital wireless channel emulators

using cluster of FPGAs [27]. They implemented tapped delay line (TDL) channel model
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in VHDL and prototyped it on a two node FPGA system. In our opinion, the major

contribution of the work is the system design of many DWCE across an FPGA based

compute cluster. Our work differs in two ways. First, we implement statistical wireless

channel model; the channel model that we use is significantly more complicated with

respect to implementation. It is outside the scope of this paper to argue whether the

channel model that we use is better, but it is clear that it is more complex (in terms

of hardware implementation) and thus makes for a more interesting HLS case study.

Secondly, we focus more on the design of the DWCE using HLS tools rather than the

overall system design. Our DWCE could be used within the system that they propose.

Our FPGA implementation is similar to the wireless channel simulator developed

by Iskander et al. [71]. They implemented multipath fading channel simulator in Matlab.

Our emulator is several thousand times faster than the simulator.

There is a substantial amount of research around the use of high-level synthesis

tools to implement a wide variety of applications on FPGAs [41]. AutoESL is used

to implement applications including compressive sensing [36], stereo matching [113],

a sphere detector for broadband wireless systems [103], and real-time HDTV [132].

Catapult-C has been used to implement 64-QAM decoder [122], and a sphere decoder

[99]. ROCCC is used to design a Smith-Waterman algorithm [28] and a molecular

dynamics algorithm [128]. Impulse C is used to implement a tomographic reconstruction

algorithm [135].

2.8 Conclusion

In this paper, we presented the design and implementation of wireless channel

emulator using high-level synthesis tool (AutoESL). We described the underlying model

of our wireless channel emulator. We developed an FPGA implementation of the emulator

that met the design constraints for a single channel. We presented a good design practice
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(design flow) that is used to implement complex applications with high-level synthesis.

We studied how the different stages of this high-level synthesis design flow affect the area

and performance results. This chapter shows that there is huge variance in performance

from a baseline design to optimized design (10x-106X). These variance is caused by

several factors such as restructuring, bit width optimizations and PUP. Next, we will

highlight some of the lessons learned from this experience.

Lessons learned: Our experience shows that achieving the target performance

and area depends a lot on the code size, the quality of the restructured code and the

application. We spent a relatively small amount time achieving the target goal for the

smaller modules, i.e., those with fewer lines of code. We spent a disproportionate

amount of time optimizing PathGains as it contained significantly more lines of code.

Initially, we did not restructure the PathGains code well (we achieved 25 kHz with

poor restructuring). Then we spent time deeply analyzing the code, e.g., drawing

sample hardware architectures, manually performing some design space exploration

to derive different micro architectures. This gave us insight into what to optimize

and how. An important lesson is HLS tools require that the user understands what

architectures are being generated. And while they allow you to more quickly get to a

specific RTL implementation, a good design requires someone who deeply understands

what the optimizations are doing. This is especially true for larger applications with tight

constraints (i.e., PathGains).

Another major issue that we faced was the synthesis times for the larger applica-

tions. In our initial trials at restructuring the PathGains module, AutoESL would run for

hours, run out of memory and then crash. Better optimized designs solved this problem;

therefore the synthesis time is not necessarily a function of the number of lines of code

rather a function of how many lines of RTL code the HLS tool creates.

Final lesson is HLS may give very poor design in initial stage. The initial results
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are somewhat very conservative and getting better design highly depends on designer’s

ability to understand the application (domain knowledge) and designer’s knowledge of

current HLS tool.

Acknowledgements

This chapter contains materials that is published in International Conference on

Field-Programmable Technology (FPT), 2012. Matai, Janarbek; Meng, Pingfan; Wu,

Lingjuan; Weals, Brad; Kastner, Ryan. The chapter also contains additional materials

(mainly larger figures) that was cut from the publication due to space constraints. The

work described in this chapter is a done in collaboration with Pingfan Meng, Lingjuan

Wu and Brad Weals. The dissertation author is the primary investigator and author of this

work.



Chapter 3

A Complete Face Recognition System

3.1 Introduction

Face recognition is a challenging research area from perspectives of both software

(algorithmic solutions) and hardware (physical implementations). A number of face

recognition algorithms have been developed in the past decades [125] with various

hardware based implementations [114, 33, 35, 101, 61, 109, 131]. All previous hardware

implementations assume input to the face recognition system to be an unknown face

image. Current hardware based face recognition systems are limited by the input image

and they fail if the input is not a face image. Practical face recognition system does not

require input to be a face, instead would recognize face(s) from any arbitrary video which

may or may not contain face(s) potentially in the presence of other objects. Therefore,

an ideal face recognition system should first have a face detection subsystem which is

necessary for finding a face in an arbitrary frame, and also a face recognition subsystem

which identifies the unknown face image (from face detection subsystem).

We define the complete face recognition system as a system which interfaces with

a video source, detects all face(s) images in each frame, and sends only the detected

face images to face recognition subsystem which in turn identifies the detected face

images. We designed and implemented a real-time and complete face recognition system

50
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consisting of a face detection subsystem, a downsampling module and a face recognition

subsystem. The face detection subsystem uses the system developed by Cho et al. [38, 37],

which is publicly available at [2]. The face recognition subsystem uses Eigenface or

PCA (Principal Component Analysis) algorithm [125]. The complete system interfaces

with a camera, sends the video data to the face detection subsystem, which in turn

sends detected faces to the face recognition subsystem via the downsampling module

as shown in Figure 3.1. Our face recognition system automatically identifies or verifies

a person from a digital image, a video frame or a video source while previous works

[114, 33, 35, 101, 61, 109, 131] simply implemented what we describe as the face. The

complete face recognition system works as below:

1. Face detection subsystem looks for faces in many different sizes across each frame.

When a face is found, the (x,y) coordinates, width and height of the detected face

is sent to the downsampling module.

2. The downsampling module receives a signal from the face detection subsystem

indicating a face is detected, it reads the detected coordinates, width, height and

every individual pixel value. It subsequently downsamples the face to 20×20 size.

3. The downsampled 20×20 image data is sent to the face recognition subsystem

which returns the index of a person whose face image is closest to the unknown

input image.

In this work, we describe the design and implementation of a face recognition

architecture using Eigenface algorithm. We design and implement a face recognition

subsystem on an FPGA using both pipelined and non pipelined architectures. In each

case, we evaluate system performance on a different number of images. Then we show

how to integrate face recognition and face detection using a downsampling module which
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Face 
Detection 
Subsystem

Downsampling

Haar Training Data

Face Recognition 
Subsystem

Eigenface Training Data

Camera

Figure 3.1. Overview of our complete face recognition system on an FPGA. Video data
is received from the camera and sent to the face detection subsystem which finds location
of the face(s). These face(s) can be in any size; the face detection subsystem looks for
faces in a sliding window starting at 20× 20 and going all the way to the size of the
frame. The architecture then performs downsampling of the detected face to 20× 20,
and sends these 400 pixel values to the recognition subsystem. The face recognition
subsystem identifies the person and sends the name of the person to the display.

is responsible for preprocessing detected face images from the detection subsystem to

satisfy the requirements of the face recognition subsystem.

The rest of this chapter is organized as follows: Section 3.2 present about the face

recognition subsystems. In Section 3.3, we explain the complete face recognition system

architecture and its implementation results. Section 3.5 provides concluding remarks.

3.2 Face Recognition subsystem

The face recognition subsystem assumes 20×20 image data as an input, then iden-

tifies the image based on training data set. In this section, we introduce the architecture

and implementation of the face recognition subsystem.
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Figure 3.2. The block diagram of face recognition subsystem implemented on Virtex-5
FPGA.

3.2.1 Architecture of the Face Recognition Subsystem

The block diagram of the face recognition subsystem is shown in Figure 3.2

which consists Image Reader, Average Image Calculator, Weight Vector Finder, Weight

Vector Reader and Classifier/Projection modules. These building blocks are explained in

more detail as follows:

Image Reader

The image reader module reads 20× 20 image and stores each pixel of an un-

known image on the Image Frame Buffer. These are the pixels of an unknown image

that is to be recognized. Already stored pixels are sent to Normalized Image Calculator

Module in order to start normalized image calculation.



54

Normalized Image Calculator

The normalized image calculator module finds the differences between average

image and input image. The average image reader reads the image pixels from average

image buffer, then input image pixels are subtracted to find normalized image. The

normalized image is stored in the normalized image buffer.

Weight Vector Finder

The weight vector finder module calculates weight values for input image using

previously calculated normalized image and Eigenvector values. The Eigenvector values

are read by Eigenface reader from Eigenface image buffer. The Eigenvector values are

generated in PC and stored in a block RAM. The weight vector finder is the most compu-

tationally expensive step in software face recognition, and the calculation complexity of

each weight vector is parallelized in hardware.

Weight Vector Reader

The weight vector reader is used by classifier/projection module for retrieving

weight vector values that are generated in training stage and stored in the block RAM.

Classifier/Projection

The classifier module utilizes weight vectors (from weight vector reader module)

and weight vector for unknown image (from weight vector finder module). Then classifier

finds the distance between each weight vector from weight vector reader module and

weight vector of unknown image. For each calculation of distance, we compare the

current distance value with previous. If the current value is smaller, then it is stored to

the distance buffer. Otherwise, the value in distance buffer remains unchanged. Finally,

the index of a person which corresponds to a minimum distance in distance buffer is sent

to display (or other output device) as an identified face.
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3.2.2 FPGA Implementation

The implementation of the face recognition subsystem is performed in two steps.

The first step generates the training data and the second step is face recognition.

Training Data Generation

The training data is generated using OpenCV library [24]. The training data

generation is the first step in face recognition subsystem implementation [125]. We

used two different kinds of face image databases as training data. Firstly, we evaluated

feasibility of the face recognition subsystem using ORL database of faces from Cambridge

University Computer Laboratory [7]. We refer ORL database as a ”set1” throughout

the remainder of the article. Using 100 images of 10 different individuals from the set1,

we generated training data using OpenCV [24]. All 100 images has the same size of

20×20 pixels, and each image is aligned according to its nose and eye locations in order

to generate good training data as described in [125]. We also collected 60 images of 6

individuals in our lab at University of California, San Diego which we refer as ”set2”.

The images in set2 are converted to gray scale, downsampled to 20×20, aligned by nose

and eye locations, then given to OpenCV to generate training data. In the following

sections, we introduce details of the implementation based on data set1.

The training data provides us with an average image Ψ, weight vectors for each

image Ωi, and Eigenvectors µi. Assuming Γ1,Γ2...Γ60 represent the initial 60 images

provided for training, the following image data is generated:

• An average image Ψ of size 20 by 20

• A weight vector Ω1,Ω2, ...Ω60 for each image. The size of weight vector Ωi for

image i is 59. In total, we have to save a 59×60 matrix for each Ωi in the form of

Ω = ω1,ω1, ...,ω59.
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• 59 Eigenvectors of size 20×20. The set of Eigenvectors is = µ1,µ2...µ59

In essence, the training data transforms the sixty images into a linear combination of

weight vectors and eigenvectors. For instance, Γ1 can be represented as below:

Γ1−Ψ = ω1 ∗µ1 +ω2 ∗µ2 + ...+ω59 ∗µ59 (3.1)

Face recognition

After generating the training data, we store the average image Ψ (size of Ψ is

20×20), weight vectors for each image Ωi (size of Ωi is 59×1), and Eigenvectors µi

(size of µi is 20×20) in a block RAM. Then, we implement face recognition in three

steps: normalization, weight vector calculation and projection to find if Γunknown belongs

to any of 6 individual’s face in training data. The architecture of the face recognition

when using 60 images (10 images of 6 different individuals) is shown in Figure 3.3.

Normalization: Given an 20×20 unknown input image Γunknown, the first step

of the face recognition is the calculation of normalized image Φ. Given the training

data, it is straightforward to calculate the normalized image. The average image Ψ is

subtracted from unknown image pixel by pixel since both the average image and the

unknown input image have the same size (20×20). The average image buffer is stored

in a block RAM, and input image buffer is implemented for storing the unknown input

image. Since there are 400 operations and each operation is independent, the subtraction

of the average image pixels from unknown image pixels can be performed in parallel.

After the normalized image is calculated, the resulting pixels are sent to weight vector

calculation step.

Weight vector calculation step: The architecture finds the weight vector for an

unknown image using Equation 3.2. In this step, the µ1,µ2...µ59 Eigenvectors and

normalized image Φ are used to calculate weight vector of unknown input image. At
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Figure 3.3. The n is the number of images. In this case n = 60. The µ1,µ2...µ400 are
values of one eigenvector. ωxi are weight values corresponding to image x. The x is
between 1 and 60 in our case. d0 is sufficiently large number and d1 is the distance
between the weight vector of unknown image and first image in training set. This process
continues with the number of images. Last, the index of a person who has least distance
between unknown image is returned as a result.
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this point, the normalized image Ψ is calculated and stored in a register. Therefore, the

calculation of each of 59 weight vector element ωi is be parallelized since Eigenvectors

are read from block RAM independently of each other. Eigenvector buffer has 23600

16 bits elements (the 59 eigenvectors each contain 20×20 = 400 16 bit elements). The

normalized image is a 20×20 matrix.

ωi = µ
T
i Φ (3.2)

where i = 1 to 59.

Projection step: The Euclidean distance between weight vector of unknown input

image and weight vectors of trained image are calculated using a nearest neighbor search.

There are 60 weight vectors of each trained image each containing 59 values. We use

the Euclidean distance to calculate the distances d1,d2...d60 between each of training

images and unknown image using weight vectors. The weight vectors of training images

are stored in weight vector buffer in a block RAM. The size of weight vector buffer is

59×60. The Euclidean distance calculation is performed on all 60 weight vectors Ωi.

The weight vector of unknown input image and this Euclidean distance calculation are

independent operations, and therefore these two operations are performed in parallel. For

each calculation of distance value, we compare the new calculated distance value with

the distance value in a distance buffer (old distance value). If the newly calculated value

is smaller than the old distance value, then we overwrite the newly calculated distance

value and index which corresponds to this value to the distance buffer. This process

continues 60 times. Finally, the index of smallest value among (d1,d2...d60) is returned

from distance buffer as the index of the person identified.
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Figure 3.4. The performance comparisons between software and hardware implementa-
tion of the face recognition subsystem.

3.3 Experimental Results

This section presents experimental results using the two data sets. The first set

contains 100 images from set1 and the second is 60 face images from set2. Figure 3.4

shows the performance comparisons between the software and hardware implementations

of the face recognition subsystem using 10, 20, 25, 50 and 100 images from set1. When

using 100 images, the face recognition subsystem achieves average speed up of 15X

over the equivalent software implementation. The software experiment was done on

multi-core machine machine with Core2 Duo CPU@3.33 GHz, RAM 4 GB specification.

Figure 3.5 (a) and (b) show latency and latency cycles respectively for 40, 50 and

60 face images from set2 with pipelined and non-pipelined implementations. The device

utilization summary when using set2 with pipelined and non-pipelined implementations

is also shown in Figure 3.5 (c) in number of slices, LUTs, RAMs (BRAMs), and DSP48s.
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We used ModelSim for simulation and verified the correctness of the face recog-

nition subsystem using LEDS (South, East, North and Center LEDs) on an FPGA board.

Since there are only 6 different individuals, 4-bit number is assigned to represent four

LEDs on the board. In the next section, we furthermore integrate the subsystems to make

the complete FPGA based real-time face recognition system.

3.4 Implementation of the Complete Face Recognition
System

In this section, we present the downsampling module used to connect the face

detection and the recognition subsystems. Then we describe the complete face recognition

system which is a combination of all of these subsystems. Figure 3.6 provides an overview

of the architecture for the complete face recognition system.

The downsampling module is notified when a face is detected by the face detection

subsystem. After being notified, the downsampling module reads the face image data

using the coordinates, width and height given by the face detection subsystem. According

to the size of detected face image data, the downsampling module reduces the detected

face to 20×20 and sends these 400 pixel values to the face recognition subsystem. The

downsampling module resizes each detected face so that they are suitable for as input

into the face recognition subsystem. The downsampling module has several ways to deal

with down sampling of detected face.

We introduce a factor which is used to calculate how many pixels we would skip

in order to downsample a x× x image into a 20×20 image. The factor depends on the

size of detected face. For instance, if the size of detected face is 60×60, then the factor

would be 3 in order to downsample the 60× 60 size face image to 20× 20. We can

find the factor using f actor = detected f acesize/20. Finally, when the detected face is

appropriately downsampled, the downsampling module checks if the face recognition
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Figure 3.6. The architecture for the complete face recognition system consisting of the
face detection and face recognition subsystems.

Table 3.1. Device Utilization Table for the Complete Face Recognition System

Logic Utilization Used Available Utilization

Slices 8,683 11,200 77%
Number of Slice LUTs 32,480 44,800 72%
Number of Block RAMs 84 148 56%
Number of DSP48s 11 128 8%

subsystem is busy. If the face recognition subsystem is available, it reads 20×20 image

and returns the index of a person which belongs to the detected face. According to the

returned index of a person, we draw a box around the detected face with predefined color.

Each individual’s face in the set is represented by an index and each index is associated

with a color.

The implementation was simulated/verified with ModelSim, and then imple-

mented on a Virtex-5 FPGA. Table 3.1 shows the device utilization of the complete face

recognition system on a Virtex-5 FPGA board. According to the experimental results,

the complete face recognition system runs at 45 frames per second on VGA data.
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3.5 Conclusion

This paper presented the design and implementation of a complete FPGA-based

real-time face recognition system which runs at 45 frames per second. This system

consists of three subsystems: face detection, downsampling and face recognition. All

the modules are designed and implemented on a Virtex-5 FPGA. We presented the archi-

tectural integration of the face detection and face recognition subsystems as a complete

system on physical hardware. Different experimental results of the face recognition

subsystem are presented for pipelined and non-pipelined implementations.
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Chapter 4

Canonical Huffman Encoding

4.1 Introduction

The main focus of this chapter is to evaluate feasibility of using high-level

synthesis for implementing irregular application (kernels) on an FPGA. In the rest of

this chapter, we present design and implementation of a complete pipeline of Canonical

Huffman Encoding using high-level synthesis. It consists of several irregular kernels. We

will discuss design and implementation of these kernels with HLS. Canonical Huffman

encoding is one of the main functionalities of lossless data compression engines. Lossless

data compression is a key ingredient for efficient data storage, and Huffman coding is

amongst the most popular algorithm for variable length coding [69]. Given a set of data

symbols and their frequencies of occurrence, Huffman coding generates codewords in a

way that assigns shorter codes to more frequent symbols to minimize the average code

length. Since it guarantees optimality, Huffman coding has been widely adopted for

various applications [53]. In modern multi-stage compression designs, it often functions

as a back-end of the system to boost compression performance after a domain-specific

front-end as in GZIP [47], JPEG [110], and MP3 [116].

Canonical Huffman coding has two main benefits over traditional Huffman coding.

In basic Huffman coding, the encoder passes the complete Huffman tree structure to the

64
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decoder. Therefore, the decoder must traverse the tree to decode every encoded symbol.

On the other hand, canonical Huffman coding only transfers the number of bits for each

symbol to the decoder, and the decoder reconstructs the codeword for each symbol. This

makes the decoder more efficient both in memory usage and computation requirements.

Data centers are one of the biggest users of data encoding for efficient storage

and networking, which is typically run on high-end multi-core processors. This trend is

changing recently with increased focus on energy efficient and specialized computation in

data centers [85]. For example, IBM made a GZIP comparable compression accelerator

[86] for their server system. We target the scenario where the previous stage of compressor

(e.g., LZ77) produces multi-giga byte throughput with parallelized logic, which requires

a high throughput, and ideally energy efficient, data compression engine. For example,

to match a 4GB/s throughput, the Huffman encoder must be able to build up 40,000

dynamic Huffman trees per second assuming a generation of a new Huffman tree for

every 100KB input data.

The primary goal of this work is to understand the trade-off between performance

and power consumption in developing a Canonical Huffman Encoder using high-level

synthesis on an FPGA. This is, to the best of our knowledge, the first hardware accelerated

implementation of the complete pipeline stages of Canonical Huffman Encoding (CHE).

To evaluate generated design from high-level synthesis, we compared the benefits and

drawbacks of different computation platforms, e.g., FPGA, low-power processor, and

high-end processor. We create highly optimized software implementations targeting

an embedded ARM processor and a high-end Intel Core i7 processor. The specific

contributions of this paper are:

1. The development of highly optimized software implementations of canonical

Huffman encoding.



66

2. A detailed design space exploration for the hardware accelerated implementations

using high-level synthesis tools.

3. A comparison of the performance and power/energy consumption of these hardware

and software implementations on a variety of platforms.

The remainder of this paper is organized as follows: Section 4.2 provides algo-

rithmic description of canonical Huffman encoding. In Section 4.3 and Section 4.4, we

present detailed hardware and software implementations and optimizations, respectively.

In Section 4.5, we present experimental results. Section 4.6 presents related work. We

conclude in Section 4.7.

4.2 Canonical Huffman Encoding (CHE)

In basic Huffman coding, the decoder decompresses the data by traversing the

Huffman tree from the root until it hits the leaf node. This has two major drawbacks: it

requires storing the entire Huffman tree which increases memory usage. Furthermore,

traversing the tree for each symbol is computationally expensive. CHE addresses these

two issues by creating codes using a standardized format.

Figure 4.1 shows the CHE process. The Filter module only passes symbols with

non-zero frequencies. Then the encoder creates a Huffman tree in the same way as the

basic Huffman encoding. The Sort module rearranges the symbols in ascending order

based upon their frequencies. Next, the Create Tree module builds the Huffman tree

using three steps: 1) it uses the two minimum frequent nodes as an initial sub-tree and

generates a new parent node by adding their frequencies; 2) it adds the new intermediate

node to the list and sorts them again; and 3) it selects the two minimum elements from the

list and repeat these steps until one element remains. As a result, we get a Huffman tree,

and by labelling each left and right edge to 0 and 1, we create codewords for symbols.
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For example, the codeword for A is 00 and codeword for B is 0101. This completes

the basic Huffman encoding process. The CHE only sends the length of each Huffman

codeword, but requires additional computation as explained in the following.

The Compute Bit Len module calculates the bit lengths of each codeword. It saves

this information to a list where the key is length and value is the number of codewords

with that length. In the example case, we have 3 symbols (A,D,E) with the code length of

2. Therefore, the output list contains L=2 and N=3. The Truncate Tree module rebalances

the Huffman tree when it is very tall and/or unbalanced. This improves decoder speed at

the cost of a slight increase in encoding time. We set the maximum height of the tree to

27.

Using output from the Truncate Tree module, the Canonize module creates two

sorted lists. The first list contains symbols and frequencies sorted by symbol. The second

list contains symbols and frequencies sorted by frequency. These lists are used for faster

creation of the canonical Huffman codewords.

The Create Codeword module creates uniquely decodable codewords based on

the following rules: 1) Shorter length codes have a higher numeric value than the same

length prefix of longer codes. 2) Codes with the same length increase by one as the

symbol value increases. According to the second rule, codes with same length increase by

one. This means if we know the starting symbol for each code length, we can construct

the canonical Huffman code in one pass. One way to calculate the starting canonical code

for each code length is as follows: f or l = K to 1;Start[l] := [Start[l + 1]+N[l + 1]]

where Start[l] is the starting canonical codeword for a length l, K is the number of

different code lengths, and N[l] is the number of symbols with length l. In CHE, the

first codeword for the symbol with the longest bit length starts all zeros. Therefore, the

symbol B is the first symbol with longest codeword so it is assigned 0000. The next

symbol with length 4 is F and is assigned 0001 by the second rule. The starting symbol
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for the next code length (next code length is 3) is calculated based on the first rule and

increases by one for the rest.

In this paper, after calculating codewords, we do a bit reverse of the codeword.

This is a requirement of the application on hand, and we skip the details due to space

constraints.

The CHE pipeline includes many complex and inherently sequential computations.

For example, the Create Tree module needs to track the correct order of the created

sub trees, requiring careful memory management. Additionally, there is very limited

parallelism that can be exploited. We designed the hardware using a high-level synthesis

tool, and created highly optimized software for ARM and Intel Core i7 processors. In the

following sections, we will report results, and highlight the benefits and pitfalls of each

approach. We first discuss the hardware architecture and the implementation of the CHE

design using HLS. Then we present the optimized software design of the CHE.

4.3 Hardware Implementations

We created HLS architectures with different goals. Latency Optimized is designed

to improve latency by parallelizing the computation in each module, and Throughput Op-

timized targets a high throughput design by exploiting task level parallelism. Since their

block diagrams are very similar, we only present the block diagram of the Throughput

Optimized architecture as shown in Figure 4.2. For the sake of simplicity, it only shows

the interfaces with block rams (BRAMs). To create these designs (Latency Optimized,

and Throughput Optimized), we start from a software C code which we name a Baseline

design. Then we restructure parts of the code (Restructured design) as discussed below

targeting efficient hardware architectures.

The input to the system is a list of symbols and frequencies stored in Symbol-

Frequency (SF) BRAM. The size of SF is 48×n bits where 16 bits are used for symbol,
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32 bits are used for frequency, and n is the number of elements in the list. The Filter

module reads from the SF BRAM and writes the output to the next SF BRAM. Also it

passes the number of non-zero elements to the Sort module. The Sort module writes the

list sorted by frequency into two different SF BRAMs. Using the sorted list, the Create

Tree module creates a Huffman tree and stores it into three BRAMs (Parent Address, Left,

and Right). Using the Huffman tree information, the Compute Bit Len module calculates

the bit length of each symbol and stores this information to a Bit Len BRAM. We set the

maximum number of entries to 64, covering up to maximum 64-bit frequency number,

which is sufficient for most applications given that our Huffman tree creation rebalances

its height. The Truncate Tree module rebalances the tree height and copies the bit length

information of each codeword into two different BRAMs with the size of 27, which is

the maximum depth of the tree. The Canonize module walks through each symbol from

the Sort module and assigns the appropriate bit length using the BitLen of each symbol.

The output of the Canonize module is a list of pairs where list contains symbols and its

bit lengths.

We implemented the algorithm on an FPGA using the Vivado High-level Synthesis

(HLS) tool. The Baseline design has no optimizations. We developed a Restructured

design on top of the Baseline design. After creating the restructured design, we optimize

the restructured design for latency and throughput. To implement above hardware designs,

we first profiled the algorithm on an ARM with different optimizations. Figure 4.6 shows

initial (naive) running time of each modules of the design on an ARM processor. Among

these, Radix Sort, Create Tree, Compute Bit Length are most computationally intensive.

We focused our design space exploration on these sub modules and optimized them in

HLS to generate an efficient design.
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4.3.1 Radix Sort

The radix sorting algorithm arranges the input data for each radix from left to

right (least significant digit) or right to left (most significant digit) in a stable manner.

In a decimal system, the radix takes values from 0 to 9. In our system, we are sorting

the frequencies, which are represented using a 32-bit number. We treat a 32-bit number

as 4-digit number with radix r = 232/4 = 28 = 256. In serial radix sort, the input data is

sorted by each radix k times where k is radix (k = 4 in our case). Algorithm 4 describes

the radix sorting algorithm which used counting sort to perform the individual radix sorts.

Algorithm 4: Counting sort
1 Procedure CountingSort()

Data: A[]
/* A[] input array */

/* N is input array size */

/* k is number of different radix */

Result: Out
2 HISTOGRAM-KEY:
3 forall the i← 0 to k do
4 Bucket[i]← 0
5 temp[ j]← A[ j]
6 end
7 PREFIX-SUM:
8 First[0]← 0
9 forall the i← 1 to k do

10 First[i]← Bucket[i−1]+First[i−1]
11 end
12 COPY-OUTPUT:
13 forall the j← 0 to N−1 do
14 i← A[ j]
15 Out[First[i]]← temp[ j]
16 First[i]← First[i]+1
17 end

In order to implement parallel radix sort, we made two architectural modifications

to the serial algorithm. First, we pipelined the counting sort portions (there are four
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Figure 4.3. A naively optimized code has RAW dependencies which requires an II = 3.

counting sorts in the algorithm). This exploits coarse grained parallelism among these four

stages of the radix sort architecture using the dataflow pipelining pragma in the Vivado

HLS tool. Next we optimized the individual counting sort portions of the algorithm. In

the current counting sort implementation there is a histogram calculation (Algorithm 4

line number 6). When implemented with an HLS tool, this translates to an architecture

which is similar to Figure 4.3. With this code, we achieve an initiation interval (II)

equal to 3 due to RAW dependencies. Ideally we want an II = 1. Since the histogram

calculation is in a loop, achieving an II = 1 boasts performance by orders of magnitude.

Achieving II = 1 requires an additional accumulator, which is shown in the pseudo HLS

code in Listing 4.1. If the current and previous values of the histogram are the same, we

increment the accumulator; otherwise we save the accumulator value to previous value’s

location and start a new accumulator for the current value. In addition to that, using

dependency pragma, we instruct HLS to ignore RAW dependency.

1 #pragma DEPENDENCE var=Bucket RAW false

2 val = radix; //A[j]

3 if(old_val ==val){

4 accu = accu + 1 ;

5 }

6 else {

7 Bucket[old_val] = accu;

8 accu = Bucket[val ]+1;

9 }

10 old_val =val;

Listing 4.1. An efficient histogram calculation with II of 1.



74

HLS Friendly Code: Modification 3 
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Figure 4.4. The architecture for efficient Huffman tree creation. This architecture creates
a Huffman tree in one pass by avoiding resorting of the elements.

4.3.2 Huffman Tree Creation

In order to create the Huffman tree, the basic algorithm creates a sub tree of the

two elements with minimum frequency and adds intermediate node whose frequency

is the sum of f 1 and f 2 to the list in sorted order ( f 1 and f 2 are frequencies of those

selected elements). This requires re-sorting the list each time when we add a new element

to the list. At each step we remove the two elements with minimum frequencies and

insert a new node with the aggregated frequency of those selected nodes. This means

that the generated nodes are produced in non-decreasing sequence order. Thus, instead

of adding the intermediate node to the sorted list, we used another BRAM to store the

intermediate nodes in a FIFO.

With this modification, we eliminate the process of resorting. The architecture is

shown in Figure 5.19. The S queue stores the input symbol/frequency list. The I Queue

stores the intermediate nodes. The size of S is n, and size of I is n−1. Create Tree stores

tree information on Left, Right, and Parent Address BRAMs. The changed algorithm

works as follows. Initially, the algorithm selects the two minimum elements from the
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S queue in a similar manner to basic Huffman encoding. Then the algorithm adds the

intermediate node n1 to the I queue. It selects a new element e1 from S queue. If the

frequency of e1 is smaller than frequency of n1, we make e1 the left child. Otherwise,

we make n1 the right child. If the I queue is empty (after selecting the left child), we

select another element e2 from S and make it the right child. Then we add their frequency

values, make a new intermediate node n2, and add it to I. This process continues until

there is no element left in the S queue. If there are elements in the I queue, we create sub

trees by making the first element the left child and second element the right child.

This eliminates need for resorting by using additional BRAM. While we are

constructing the Huffman tree with this method, we store the tree information on three

different BRAMs. The Left and Right BRAMs store the left and right children of each

sub tree. The first left/right child is stored on address 0 of Left/Right. The Parent Address

BRAM has the same address as its children but stores an address of the parent of that

location. It points to the parent address of its children.

4.3.3 Parallel Bit Lengths Calculation

After storing tree information on Left, Right, and Parent Address BRAMs, cal-

culating the bit length for each code is straightforward. The Compute Bit Len function

starts from address 0 of Left and Right BRAMs and tracks their parents location from the

Parent Address BRAM. For example, B and F have the same parent since they are both

in address 0 in respective BRAMs. The address of the parent of B and F is located at 1

which is stored in the Parent Address BRAM at address 0. From address 1, we can locate

the grandparent of F and B at address 2. From address 2, we can locate next ancestor of

B and F at address 4. When we check address 4 and we find out it is zero, that means we

have reached the root node. Therefore, bit length of F and B is equal to 4.

The data structures (Left, Right, and Parent Address) allow efficient and parallel
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bit length calculation. In these data structures, the symbols are stored from left to right,

and we can track any symbol’s parents to root starting from that symbol’s position. In our

design, we exploit this property and initiated parallel processes working from different

symbols (Huffman tree leaf nodes) towards the root node to calculate bit lengths of

symbols in parallel. Figure 4.5 shows an example where two processes are working to

calculate the bit lengths in parallel. Each process operates on data in its region, e.g.,

Process 2 only needs data for symbol D and E symbols.
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E n4 

Parent Address 

Left 

Right 

0 1 Address 

Figure 4.5. A Parallel Bit Lengths Calculation. Each process has its own set of data
which allows for fully parallel bit length calculation.

4.3.4 Canonization

In Canonize, the algorithm has to create two lists; one sorted by symbols and

another sorted by frequencies. In our design, we changed the Canonize module by

eliminating the list which is sorted by frequencies. The second list is needed by Cre-

ateCodeword to track the number of codewords with the same length. We can track
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the number of symbols having the same code length by using 27 counters since any

codeword need at most 27 bits. This optimization efficiently reduces the running time of

the Canonize by half. Therefore, output of the Canonize is only one list in our design.

However, it slightly increases the running time of CreateCodeword.

4.3.5 Codeword Creation

In addition to that, using dependency pragma, we instruct HLS to ignore RAW

dependency. In the Create Codeword module, the algorithm does the bit reverse of

each code length. Code lengths can be up to 27 bits. The software bit reverse does not

synthesis to efficient hardware. Therefore, we coded an efficient bit reverse in HLS

that results in logic as good as a custom bit reverse using the coding technique given

in [136]. Listing 4.2 shows an example bit reverse for 27 bit number. Bit lengths can

be up to 27-bits requiring to write twenty seven of these functions in our design. Since

these functions are implemented efficiently in HLS, we inline them in our design which

increases performance with a slight increase of area.

1 #pragma pipeline

2 for(int k = 0; k < 27; k++) {

3 j = (j << 1) | ((i >> k) & 0x1);

4 }

Listing 4.2. Efficient bit reverse for 27-bit number

Restructured Design: This design includes manual restructured and the opti-

mized designs for Radix Sort, Create Tree, Compute Bit Length, Canonize, and Create

Codeword modules, which were described earlier in this section.

Latency Optimized Design: On top of the Restructured design, we pipeline

computations in individual modules using the pipeline pragma in the high-level synthesis

tool. The pipeline pragma pipelines the computations in a region exploiting fine grained

parallelism. Once restructured, rest of the computations in individual modules of the
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CHE are sequential. e.g., computations in iterations execute dependent read, compute,

write operations in each iteration of loop. This allows pipelining of only these primitive

operations in each iteration of the loop. This is done by pipelining the most inner loop of

each module.

Throughput Optimized Design: This design further optimizes the Latency Opti-

mized design to achieve coarse grained parallelism. The goal of this design is to improve

throughput by exploiting coarse grained parallelism among the tasks (through task level

pipelining). We achieve task level pipeline in the high-level synthesis by using a dataflow

directive. However, the current dataflow directive only works if the input/output of

functions are read/written by only one process. We solved this issue by duplicating

the input/outputs which are read/written by more than one process. Listing 4.3 shows

the pseudocode. For example, the output of Sort is read by two processes (Create Tree

and Canonoize). Therefore, we duplicated the output of Sort into two different arrays

(BRAMs: SF SORT1, SF SORT2) inside the Sort module. This is shown in Listing 4.3

Line 9. For simplicity, we omitted BRAM duplication parts for the rest of the code in

Listing 4.3. This incurs additional logic to duplicate this data as shown in Listing 4.4.

This has some adverse effect on the final latency, but it improves the overall throughput.

1 CanonicalHuffman(SF[SIZE], Code[SIZE]){

2 #pragma dataflow

3 SF_TEMP1[SIZE];

4

5 SF_SORT1[SIZE];

6 SF_SORT2[SIZE];

7

8 Filter(SF, SF_TEMP1);

9 Sort(SF_TEMP1 , SF_SORT1 , SF_SORT2);

10 CreateTree(SF_SORT1 , PA, L, R);

11

12 // Separate data in PA ,L, R

13 // into PA1 , L1 , R1 , PA2 , L2 , R2

14

15 // Parallel bit lenght calculation

16 ComputeBitLen1(PA1 , L1, R1, Bitlen1);
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17 ComputeBitLen1(PA2 , L2, R2, Bitlen1);

18

19 // Merge BitLen1 and BitLen2 to BitLenFinal

20

21 TruncateTree(BitlenFinal , Bitlen3 , Bitlen4);

22 Canonize(Bitlen4 , SF_SORT2 , CodeTemp);

23 CreateCodeword(Bitlen4 , CodeTemp , Code);

24 }

Listing 4.3. Pseudo-code for the throughput optimized design.

1 Sort(SF_TEMP1 , SF_SORT1 , SF_SORT2){

2 // Sort logic

3 SF_SORTED = ... ;

4 // Additional logic

5 for(int i=0;i<n;i++){

6 SF_SORT1[i] = SF_SORTED[i];

7 SF_SORT2[i] = SF_SORTED[i];

8 }

9 }

Listing 4.4. Additional logic to support task level parallelism.

4.4 Software Implementations

The initial Naive software implementation is a functionally correct design which

is not optimized for efficient memory management. In Baseline design, we used efficient

memory management through optimized data structures to optimize the naive implemen-

tation. An example optimization is using pointers efficiently instead of arrays whenever

possible. The code has the same functionality as the code in HLS. In addition to the

memory optimization using pointers, we did following optimizations.

Software Optimization (SO)

We do the same optimization for the Canonize and Create Codeword functions as

we did in HLS implementation. This cuts the running time of Canonize by almost half.
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Compiler Settings (CS)

We do compiler optimizations on top of software optimization using -O3 compiler

flag. These compiler optimization levels do common compiler optimizations such as

common sub expression elimination and constant propagation. On top of that, we did

manual loop vectorization and loop unrolling whenever it gives better performance.

4.5 Experimental Results

In this section, we present the performance, area, power and energy consumption

results of our canonical Huffman encoding implementations for Xilinx Zynq FPGA,

ARM Cortex-A9, and Intel Core i7 processors. All systems are tested with 256 and 704

symbol frequencies (as dictated by the of former LZ77 stage) as well as 536 as a median

value in order to show scalability trends. The latency is reported in microseconds µs and

throughput is reported in number of canonical Huffman encodings performed per second.

In this work, Vivado HLS 2013.4 is used for the hardware implementations. The final

optimized designs are implemented on a Xilinx Zynq FPGA (xc7z020clg484-1) and the

functionality is tested using real-world inputs.

4.5.1 Software Implementations

ARM Cortex-A9: We used ARM Cortex-A9 667MHz dual-core processor with

32/32 KB Instruction/Data Cache and 512 Kbyte L2 cache. In order to get highest

performance, we run our design on the processor without using an operating system.

The latency results are calculated using the number of clock cycles times the clock

period (1.49925 ns = 667 MHz). The number of clock cycles are collected using CP15

performance monitoring unit registers of ARM processor.

Figure 4.6 presents performance of software implementations running on the

ARM processor. The initial Naive design is implemented without any optimizations. The
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Baseline design is optimized on top of the Naive design using efficient data structures

and memory management on the ARM processor. On top of Baseline design then we

apply Software Optimization (SO) and Compiler Setting (CS) in that order. In SO design,

the run time of the Canonize module is reduced by 2.2X (114 us to 53 us). This added

little overhead on the CreateCodeword module by increasing its run time from 75 us to

103 us. Overall, the running time of SO design is decreased from 622 us to 589 us. In the

final design (SO+CS), the -O3 optimization decreases the running time of all modules,

resulting in total running time of the design being decreased from 589 us to 220 us.

Intel Core i7: We also implemented the same software optimizations on a multi-

core CPU implementation - an Intel Core i7-3820 CPU running at 3.6 GHz. Figure 4.7

presents performance of the various software implementations (Naive, Baseline, SO and

CS). Due to fast running time of the algorithm on a powerful processor, the software

optimization (SO) has very little impact on the final running time giving only 2 us of

saving of total running time. The final optimized with SO+CS has the fastest running

time.
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Figure 4.6. The latency results of the various software implementations running on an
ARM Cortex-A9 processor.
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Figure 4.7. The latency results of the various software implementations running on an
Intel Core i7 processor.

4.5.2 Hardware Implementations

We implemented various hardware described in Section 4.3 (Baseline, Restruc-

tured, Latency Optimized, and Throughput Optimized). Table 5.4 gives the area utiliza-

tions and performance results for these different designs when using 704 input size (536

non zero elements), and Figure 4.8 shows their latency and throughput results.
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Table 4.1. Hardware area and performance results.

Area Performance

Slices BRAM Clock Cycles II Frequency

Baseline 2067 15 130977 130978 45
Restructured 761 14 90336 90337 173
Latency Optimized 1159 14 33769 33770 133
Throughput Optimized 1836 62 41321 3186 170
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Figure 4.9. The throughput of hardware implementation for different input sizes.

The number of slices in the Baseline design is reduced in Restructured design

due to writing better HLS friendly code. (e.g., optimized bit reverse module). The

Latency Optimized design has higher slices and higher performance due to fine grained

parallelism. The Throughput Optimized designs use more BRAMs due to duplication of

the input/output data for the purpose of overcoming limitations of dataflow directive in

the HLS tool (each module can only have one read and write operation per port). The

Throughput Optimized also has higher throughput due to the additional resources required

to take advantage of both coarse grained and fine grained parallelism.

The latency (clock cycles× clock period) measures the time to perform one
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canonical Huffman encoding operation. The throughput (Initiation Interval(II)×

clock period) is the number of canonical Huffman encoding operations per second.

In the case of pipelining, the latency and throughput operations may not be equivalent.

The latency reduces from Baseline design to Latency Optimized due to restructuring and

pipelining. The latency of Throughput Optimized design increases from 212 µs to 242

µs (largely due to 33769 and 41321 clock cycles, respectively, though the clock period is

also larger).

However, this Throughput Optimized design has better throughput than previous

designs. The Throughput Optimized accepts new data every 3186 clock cycles while

Latency Optimized design accepts new data in every 33770 clock cycles. Therefore,

Throughput Optimized has higher throughput than the Latency Optimized design. Fig-

ure 4.9 shows the throughput for three designs for non-zero input sizes 256, 536 and

704. The y-axis shows the throughput (the number of canonical Huffman encodings per

second) and x-axis shows input sizes.
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4.5.3 Hardware and Software Comparison

In this section, we discuss efficiency of our various hardware and software

implementations in terms of four aspects: performance, power/energy consumption,

productivity, and the benefits and drawbacks of designing using HLS tools as compared

to directly coding RTL.

Performance: Figure 4.10 compares the throughputs of the best Xilinx Zynq

FPGA design, ARM Cortex-A9 design, and Intel Core i7 design for three different input

sizes. Overall, the hardware implementation has 13-16X better throughput than the ARM

design due to exploiting task level parallelism. The hardware design achieves 1.5-1.8X

speed-up over highly optimized design on a Intel Core i7 processor.

Power and Energy Consumption: The primary focus of this paper is to under-

stand the energy efficiency of canonical Huffman encoding on different hardware and

software platforms. We measured the ARM and FPGA portions of Zynq device power

consumptions using power domains VCCPINT and VCCINT as described [12] in real

time. The power consumption of ARM design is measured by running the design as a

standalone application (i.e., without an operating system). The ARM implementation

consumes around 344 mWatt in real time. The power consumption of FPGA part is

measured in two ways; the first measurement is obtained by using Xpower tool which

estimates around 380 mWatts. Then we calculated the power consumption of our design

from real time voltage and current by running our design on a Zynq chip. Our design

consumes maximum 170 mWatts among 250 runs. The Intel Core i7 power when running

the canonical Huffman encoding is measured using Intel Power Gadget tool-kit in a real

time[4]. The Core i7 consumes between 27-30 Watts when running the software.

Figure 4.11 (170 mWatt is used as FPGA power) shows the energy consumption of

the different platforms. This is measured in the number of canonical Huffman encodings



86

performed per Watt for the FPGA, ARM, and Core i7 designs. The FPGA is the most

energy efficient. For three different sizes, hardware implementation has around 230X

more encodings per Watt than the Core i7, and the ARM implementation has around 9X

more CHEs than Core i7 design.
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Figure 4.11. Power efficiency for various input sizes: HW vs. ARM vs. Core i7

Productivity: We spent about one month designing the algorithm on an FPGA

using the Xilinx Vivado HLS tool. Approximately 25% of the time was spent on learning

the algorithm and initial planning which also includes writing a C code for Core i7 and

ARM processors. The rest of the time (approximately 75% of the total time) was spent

on designing optimized FPGA solution using HLS. This includes time spent to create the

Baseline, Restructured Latency Optimized, and Throughput Optimized implementations.

Our final hardware design is parametrizable for different inputs which allows easy design

space exploration in a short time while achieving higher throughput with significantly

less energy consumption than the Intel and ARM processors.

HLS vs RTL: An obvious next step would be to implement the best hardware

implementation using RTL to obtain even better results. This would likely increase the
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clock frequency, and provide better throughput and energy consumption. However, this

is an expensive proposition in terms of designer time. For example, the tree creation/bit

length calculation modules require careful coding if one decides to design them in RTL.

HLS provides good results because limited parallelism in individual modules can be

easily exploited by pipelining most inner loops in C, and that would be the primarily

optimization target that one would exploit when writing RTL. Certainly, HLS provides

a huge benefit in terms of design space exploration, and we advise first using the HLS

tools to find a suitable micro architecture, and then develop the RTL from that micro

architecture in order to optimize it further.

4.6 Related Work

Many previous works [17, 116, 75] focus on a hardware implementation for

Huffman decoding because it is frequently used in mobile devices with tight energy

budget, and the decoding algorithm has high levels of parallelism. On the other hand,

Huffman encoding is naturally sequential, and it is difficult to parallelize in hardware.

However, as we show in this paper, this does not mean that it is not beneficial to

pursue hardware acceleration for this application; when carefully designed, a hardware

accelerator can be implemented in a high throughput and energy efficient manner.

There have been several hardware accelerated encoder implementations both in

the ASIC and FPGA domain to achieve higher throughput for real-time applications

[81, 97, 106, 112, 119]. Some designs [81, 97, 106, 119] focus on efficient memory

architectures for accessing the Huffman tree in the context of JPEG image encoding and

decoding. In some applications, the Huffman table is provided. In such cases the designs

focused on the stream replacement process of encoding.

Some previous work develops a complete Huffman coding and decoding engine.

For example, the work by Rigler et al [112] implements Huffman code generation for
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the GZIP algorithm on an FPGA. They employed a parent and the depth RAM to track

the parent and depth of each node in tree creation. Recent work by IBM [86] designed

GZIP compression/decompression streaming engine where they only implemented static

Huffman encoder. This significantly lowers the quality of recompression.

This paper focuses on canonical Huffman encoding since our data center scenario

must adapt the frequency distribution of new input patterns under the context of general

data compression combining with Lempel-Ziv 77 [138]. This is well suited to canonical

Huffman en coding. We provide comparison of a number of optimized hardware and

software implementations on a variety of platforms and target energy efficiency.

4.7 Conclusion

One may assume this application is not suitable for hardware implementation

because the algorithm is inherently sequential and has many irregular kernels. On

the contrary, the hardware implementation produces a superior result both in terms of

throughput and energy efficiency. To demonstrate these, we developed a number of

performance and low power design and implementation of canonical Huffman encoding

in both hardware and software running on the Virtex Zynq FPGA, ARM Cortex-A9, and

Intel Core i7 platforms. We demonstrated several optimization techniques for complex

and inherently sequential irregular applications (hard to code by hand due to complexity

and sequentiality) such as Huffman tree creation can be easily done in high-level synthesis

in a short amount of time with high performance and low power. Our final design has

around 13-16X times higher throughput than highly optimized design on ARM and it is

more energy efficient than design on high end multi-core CPU. We designed the systems

on an FPGA and verified the functionality on a Zynq device. We briefly summarize the

main lessons learned: Expectedly, applications that contain irregular kernels are hard to

synthesis with modern high-level synthesis tools than applications that purely contain



89

regular kernels. This difficulty rooted from the fact that irregular kernels have properties

such as indirect memory access, pointer chasing that are hard for modern high-level

synthesis tools to parallelize. One solution to this problem is finding the irregular kernel

bottlenecks and making them high-level synthesis friendly by restructuring the portion of

the kernel that causes problem. In high-level synthesis design, it is always required code

restructuring for synthesizing irregular kernels efficiently (e.g., Huffman tree creation).

It is often involves completely re-writing (for restructuring purposes) the whole kernel

or application from scratch. While completely designing a new application reduces the

benefit of modern high-level synthesis , it allows us to build a database of build re-usable

templates for common irregular kernels in high-level synthesis. In next chapter, we will

formally discuss some representative examples of code restructuring.
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Chapter 5

Restructured HLS Code

5.1 Introduction

Recent state-of-the-art HLS tools reduce the effort required to design FPGA

applications. These tools eliminate the need to design an architecture that specifies

every excruciating detail of what occurs on a cycle by cycle basis. In addition, HLS

substantially reduces the amount of code that must be written for a given application, and

in theory enable any software designer to implement an application on an FPGA.

However, in order to get a good quality of result (QoR), designers must write

restructured code, i.e., code that maps well into hardware, and often represents the

eccentricities of the tool chain, which requires deep understanding of micro-architectural

constructs. As noted in previous chapters, “standard”, off-the-shelf code typically yields

very poor QoR that are orders of magnitude slower than CPU designs, even when using

HLS optimizations [82, 87]. We presented the impact of code restructuring in Chapter 2

and presented comprehensive examples of code restructuring in Chapter 4.

In this chapter, we focus on restructured code and present further study about the

impact of restructured code on the final generated hardware from high-level synthesis.

We start with a formal definition of restructured code and then we define regular and

irregular kernels in the context of high-level synthesis. Then we present selected common

90
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restructured coding techniques on different kernels and applications.

Restructured code is necessary to create an efficient hardware implementation; it

typically differs substantially from a software implementation - even one that is highly

optimized. Recent studies suggest that restructuring code is an essential step to generate

an efficient FPGA design [41, 36, 88, 87, 80]. This means that in order to get efficient

designs from HLS tools, a user must write restructured code with the underlying hardware

architecture in mind. Writing restructured code requires significant hardware design

expertise, and domain specific knowledge. The difficulty of writing restructured code

limits the FPGA application development to a select number of designers. In other words,

if we wish to expand FPGA design to a larger number of people, we must make HLS

tools more friendly to those that do not have substantial amount of hardware design

knowledge.

In the following, we demonstrate how to restructure code regular kernels and

irregular kernels. We define these terms in the context of high-level synthesis.

A regular kernel has one of the following characteristics:

1. The kernel is contains loops which process data using a fixed number of iterations.

2. The kernel does not contains indirect memory accesses, e.g., A[B[i]].

3. A kernel outputs its final result (i.e., it finishes execution) when the last loop or

(last instruction) finishes its execution. That is, the termination of kernel does not

depend on undefined behavior.

An irregular kernel has one or more of the following characteristics:

1. The kernel is inherently sequential, i.e., the execution of current instruction depends

on execution result of previous instruction (e.g., A[i]= ...; B[i] = ... A[i] ...; etc.).
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2. If kernel contains an assignment that accesses memory via an indexed variable,

and memory access pattern is not predictable (e.g., A[B[i]]).

3. Kernel contains loops where loop condition contains variables or arrays that are

calculated inside of a loop and have an unpredictable pattern. For example, in

this code array[] is used as part of the loop condition, and its value is modified

inside the loop. while ((j > 0) && (array[j-1] > index)) { array[j]

= array[j-1]; j = j - 1; }

Previous works shows that irregular programs are more difficult to optimize in

high-level synthesis than regular programs [34, 126]. We examine the code reconstructing

techniques for both types of programs using different examples. While regular kernels

are easier to optimize in HLS when the size of input is small, they are difficult to optimize

as the input size grows. We present regular kernels examples (e.g., matrix multiplication,

and integral image calculation) and irregular kernels (e.g., histogram, and Huffman

tree) that must be restructured in order to generate efficient hardware using high-level

synthesis. In the remainder of this chapter, we discuss the impact of restructured code on

the final hardware generated from high-level synthesis. And we propose a restructuring

techniques based on best practices. The specific contributions of this chapter include:

1. A study on the importance of restructuring code to obtain FPGA designs with good

QoR (Quality of Result). We define QoR as hardware that has high performance

and low area usage.

2. Eight common code restructuring techniques and their impact on QoR for regular

and irregular kernels.

3. A list of challenges and possible solutions for developing a novel tool flow that

opens up FPGA design to a broader set of programmers.
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The remainder of this chapter is organized as follows: Section 5.2 describes

restructured code using eight examples that demonstrate the impact of code restructuring.

We start with small examples (prefix sum, histogram, and SpMV). Then we describe

how to restructure larger kernels using matrix multiplication, FFT, Huffman tree creation,

convolution, and face detection as examples. For the larger kernels, we also present the

impact of code restructuring by providing performance and area results of restructured

and non-restructured codes. Section 5.3 presents a study about impact of using existing

restructured code to make FPGA designs easier for software programmers. Section 5.4

presents a list of challenges and possible solutions for developing a programming model

for software programmers. We conclude in Section 5.5.

5.2 Restructured Code

Optimal high-level synthesis code is not easy to write for most “non-expert”

designers because it requires low-level hardware knowledge. In order to achieve a good

result, it is important to write restructured code, which is often vastly different from the

initial implementation. That is, an inexperienced designer will likely write the high-level

synthesis code as if she was writing the application for implementation on a processor

architecture. This rarely maps well to hardware.

Writing restructured code is necessary to produce good FPGA designs using

high-level synthesis. Yet, it is not often obvious the best way to do this. In this section,

we present a number of examples, and show how to restructure them in order to achieve

good results. We provide the initial software code, and describe how to modify it into

reconstructed code. We hope that this provides insight on the skills and knowledge

necessary to perform the restructuring process. Then we present a formal specification of

converting normal application code to restructured code for five case studies.
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5.2.1 Prefix sum

Prefix sum is a common kernel used in many applications, e.g., recurrence

relations, compaction problems, string comparison, polynomial evaluation, histogram,

radix sort, and quick sort [21]. Prefix sum requires restructuring in order to create an

efficient FPGA design.

Prefix sum is the cumulative sum of a sequence of numbers. Assume that the

input sequence is stored in the array in[], and the prefix sum is put into array out[]. Prefix

sum works as follows:

out[0] = in[0] (5.1)

out[1] = in[0]+ in[1] (5.2)

out[2] = in[0]+ in[1]+ in[2] (5.3)

out[3] = in[0]+ in[1]+ in[2]+ in[3] (5.4)

· · · (5.5)

Listing 5.1 presents the baseline C code for prefix sum. We start the optimization

process using pragmas without changing the code. We name this design Baseline

Optimized (BO) meaning that the optimizations were done on top of the baseline code.

The ideal optimization yields II = 1 for the loop in the code. Unfortunately, even for a

relatively simple kernel like prefix sum, the designer must change the code in order to

get an II = 1.

1 void prefixsum(int in[SIZE], int out[SIZE])

2 {

3 for(i=1;i<SIZE -1;i++){

4 out[i]=out[i-1]+in[i]

5 }

6 }



95

Listing 5.1. Initial prefix sum code. This would work well when implemented on a
processor. However it does not map well to an FPGA.

Another important factor is creating a loop whose performance scales as it is

unrolled. Ideally, as we increase the unrolling factor, the performance of the kernel

increases in a linear manner. Unfortunately, this is not the case for the baseline C code

for prefix sum. We must rewrite the code to allow unrolling to scale as expected.

We unrolled the loop by a factor of 4 with the hope of processing the data input

4× faster. Then we performed a cyclic partitioning on the in and out arrays by a factor

of 4 in order to meet the data access required by using an unroll factor of 4. We also

pipelined the loop. Listing 5.2 shows code after applying these optimizations. Based

upon these optimizations, we expect to get a speed up by a factor of 4.

1 void prefixsum(int in[SIZE], int out[SIZE])

2 {

3 #pragma HLS ARRAY_PARTITION variable=out cyclic factor =4 dim=1

4 #pragma HLS ARRAY_PARTITION variable=in cyclic factor =4 dim=1

5 for(i=1;i<SIZE -1;i++){

6 #pragma HLS UNROLL factor =4

7 #pragma HLS PIPELINE

8 out[i]=out[i-1]+in[i]

9 }

10 }

Listing 5.2. Baseline optimized (BO) prefix sum code

Unfortunately these optimizations do not provide a 4× speedup. Even for this

relatively “simple” code, the designer must change the code in order to meet the expected

performance improvements. In this case, the designer must break the data dependency

between out[i] and out[i−1]. Listing 5.1 translates into hardware architecture depicted

in Figure 5.1 (a). In order to get the desired speed up, the designer must change

the architecture in Figure 5.1 (a) to an architecture like that in Figure 5.1 (b), which

introduces a register A to store the input in. The architecture in Figure 5.1 (b) provides
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in 

out 
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A 

in 

out 
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(a) (b) 

Figure 5.1. Part a) is the hardware architecture created by the code in Listing 5.1. Part
b) is the hardware architectures corresponding to the restructured code in Listing 5.3.
Breaking the dependency between the out array creates a more optimal design.

a hardware architecture that gives the desired linear speed up based upon the unrolling

factor. Listing 5.3 shows restructured code for the architecture in Figure 5.1 (b) that

provides such a linear speed up when the loop is unrolled. We call this code Restructured

Optimized 1 (RO1).

1 void prefixsum(int in[SIZE], int out[SIZE]){

2 #pragma HLS ARRAY_PARTITION variable=out cyclic factor =4 dim=1

3 #pragma HLS ARRAY_PARTITION variable=in cyclic factor =4 dim=1

4 A=in[0];

5 for(i=0;i<SIZE;i++){

6 #pragma HLS UNROLL factor =4

7 #pragma HLS PIPELINE

8 A = A+in[i];

9 out[i] = A;

10 }

11 }

Listing 5.3. Restructured optimized (RO1) prefix sum code

Now we explore another restructuring technique for the prefix sum using a

reduction pattern [91]. We name this design restructured optimized (RO2). Figure 5.2

(a) presents 8 input prefix sum using a reduction pattern. Eight inputs requires three

reduction stages.
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Figure 5.2. a) Eight input prefix sum using reduction. b) A potential partitioning of the
prefix sum.
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Figure 5.3. BO-4, BO-8, BO-16 are three different designs with unrolling factor of
4, 8, and 16. The clock period varies between 2.75-3.75 nano seconds. Overall, the
throughput is almost identical for these designs despite the fact that the unrolling factor
should expose more parallelism.

These stages can be pipelined using the dataflow pragma. Using the reduction

pattern alone does not improve the throughput. Thus, we applied cyclic partitioning and

unrolling on top of the restructured RO2 design. The complete code for this architecture

can be found in Appendix A.1.

Next, we will discuss hardware performance area results of BO, RO1 and RO2.

Figure 5.3, Figure 5.4, and Figure 5.5 show results of designs BO, RO1, and RO2,

respectively. Each of these figures show latency (number of clock cycles), achieved

clock period, and throughput (number of samples per second). All of the results are

obtained from Vivado HLS 2014.1 after place and route. The latency of BO-X designs

scale according to the unroll factor (X = 4,8,16) as shown in Figure 5.3 (first figure).
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Figure 5.4. RO1-4, RO1-8, and RO1-16 are three different designs with unrolling factor
of 4, 8, and 16, respectively. The latency decreases from Baseline Optimized, and it does
scale based on unroll factor. The clock period varies between 3.75 and 4.75 nano seconds.
Overall, the throughput increases little bit.

With an unrolling factor (X = 4,8,16), the frequency decreases by the same amount of

unrolling factor (X = 4,8,16). In other words, the frequency decreases according to

the unrolling factor (X = 4,8,16). As a result, the throughput of the BO-X designs in

Figure 5.3 does not scale as expected. In fact, there is not relative benefit for doing this

unrolling optimization.

Recall the design RO1 corresponds to the design with the data dependency

removed (Listing 5.3). Figure 5.4 shows that by removing this dependency we get a

better latency than the BO designs (the original design with the data dependency). Yet the

throughout for these RO1 designs with different unrolling factors remains very similar.

This is due to the fact that the clock period for the unrolled designs increases with the

unrolling factor – the same trend that we saw for the BO design (see Figure 5.3). The

throughputs are better than BO, yet they still do not scale with the unrolling factor as we

would hope.

The design RO2 uses a reduction pattern. Figure 5.5 shows that the latency has a

similar pattern to both BO and RO1, i.e., the number of cycles decreases as the unrolling

factor increases. The major difference is in the frequency. The clock period for each of



99

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

102

103

104

105

27 28 29 210 211 212 213 214 215

Size

N
um

be
r 

of
 c

lo
ck

 c
yc

le
s

Unrolling Factor ● ● ●RO2−16 RO2−4 RO2−8

Prefix sum Latency

● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ●

●

● ● ● ●
● ●

●
●

●

4

8

12

16

27 28 29 210 211 212 213 214 215

Size

A
ch

ie
ve

d 
C

lo
ck

 P
er

io
d 

(n
s)

Unrolling Factor ● ● ●RO2−16 RO2−4 RO2−8

Prefix sum Clock Period

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

104.5

105

105.5

106

106.5

107

27 28 29 210 211 212 213 214 215

Size

T
hr

ou
gh

pu
t (

M
H

z)

Unrolling Factor ● ● ●RO2−16 RO2−4 RO2−8

Prefix sum Throughput

Figure 5.5. RO2-4, RO2-8, RO2-16 are three different designs with unrolling factor of 4,
8, and 16. The latency scales based on unroll factor. Clock period varies between 3.58
and 5.54 nano seconds. Here the throughput scales based on unroll factor.

the designs is between 3.5 and 5.6 ns. Thus, the throughput exhibits the desired scaling

as the unrolling factor increases. This is different result that both of the previous designs.

Overall, the throughput is better than both BO and RO1, and this design scales with the

unrolling factor.

5.2.2 Histogram

Histogram is a common kernel used in image processing, signal processing, data

processing (e.g., databases) and many other domains. Figure 5.6 presents an example of

histogram calculation. Given a set of data, a histogram counts the occurrence of each

element (Bin=elements, Count=occurrence). The result is plotted in a graph.

Listing 5.4 shows a baseline implementation of a histogram algorithm, e.g., one

that a designer would code without regard to optimizing it for hardware. This algorithm

calculates histogram of image which has size IMAGE SIZE, and it outputs a histogram

of pixels to the hist array which has size of HIST SIZE. We call this design Baseline

Optimized (BO).

1void hist(int pixel[IMAGE_SIZE], int hist[HIST_SIZE ]){

2 int val;

3 for(int i=0;i<IMAGE_SIZE;i++){

4
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Figure 5.6. A histogram kernel counts the occurrences of the elements in a set of data.

5 #pragma HLS PIPELINE

6 val = pixel[i];

7 hist[val] = hist[val] + 1;

8 }

9}

Listing 5.4. The baseline optimized (BO) code for the histogram kernel.

To optimize this code for hardware, we can direct the high-level synthesis tool

to exploit instruction level parallelism by applying the pipeline pragma to the body

of the for loop. We are unable to achieve an II = 1 due to a read-after-write (RAW)

dependency. We are reading from the array hist[] and writing to the same array in every

iteration of the loop. Figure 5.7 (a) shows the hardware architecture for the code in

Listing 5.4.

We can eliminate the read after write dependency using an architecture shown in

Figure 5.7 (b). The architecture uses an accumulator (accu), comparator, and old value

of current address. This architecture updates the accumulator if the current address and

old address are the same. Otherwise, it writes the accumulator value to the old address

and reads a new accumulator value from the current address. In this case, the code reads

from and writes to a different address. Thus, the RAW dependence can be ignored. Most
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Figure 5.7. Hardware architectures created by software code versus hardware architec-
tures created by restructured code for prefix sum.

HLS tools have an directive to force the tool to ignore a RAW dependency.

Listing 5.5 shows a restructured code which provides II = 1 that represents the

architecture in Figure 5.7 (b). This restructured version eliminates the RAW dependency

from Listing 5.4. We call this design Restructured Optimized 1 (RO1).

1 #pragma HLS DEPENDENCE variable=hist array intra RAW false

2 for(i=0;i<IMAGE_SIZE;i++){

3 #pragma HLS PIPELINE II=1

4 val = pixel[i];

5 if(old == val)

6 accu = accu + 1;

7 else {

8 hist[old] = accu;

9 accu = hist[val ]+1;

10 } old = val;

11 }

Listing 5.5. The Restructured Optimized 1 version of the histogram kernel. The code
enables an II = 1. It performs the histogram kernel in two parts. First it compares current
and old values of the element under consideration. If they are the same it increments
the accumulator (accu) register. The accu is a register so it does not cause any stall
which reduce the II. In the else clause the elements are not the same. Therefore we are
reading and writing to different locations of the hist array. Thus we can ignore the RAW
dependency.

We can further optimized the histogram kernel by running several of the architec-

tures in parallel to boost the throughput. We start with the RO1 architecture as described
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Figure 5.8. Histogram: a) PE for histogram, b) Communicating PEs.

in Figure 5.7 (b). The goal is to create multiple versions of this architecture, which we

call a processing element (PE), split the input data into different streams, and feed them

independently into a PE. Then we must merge the results from all of the PEs. This idea

is shown in Figure 5.8. We can this the Restructured Optimized (RO2) design.

Due to the limitations of current high-level synthesis tool, we must initialize the

storage in each PE in order to run them in parallel. This is shown in Figure 5.8 (a). It is

the architecture in Figure 5.7 (b) with some additional logic to initialize the hist[] array.

Listing 5.6 provides the source code for the RO2. In general, RO2 has higher memory

usage because it has intermediate local buffers(hist1, hist2) in lines 39 and 40. Here we

formulate required number of local memory for RO2. If there are n processing elements,

and each processing element requires m local memories. Then RO2 will use total n×m

local memory if we use BRAMs (mapping arrays to BRAMs). Ideally, we want higher

throughput while using less number of local memories. To use less local memories for

design like RO2 in HLS, we map intermediate arrays (as in the case of RO2) to a local

streams. In Listing 5.6, we mapped hist1 and hist2 into local streams in lines 41 and 42.

12 #include "hist.h"

13 void histo(int pixel[IMAGE_SIZE2], int hist[HIST_SIZE ]){

14 #pragma HLS DEPENDENCE variable=hist array intra RAW false

15 int val =1;

16 int old_val =2;

17 unsigned int accu =0;
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18 // Initialization

19 for(int i=0;i<HIST_SIZE;i++){

20 hist[i]=0;

21 }

22

23 //PE Code below

24 ...

25

26 }

27

28 // Merge function

29 void Merge(DTYPE hist1[HIST_SIZE], DTYPE hist2[HIST_SIZE], DTYPE final[HIST_SIZE ]) {

30 for(int i=0;i<HIST_SIZE;i++){

31 final[i] = hist1[i] + hist2[i];

32 }

33 }

34 // Top level function

35 void hist(int pixelA[IMAGE_SIZE2], int pixelB[IMAGE_SIZE2], int hist[HIST_SIZE ]){

36 #pragma HLS INTERFACE ap_fifo port=pixelA

37 #pragma HLS INTERFACE ap_fifo port=pixelB

38 #pragma HLS DATAFLOW

39 DTYPE hist1[HIST_SIZE ];

40 DTYPE hist2[HIST_SIZE ];

41 #pragma HLS STREAM variable=hist1

42 #pragma HLS STREAM variable=hist2

43

44 histo (pixelA , hist1);

45 histo (pixelB , hist2);

46

47 Merge(hist1 , hist2 , hist);

48 }

Listing 5.6. HLS code for architecture in Figure 5.8 (b)

Next, we present results of the three different architectures for the histogram

kernel. Figure 5.9, shows the results of BO; Figure 5.10 is RO1; and the results for design

RO2 is in Figure 5.11. Each of these figures has a graph for latency (total number of

clock cycles), achieved clock period, and throughput (number of samples per second).

All results are obtained from Vivado HLS 2014.1 after place and route.

The results for the BO in Figure 5.9 indicates that unrolling does not help with this

architecture. This is due to the RAW dependency. The clock periods are all relatively the
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Figure 5.9. Baseline Optimized (BO) implementation of the histogram kernel. The
latency does not scale based on unroll factor. Clock period varies between 2.75-3.75 ns.
Thus, the throughput for the different unrolled architectures are very similar.
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Figure 5.10. Histogram: Restructured Optimized 1. Latency decreases from Baseline
Optimized and does not scale based on unroll factor. Clock period varies between
3.75-4.75 nano seconds. Throughput increases little bit.

same (between 2.75 and 3.75 ns). The throughput decreases as the number of elements

increases, and unrolling factor shows almost no benefit.

The RO1 provides overall better throughput than BO. This is due to the ability

to lower the II by eliminating the RAW dependency. The unrolling factor does not help

the latency, and the clock periods are all relatively similar. Thus, the unrolling does not

increase the throughput when measured in samples per second.

RO2 does provide better throughput than BO and RO1 because it has achieved

better clock period with the same latency. However, RO2 uses more memory than BO

and RO1. RO2 uses larger number of local memories because there is more parallelism
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Figure 5.11. Histogram: Restructured Optimized 2. RO-4,RO-8, RO-16 are designs with
different number of PEs. Latency does scale based on the number of PEs. Clock period
varies between 5.54-5.75 nano seconds. Throughput scales based on the number of PEs.

(4,8,16) PEs operating in parallel.

5.2.3 SpMV: Sparse Matrix Vector Multiplication

Sparse matrix vector multiplication (SpMV) is a common kernel that found in

application related to graph algorithms, compressive sensing, digital signal processing,

and computer vision. SpMV does multiplication of a sparse matrix M with a vector V .

M being a sparse means that many of its elements are zero.

We focus on a sparse matrix vector multiplication using the compressed sparse

row (CSR) matrix format. CSR format stores the sparse (matrix with many zero elements)

in a compressed format to save memory. Figure 5.12 (a) shows an example of a sparse

matrix M. For the sake of simplicity, we assume sparse matrix has a size of 4× 4.

Figure 5.12 (b) shows the corresponding compressed sparse row matrix format for M. In

CSR format, there are three structures namely ptr, ColInd, and Val, and corresponding

values of these data structures are also given in Figure 5.12 (b). Data structure ptr is a list

of value of starting index of each row. The last element in ptr is the ending index of the

last row. Thus the number of elements in ptr is equal to the number of rows plus one. For

example, the first element in ptr is 0 (Figure 5.12) and second element is 2. This means
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Figure 5.12. a) A sparse matrix (normal representation) M of size 4×4, b) Compressed
Sparse Row matrix (CSR) format for M. Since first row starts from 0 and there is 2
non-zero elements (3 and 4) the second row must start from 2. Thus the second element
of ptr must be 2. Val is constructed by non-zero elements so it contains all non-zero
elements from the matrix M. ColInd is the corresponding index of values Val in the
original matrix.

the first row starts from 0 and it end at 2 (the first row of sparse matrix has 2 non-zero

elements) where the second row starts. Val is an array of (left to right, then top to bottom)

non-zero values of matrix M. ColInd is index of columns corresponding to the Val. The

number of elements in Val and ColInd are equal to the number of non-zero elements in

the sparse matrix.

1 void spmv(int num_rows , DTYPE ptr[NUM_ROWS +1], DTYPE ColInd[NNZ], DTYPE Val[NNZ], DTYPE

y[SIZE], DTYPE x[SIZE])

2 {

3 L1:for (int i = 0; i < NUM_ROWS; ++i) {

4 L2:for(k = p[i]; k < p[i+1]; ++k)

5 {

6 #pragma HLS PIPELINE II=1

7 y0 = y0 + Val[k] * x[ColInd[k]];

8 }

9 y[i] = y0;

10 }

11 }

Listing 5.7. Initial C code for Sparse Matrix Vector Multiplication
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1 void spmv(int num_rows , DTYPE ptr[NUM_ROWS +1], DTYPE ColInd[NNZ], DTYPE Val[NNZ], DTYPE

y[SIZE], DTYPE x[SIZE])

2 {

3 L1:for (int i = 0; i < NUM_ROWS; ++i) {

4 DTYPE a =ptr[i];

5 DTYPE b =ptr[i+1];

6

7 L2:for(k = a; k < b; ++k)

8 {

9 #pragma HLS PIPELINE II=1

10 y0 = y0 + Val[k] * x[ColInd[k]];

11 }

12 y[i] = y0;

13 }

14 }

Listing 5.8. Sparse Matrix Vector Multiplication that provides II equal 1 regardless of
underlying HLS tool

Listing 5.7 presents an initial C code for SpVM. We pipelined the loop L2 to achieve

I = 1. Depending on the underlying HLS tool, II = 1 might not be possible. For example,

Vivado HLS 2014.1 does not achieve II = 1 when the Listing 5.7 is given as an input.

On the other hand, Vivado HLS 2014.4 achieves II = 1 when the Listing 5.7 is given as

an input. We will discuss a possible scenario which prevents achieving II = 1 for loop

L2. II = 1 is not possible when HLS tool loads ptr[] at the staring cycle of L2. To solve

this problem, HLS tool must load the ptr[] before starting the L2 or we must manually

modify the code in Listing 5.7 so that we force the HLS tool to load the value of ptr[]

before the loop L2 starts. The modified code is shown in Listing 5.8. In the rest of this

section, we assume our HLS tool load the value of ptr[] before the loop starts.

Using the code in Listing 5.7, we want to show that impact of different HLS

(pipeline, unroll) optimization on this code. HLS design of irregular programs is tricky

because some optimizations such as unroll does has an adverse effect when used incor-

rectly. For example, the unroll pragma is expected to decrease the number of clock cycles,

but if it is used incorrectly (e.g., places in wrong place), it will increase the number of
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clock cycles.

We generated 10 different designs for the sparse matrix vector multiplication

by adding pragmas to Listing 5.7. We call these designs Baseline Optimized (BO).

One of the designs (Case 5) is shown in Listing 5.9. In Listing 5.9, we did following

optimizations; we applied the pipeline pragma to L2; we unrolled L2 by a factor of 2;

and since we are unrolling L2 by a factor of 2, we partitioned the input arrays with cyclic

partition with the same factor (a factor of 2) to increase parallelism so that L2 can access

data in parallel.

12 void spmv(int num_rows , DTYPE ptr[NUM_ROWS +1], DTYPE ColInd[NNZ], DTYPE Val[NNZ], DTYPE

y[SIZE], DTYPE x[SIZE])

13 {

14 #pragma HLS ARRAY_PARTITION variable=Val cyclic factor =2 dim=1

15 #pragma HLS ARRAY_PARTITION variable=x cyclic factor =2 dim=1

16 #pragma HLS ARRAY_PARTITION variable=ColInd cyclic factor =2 dim=1

17

18 L1:for (int i = 0; i < NUM_ROWS; ++i) {

19 L2:for(k = ptr[i]; k < ptr[i+1]; ++k)

20 {

21 #pragma HLS PIPELINE II=1

22 #pragma HLS UNROLL factor =2

23

24 y0 = y0 + Val[k] * x[ColInd[k]];

25 }

26 y[i] = y0;

27 }

28 }

Listing 5.9. Baseline Optimized for Case 6 from Table 5.1.

We show the set of optimizations used in the remaining nine designs in Table 5.1.

Next, we will discuss why we choose these optimizations and their impact on the

final generated hardware results. First of all, there are two loops in initial C code in

Listing 5.7. Since there are two loops (L1 and L2), we must cover optimizations that

can be applied to both of them. We can do different combinations of loop pipelining and

unrolling optimizations combined with data partitioning for the code in Listing 5.7. These
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optimizations covers both loops. By combining these optimizations, we generate total of

10 different HLS designs (Case 5 was discussed earlier and presented in Listing 5.9).

Table 5.1. Optimizations on a sparse matrix-vector multiplication.

Optimizations Results

L1 L2 Latency DSP FF/LUT

Case 1 - - 220758 4 331/219
Case 2 - pipeline 22153 4 302 / 239
Case 3 pipeline - 220758 4 331 / 219
Case 4 unroll=2 - 220630 4 448 / 485
Case 5 - pipeline, unroll=2 13703 8 593 / 440
Case 6 - pipeline, unroll=2, cyclic=2 14215 8 850 / 694
Case 7 - pipeline, unroll=4 14084 16 1230 / 693
Case 8 - pipeline, unroll=4, cyclic=4 14852 16 2290 / 2158
Case 9 - pipeline, unroll=8 14846 32 1681 / 1143
Case 10 - pipeline, unroll=8, cyclic=8 16638 32 6391 / 7439

Table 5.1 shows the results of these different designs. Case 1 has no optimizations.

This is equivalent to synthesizing the code in Listing 5.7. Case 1 has a latency of 220758

clock cycles, and it uses 4 DSPs 331 FFs, and 219 LUTs. In Case 2, we pipelined L2

which reduces the number of clock cycles from 220758 to 22153. The FFs decreased

to 302, and the LUTs increased to 239. Case 3 pipelines L1. This design has a latency

of 220758 cycles, which is the same latency as Case 1. This is because the pipeline

directive is being ignored due to undefined loop bounds in L2. In other words, we can

not pipeline L1. Case 4 unrolls loop L1 by a factor of two. This does not decrease the

number of clock cycles as expected by a factor of 2. This is because need to partition

the data accessed in the inner loop(ColInd, Val indexed by value of ptr) by the unrolling

factor. Since these data structures are accessed randomly, we can not partition the data

into separate memories. Case 4 has similar results as Case 3.

In Case 5, we pipelined and unrolled loop L2. This results in a design with 13703

clock cycles; it has 8 DSPs, and increased the number of FFs and LUTs by approximately
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a factor of two compared to the baseline design (Case 1). Case 5 gives results as expected

by the unrolling factor (i.e., the clock cycles decrease, and the area increases by a factor

of two). Then we applied cyclic partitioning to the arrays in Case 6 (Listing 5.9). The

optimizations in Case 6 increased the latency and the area. This means partitioning does

not help. To get deeper understanding of effectiveness of unrolling and partitioning factor,

we did increased unrolling and partitioning factor in Case 7 through Case 10. As we

increase the unrolling factor, we expect the latency to decrease. Conversely, this does not

happen and the area increases. In Case 10 area increased dramatically.

To conclude, Cases 7 through 10 and Case 3 and 4 do not provide the results

as expected. It is often the case that designers blindly apply directives; this is rarely

effective. In these designs, the directives do not match well with the code, and thus the

underlying hardware architectures are not optimal. For example, we can not unroll or

pipeline loop L1 when loop L2 contains undefined loop bounds. These designs provide

an example where optimizations in HLS have adverse effect. For example, Case 10

increases the area dramatically. As a result, only Case 3 and Case 5 provide good results

amongst these 10 designs.

We choose to further explore Case 2 in order to increase the throughput. Fig-

ure 5.13 shows hardware architecture corresponding to Case 2. In Case 2, we pipeline

the MAC unit in the Figure 5.13.

We create a design called Restructured Optimized where we run several architec-

tures of Case 2 in parallel. In other words, we make the architecture in Figure 5.13 as one

PE (processing element), and run several PEs in parallel. Each of these PEs performs the

computation on different regions of the matrix vector multiplication. Figure 5.14 presents

an example hardware architecture of the RO design when using two PEs in parallel.

As these examples (prefix sum, histogram, SpMV) show, even the most trivial

kernels require substantial hardware expertise to optimize these kernels. Some example
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Figure 5.13. a) Hardware architecture of a sparse matrix vector multiplication. ptr, y,
Val, ColInd, x are arrays stored in BRAMs. The outer loop iterates from 0 to number
of rows in the matrix from ptr. Each time two elements are read from ptr; the first one
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of y at a time accessing Val, ColInd and x with index k.
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different portions of the data. In this example, M1 is feed into PE1, and M2 is feed into
PE2. We collect y1 and y2 to craete y. Here y1 and y2 have a size of 2 and y has a size of
4.
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kernels (prefix sum and histogram) mainly show optimization for instruction-level par-

allelism (getting II = 1). We also explored different effects of HLS optimizations for

irregular kernel (e.g, SpMV). We learned that applying different powerful HLS optimiza-

tions sometimes does generate worse hardware than less powerful optimizations. We

also presented increasing ways of increasing throughput using several PEs (mainly task

level parallelism). Task level parallelism is important concept to design hardware in HLS.

Next, we will explore deeper into task level parallelism using more complex kernels.

5.2.4 FFT

Fast Fourier Transform (FFT) is a common kernel found in applications such as

wireless communication, digital signal processing, and image processing applications.

FFT converts (computes) a time domain signal to the frequency domain. There are a

number of algorithms to compute FFT. In this section, we walk through the design of

the Cooley-Tukey FFT [43] algorithm for implementation in hardware. We start with a

common version of the code, and then describe how to restructure it to achieve a better

hardware design. Our design results are competitive with highly optimized FFT IP core

from the Xilinx CoreGen library.

An N-point FFT has log2 N +1 stages. Bit reverse is the first stage. This stage

swaps a value of the input data with the element located at the bit reversed address in the

array. After this bit reverse stage, we perform log2 N stages of butterfly operations where

N is the number of FFT points. Each of these butterfly stages has the same computational

complexity. We define each of these sub stages as a task.

Figure 5.15 provides a graphical depiction of an 8-point FFT. The first stage

swaps the data; this is done to insure that the output frequency data is presented in order.

The data is swapped by taking the index of an element, getting the bit reversed index, and

then swapping those two elements. For example, consider the data at x(1) or equivalently
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Figure 5.15. An 8-point FFT. The first stage swaps the data using a bit reverse algorithm.
The next three stages perform butterfly operations.

x(0b001). Performing a bit reversal on the binary number 0b001 yields 0b100 = 4. Thus,

we swap the data values x(1) and x(4). The remainder of the data is swapped as shown

in Figure 5.15.

After the bit reverse stage, we perform log2 8 = 3 stages of butterfly operations.

A butterfly has two inputs and two outputs. Consider the upper-left-most butterfly in the

Figure 5.15. The inputs are x(0) and x(4).

Listing 5.10 provides a high level overview of an N-point FFT. It presents a

common three loop structure implementation of FFT, which is typically seen in a software

version. In this code, the loop in line number 10 iterates each stage of N-point FFT.

Therefore, the scale of code that constitutes body of a task (stage) is between line numbers

11 and 16. According to this code each task has two nested loops with complexity of

N/2×N/2. The loops in line numbers 11 and 12 both iterates N/2 times. The loop

in line number 11 iterates each butterfly in each stage while the loop in line number

12 iterates points which have the same twiddle factor. Since inner two loops have N/2

iterations, we merge them and calculate indices of each loop as needed. Therefore, final

complexity of each task is N/2 iterations instead of N/2×N/2. We need to change the

original code so that each sub task must finish in N/2 iterations.
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1 void FFT(IN[], OUT[])

2 {

3 // DFT = 2^ stage = points in sub DFT

4 DFTPoints = 1 << N;

5

6 // Butterfly WIDTHS in sub -DFT

7 NumButterfly = DFTPoints /2;

8

9 BitReverse ((IN , IN);

10 for((i=0;i<N;i++{

11 for(j=0;j<NumButterfly; j++){ // Runs logN

12 for((k=0;k<N; k+= DFTPoints{ // Runs logN

13 // Butterfly calculation

14 ... ...

15 }

16 }

Listing 5.10. Software C code for N-point FFT.

1 void FFT(IN[], OUT[])

2 {

3

4 for(i=0;j<N/2; i++){ // Runs logN

5 // Calcualte indices as needed.

6 ... ...

7 }

Listing 5.11. Body of restructured stage of FFT

We chose to design non-streaming model using BRAMs between different stages

of FFT. Stages of FFT has a non-sequential access to incoming data. sAs shown in

Figure 5.15, in the first stage of 8-point FFT, it calculates butterflies between two

consecutive incoming data. But in the next stages, it calculates butterfly using data at

locations in alternating indices. (Use data from 0 and 2). Many real world applications

that require FFT needs moderate sizes of FFT usually 64 up to 1024 (or even larger up

to 16 KB). Therefore, it is feasible to use BRAMs between different stages of FFT. It

is straightforward to draw block diagram of FFT as shown in Figure 5.16 after defining

tasks and memory mode. We will name this kind of computational pattern (as shown
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in Figure 5.16) a bulk synchronous model (non-streaming) which will be discussed in

Chapter 6. The given a top level function code for this design is shown in Listing 5.12.

For the sake of simplicity, we give an example of 8-point FFT. The software C code for

8-point FFT has three nested loops as mentioned before. The outer loop is iterating for

each stage (8-point FFT has three stages). The functions (Stage1, Stage2 and Stage3) are

calculating each stage of 8-point FFT. In general case, we will have logN functions of

each stage of FFT. We also made the bit reverse stage as the first function of the design.

We use MEM1, MEM2 and MEM3 variables for buffer memories between different

tasks (stages). These memories implemented by BRAM. Stages are implemented as

having input from previous stage and output goes to next stage. Final output of Stage3 is

the output of top level function. We used data f low directive to pipeline stage functions.

The final throughput of the design is the same as the number of clock cycles needed for

one stage. (All stage have same number of clock cycles).

1 void FFT(IN[], OUT[])

2 {

3 #pragma dataflow

4

5 MEM1[N];

6 MEM2[N];

7 MEM3[N];

8

9 BitReverse ((IN , MEM1);

10 Stage1(MEM1 , MEM2);

11 Stage2(MEM2 , MEM3):

12 Stage3(MEM3 , OUT);

13 }

Listing 5.12. Top level function of restructured 8-point FFT with non-streaming bulk
synchronous model

Experimental Results: FFT

We evaluated the functionality of system by using simulator incorporated with

HLS tool. The simulator evaluates the generated RTL with Modelsim. We then syn-
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void FFT(IN[], OUT[]) 
{ 
 
BitReverse((IN, IN); 
 
for((i=0;i<3;{ 
    for(j=0;j<4){ 
        for((k=0;k<4;{ 

         //Butterfly calculation 
         …. …… 
        }  
} 
 

1 

2 

void FFT(IN[], OUT[]) 
{ 
 #pragma DATAFLOW 
 
MEM1[N]; 
MEM2[N]; 
MEM3[N]; 
 
BitReverse((IN, MEM1); 
Stage1(MEM1, MEM2); 
Stage2(MEM2, MEM3): 
Stage3(MEM3, OUT) 
 } 

3 

4 
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Figure 5.16. Block diagram of FFT

thesised the system with ISE 14.3 on Zynq device (xc7z020clg484-1). We tested the

design with different size of FFTs (256×256, 512×512, 1024×1024, 2048×2048 and

4096×4096). We presented area(slices) and throughput (million FFTs per second) in

Figure 5.17. We also compared our FFT hardware results with highly optimized CoreGen

FFT IP from Xilinx. CoreGen throughputs are little bit better than our design for small

sizes FFTs (256-FFT, 512-FFT, 1024-FFT). CorGen also tends to have smaller area than

our design. The reason our FFT has larger area, we use larger number of bits for input

data. CoreGen FFT has 14 bit input for all sizes of FFT and based on the FFT size, it uses

different bit widths for each stage. Thus, CoreGen FFT has different output bit widths

for each size. For example, CoreGen FFT has 23, 24, 25, 26 and 27 bit widths for FFT

sizes 256× 256, 512× 512, 1024× 1024, 2048× 2048 and 4096× 4096 respectively.

We used same bit widths for both input and outputs in our design. Our bit widths are

set to be same as CoreGen output bit widths. We did not optimized individual stage bit

widths as CoreGen does. Therefore, we have lots of room to improve our area results.

All in all, our results are almost competitive with highly optimized FFT core CoreGen.

5.2.5 Huffman Tree Creation

This section extends Huffman tree creation process from Chapter 4, and it covers

the restructuring necessary to transform software-optimized C code for Huffman tree

creation into restructured code for current HLS tools.
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Figure 5.17. Hardware area and throughput results of our FFT and CoreGen FFT.

Listing 5.13 demonstrates software code for Huffman tree creation, and operates

as follows: The input list is generated from an arbitrary text source and contains a list

of symbols, sorted by the frequency of each symbol in the text. During tree creation,

two elements with minimum frequencies (lines 2 and 3) are selected to form a new

intermediate node as in line 4. The new node is added to the input list maintaining sorted

order (line 7). Figure 5.18 shows a complete Huffman tree where and F and B have the

minimum frequencies of 1. We select F and B to make a new node which will be added

to the list with a frequency of 2. The above process continues until no element is left in

the sorted input list. The result is the Huffman tree, where the bit length of each symbol

is calculated by traversing the tree. For example, F and B have bit length of 4 while A

has bit length of 2.
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Figure 5.18. Huffman Tree: S=Symbol, F=Frequency

Software Code

Listing 5.13 presents pseudo code for a subroutine of creating a Huffman tree.

This pseudo code is optimized for a CPU application, not for an FPGA design, which

leads to drawbacks when it is processed by HLS tools. First, the while loop in line 1 is

unbounded. Unbounded loop operation prevents hardware pipelining in HLS.

Second, creating a new node (line 4-7) has to re-balance or sort the input list in

line 7. Given the code in Listing 5.13, it is impossible to pipeline the computations in the

while loop since the function InsertToListInSortedOrder also contains unbounded loops.

Finally, the pseudo code is implemented as a recursive function using dynamic memory

allocation, which is not possible in current HLS tools.

1 while (! isSizeOne(List))

2 Left = extractMin(List [0])

3 Right = extractMin(List [1])

4 Node = newNode(Left ->freq + Right ->freq)

5 Huffman ->CurrentLeft = Left

6 Huffman ->CurrentRight = Right

7 InsertToListInSortedOrder(Node)

Listing 5.13. Initial Huffman Tree Creation code as a software code
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Restructured HLS Code

In this section, we present detailed restructured code that creates efficient Huffman

tree based on our previous work [87]. Listing 5.14 presents the pseudo source code that

targets the architecture in Figure 5.19. Figure 5.19 presents the optimized hardware

architecture to create the Huffman tree. This hardware architecture store the intermediate

nodes into an hardware array, BRAM.

In the software design, the Huffman tree generation code adds the newly created

node to the list maintaining sorter order. The restructured code adds the new node to an

empty array and increases its index every time when a new node is created in hardware

architecture. This eliminates the computation needed to sort the list on every new node.

In addition, the restructured code stores the Huffman tree in a data structure that allows

efficient Huffman bit length calculation. After creating initial sub Huffman trees, tree

information is stored in three different structures named ParentAddress, Left and Right.

Here Left/Right store the symbol of left and right children. ParentAddress stores the

address of the parent of a location where current pointer points. Using these structures,

bit length can be calculated in parallel.

In this code, the HuffmanCreateTree function has one input, SF, and three outputs,

ParentAddress, Left and Right. It defines an array in BRAM to store the intermediate

nodes in line 5. Its size is size−1 because a Huffman tree with size of leaves has size−1

of intermediate nodes. Lines 6-7 define array indices in the Left and Right BRAMs. The

while loop in line 8 iterates over SF data structure to create the architecture in Figure 5.19.

Lines 11-16 create a left node using the current element of SF if SF.F <= IN.F where

SF.F and IN.F are current frequencies of the SF and IN arrays. Lines 17-23 create a

left node using the current element of IN (line 20) and saves the index (leftWA) to the

ParentAddress. In the same way, the lines 25-37 create a right node either using an
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element from SF or an element from IN. The while loop in line 38 creates Huffman sub

tree if there are intermediate nodes remaining in IN array. Both while loops (lines 8 and

38) can be pipelined as shown in the code since they do not contain another loops which

are unbounded as in Listing 5.13.

1 void HuffmanCreateTree (

2 SF[size],

3 ParentAddress[size -1],

4 Left[size -1], Right[size -1]){

5 IN[size -1];

6 LeftWA = 0;

7 RightWA = 0; i,k,j=0;

8 while (i<size)

9 #pragma HLS PIPELINE

10 k = k +1

11 if (SF.F <= IN.F){

12 LeftWA = LeftWA + 1

13 Left[LeftWA ]=SF[i].S

14 Freq = SF[i].F

15 i = i +1

16 }

17 else {

18 LeftWA = LeftWA + 1

19 Left[LeftWA ]= n

20 Freq = IN[i].F

21 ParentAddress[j] = LeftWA

22 j = j +1

23 }

24

25 if (SF.F <= IN.F){

26 RightWA = RightWA + 1

27 Right[RightWA ]=SF[i].S;

28 i = i +1

29 IN[k] = SF.F + Freq

30 }

31 else {

32 RightWA = RightWA + 1

33 Right[RightWA ]=n;

34 IN[k] = IN.F + Freq

35 ParentAddress[j] = LeftWA

36 j = j +1

37 }

38 while (j < k)

39 #pragma HLS PIPELINE
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40 // Create sub trees using IN

41 }

Listing 5.14. Restructured Huffman Tree Creation code for HLS design based on the
hardware architecture in Figure 5.19.

n1 n2 n3 n4 n5 
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Address 
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IN: 

Figure 5.19. Hardware architecture of HuffmanCreateTree module: SF is an array
storing symbol in S and frequency in F. IN is an array storing symbol in IN field and
frequency in F field.

Discussion

HuffmanTreeCreation code is an example of irregular kernel that can be optimized

in HLS when we write the code in a restructured way. The restructured code creates the

Huffman tree in efficient way despite while loops that depend on data and software code

that has control dependent statements.

This example shows that the optimization of a HLS design still requires hard-

ware expertise and tool knowledge to write a program as shown in Listing 5.14. This

restructured code generates more efficient hardware design based on the architecture in

Figure 5.14. The software code in Listing 5.13 is more friendly and intuitive for software

engineers, however, a HLS design based on the software version performs poorly due to

the nature of the code structure.
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Experimental Results: Huffman Tree Creation

We created a syntactic data using the LZ77 compression engine with size of

536. Designs using software code and restructured designs are optimized with HLS

pragmas on top of them. We performed minimal code restructuring to the pseudo code in

Listings 5.13 in order to make it synthesizable with HLS. Since the original code must

sort the remaining symbol-frequency pairs, we implemented a sorting module in order to

insert the newly created node into symbol-frequency table (sorted order). Table 5.2 shows

area and performance results for the Huffman tree creation. Clock cycles are measured

from the simulation of the design. Throughput is the number of Huffman tree creations

per second. Frequency is in MHz. The first row shows results obtained by implementing

the software design. The second row shows the results obtained by implementing the

restructured design. The third row (Ratio) is the ratio between components of software

designs versus hardware design. Larger (larger than 1) ratio means software design is bad

for slices, BRAM and clock cycles. Smaller (smaller than 1) means restructured design

is good for throughput and frequency. The frequency of software design is little bit better

than restructured design due to limited parallelism in the software design. BRAM usage

is decreased from 9 to 2 in the restructured design due to writing a restructured code that

is more hardware friendly.

Table 5.2. Huffman Tree Creation.

Area Performance

Slices BRAM Clock Cycles Throughput Frequency

Software 295 9 7889921 18 145
Restructured 353 2 3142 39893 125
Ratio 0.83 4.5 2511 4.5e-4 1.16
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5.2.6 Matrix multiplication

In this section, we present design and implementation of matrix multiplication.

Software Code

Listing 5.15 presents software ”‘C”’ code for multiplying two matrices of size

N×N. We have to note that matrix multiplication is one of the regular kernels that

is easy to optimize with HLS. We presented one of the best possible optimizations in

HLS for matrix multiplication in Listing 5.15. The pipeline directive in line 10 pipelines

everything under it (fully unrolls L3). Thus it needs to access arrays A and B. We used

reshape directive to allow the pipeline in line 10. These optimizations create an efficient

design for smaller size matrix. Once size of N grows, this design does not scale well.

Next, we will discuss how to restructure the classic matrix multiplication code to create a

scalable matrix multiplication.

1 void matrixmul( DTYPE A[][], DTYPE B[][], DTYPE C[][])

2 {

3 #pragma HLS ARRAY_RESHAPE variable=B complete dim=1

4 #pragma HLS ARRAY_RESHAPE variable=A complete dim=2

5 /* For each row i of A */

6 L1:for (int i = 0; i < N; ++i) {

7 /* For each column j of B */

8 L2:for (int j = 0; j < N; ++j)

9 {

10 #pragma HLS PIPELINE II=1

11 /* Compute C(i,j) */

12 DTYPE cij=0;// = C[i][j];

13 L3:for (int k = 0; k < N; ++k)

14 cij += A[i][k] * B[k][j];

15 C[i][j] = cij;

16 }

17 }

18 }

Listing 5.15. Software code of matrix multiplication.
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Level 3: Matrix*Matrix operations 
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Figure 5.20. Hardware architecture for blocking matrix multiplication

Restructured HLS Code

Efficient and scalable matrix multiplication is implemented in hardware using a

blocking method. Particularity, data is streamed into processing elements as a block by

block. Work by Dou et al. presented streaming and blocking matrix multiplication [50].

Next, we will discuss how to implement streaming and blocking matrix multiplication

in HLS. We first start from a hardware architecture. Figure 5.20 (a) demonstrates idea

of blocking using an example. In this example, a block of matrix C is calculated using

two rows and columns of matrices A and B. This allows blocking method to save the

small data on local buffer and reuse it. Efficient streaming architecture is shown in

Figure 5.21. The restructured source code is shown in Appendix A.2. In the code we used

blockvec and blockmat structs to stream data into and out of matrix multiplication core.

We always stream matrix B into matrix multiplication core, and we stream matrix A only

when needed because we are reusing matrix A. Variable counter is used to determine

when to read matrix A from the stream. In this design, we assume that data streams

from/to PC. We write a test-bench to mimic the functionality of PC that sends streaming

data in blocking manner. Figure 5.22 shows sequence of block streams for an example.
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As shown in Figure 5.22, initially we send data from both A and B. Next, we do not

send data from A (keep) because it is stored in the local buffer of matrix multiplication

core. Testbench continues to send necessary data as shown in the rest of the Figure 5.22.

Appendix A.2 also presents source code of testbench for the streaming blocking matrix

multiplication.Level 3: Matrix*Matrix operations 
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Figure 5.21. Details of hardware architecture for blocking matrix multiplication
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Figure 5.22. Sequences of blocks to be sent to blocking matrix multiplication
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Discussion

While matrix multiplication is straightforward to optimize in HLS using pipeline

and partition directives in modern high-level synthesis tools, efficient hardware based

matrix multiplication is implemented using streaming architecture such as presented

here [50]. Streaming architectures yields better frequency and better throughput. In

general, FPGAs are good for implementing streaming designs because of the nature of

the hardware. Therefore, even using HLS, it is better to create a streaming architecture in

HLS.

Experimental Results: Matrix multiplication

Here we only give estimated performance results because in order to measure real

performance of streaming multiplication, we must stream input data from PC (testbench).

We used our testbench to emulate the behaviour of PC, and testbench sends necessary data

to our streaming matrix multiplication core. We designed and implemented restructured

HLS designs from Listing 5.15 on an target FPGA xc7vx485tffg1761-2 for matrix size of

32×32. Since blocking matrix multiplication is implemented as streaming, it provides

better frequency and scales to larger size matrix multiplication. For example, when we

synthesis the code in Listing 5.15 and restructured code Appendix A.2 for matrix size

of 32×32, they achieve clock period of 4.616 ns (216 MHz) and 3.842 ns (260 MHz).

Once we increase the size of matrix form 32×32 to 1024×1024, code in Listing 5.15

uses 4096 DSP48E and finishes execution in 2097168 clock cycles. This design does not

fit into reasonable size FPGA. If the size of matrix is equal to 1024×1024, restructured

code in Appendix A.2 achieves throughput of 1035 clock cycles. Area resources remain

the same because computations in Appendix A.2 depends on size of block not size of the

input matrix. While there is a communication cost associated with tiled (blocking) matrix

multiplication, once initial data is received by matrix multiplication core, it constantly
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outputs blocks. Thus blocking and streaming matrix multiplication achieves higher

throughput.

5.2.7 Convolution

Convolution is the most common operation in many image and signal processing

applications. Sobel filter is one of example of convolution. This section starts with

presenting software code for a Sobel filter. Then we show how to restructure the software

Sobel filter in HLS based on [13]. This restructuring is general and can be applied to any

convolution kernel.

Software Code

Sobel filter convolves a given input image with two 3×3 kernels as described

by Equation 5.6. For each kernel position, it calculates Dx and Dy where Dx and Dy are

derivatives for x and y directions. Dx is calculated by multiplying each pixel value of the

current 3×3 input image window of with its corresponding value from Gx. Then it takes

the sum of the nine multiplications as a value of Dx, and repeats the process for Dy. The

value Dx +Dy is taken as a new value of location at the center of kernel window.

Gx =


1 0 1

2 0 2

−1 0 1

Gy =


1 2 1

0 0 0

−1 −2 −1

 (5.6)

Listing 5.16 shows one of the common ways of writing software Sobel filter in C.

The two outer loops iterate over every pixel in the given input image (ignoring boundary

conditions for simplicity) and the inner two loops iterate over the values of Sobel filter

kernels.

1 int image[IMAGE_HEIGHT ][ IMAGE_WIDTH ];

2 for(int i = 0; i < IMAGE_HEIGHT; i++)
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 Structured HLS Design — Convolution 
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Figure 5.23. Line buffer and window buffer example for convolution operation.

3 for(int j=0; j < IMAGE_WIDTH; j++)

4 for(int ro = -1; ro <= 1; ro++)

5 for(int co = -1; co <=1; co++)

6 D_x += G_x[ro][co] * image[i+ro][j+co] + ...;

7 D_y += G_y[ro][co] * image[i+ro][j+co] + ...;

8 image[i][j] = D_x + D_y;

Listing 5.16. Software code of Sobel Filter.

Restructured HLS Code

We must restructure this code to generate an efficient hardware design. A common

way of implementing Sobel filter in hardware is through the use of a line buffer and a

window buffer. A line buffer is a group of memory elements that is capable of storing

several lines of an input image. The number of memories, or rows in the line buffer

is defined by the height of the kernel. The Sobel kernel has a size of 3× 3 so we use

three memories to implement the line buffer. In HLS, we use a 2D array to declare a line

buffer, i.e., LineBu f f er[3][IMAGE WIDT H]. The window buffer stores the values in

the current window and it has the same size as the Sobel kernel (3×3). We use registers

to store window buffer values in order to access them simultaneously in a clock cycle.

This code is based on [13].

Figure 5.23 demonstrates how the line and window buffers work. For simplicity,

we assume that the input image size is 4×4. The input image is read pixel by pixel into

the line buffer. For example, pixel value 1 is copied to the first location, pixel value 2 is
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copied to the second location of line buffer line3, and so on. While copying the input

data, line buffers are shifted vertically, and the data from the most upper line buffer is

discarded. After time t, the line1, line2 and line3 buffers are filled. Since each line buffer

is implemented a a separate memory, the first window buffer 1 can be filled by data from

three line buffers in three clock cycles. The next window buffers simply discards the first

column and reads the new column from the line buffers in one clock cycle, which enables

the data for one Sobel filter operation to be ready every clock cycle.

The restructured HLS code for the architecture in Figure 5.23 is shown in List-

ing 5.17. The code from Lines 7-9 correspond to the first stage. The code from Lines

11-13 correspond to the second stage. In this stage, we design a way to read data from

three line buffers to window buffers in parallel. In the last stage, we design hardware

for shifting the window buffer by reading a new column from the line buffers. This

process is shown in Lines 15-17. After the window buffer is filled with necessary data,

we call the sobel f ilter function passing the filled WindowBu f f er as an argument. The

sobel f ilter function source code is shown in Lines 21-27. The sobel f ilter kernel is

computed in one clock cycle using pipelining.

1 int LineBuffer [3][ IMAGE_WIDTH ];

2 int WindowBuffer [3][3];

3

4 for(int i=0; i<IMAGE_HEIGHT; i++)

5 for(int j=0; j<IMAGE_WIDTH; j++)

6 #pragma pipeline

7 LineBuffer [0][j]= LineBuffer [1][j];

8 LineBuffer [1][j]= LineBuffer [2][j];

9 LineBuffer [2][j]= image[i][j];

10

11 WindowBuffer [0][0] = LineBuffer [0][j];

12 WindowBuffer [1][0] = LineBuffer [1][j];

13 WindowBuffer [2][0] = LineBuffer [2][j];

14

15 for(int k = 0; k < 3; k++)

16 WindowBuffer[k][2] = WindowBuffer[k][1];

17 WindowBuffer[k][1] = WindowBuffer[k][0];

18
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19 sobel_filter(WindowBuffer);

20

21 sobel_filter(unsigned char window [3][3]){

22 #pragma pipeline

23 for(int i=0; i < 3; i++)

24 for(int j = 0; j < 3; j++)

25 D_x = D_x + (window[i][j] * G_x[i][j]);

26 D_y = D_y + (window[i][j] * G_y[i][j]);

27 sum = D_x + D_y;

Listing 5.17. Restructured HLS code for the Sobel edge detection.

Discussion

The source code shown in Listing 5.17 is the restructured C code for the Sobel

filter design. We used the pipeline pragma in line 6 to parallelize everything under line 6.

In this implementation, we can fill the window buffer in every clock cycle, and process

the window buffer with sobel f unction in next clock cycle. This allows us to achieve

a pixel rate of one per clock cycle. The pipeline pragma in (line number 7) instructs

HLS to process the code below in every clock cycle. This is the optimal clock cycles

achievable by manual design assuming the design processes a new pixel in each clock

cycle.

Despite the fact that convolution kernels are regular kernels (automatic compiler

optimizations such as polyhedral optimizations are possible) restructured code has its

benefits as shown above. The source code in Listing 5.16 and Listing 5.17 have the

same functionality, but result in very different hardware implementations. We can only

optimize Listing 5.16 by pipelining most inner loop due to memory port limitation on

image variable. The memory access pattern of Listing 5.16 does not allow for the outer

loop to be pipelined. The restructured code from Listing 5.17 achieves the optimal

number of clock cycles while the design from Listing 5.16 needs 67X more clock cycles.

Clearly, the code restructuring performed in Listing 5.17 is necessary to achieve an
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optimized hardware implementation.

An experienced HLS programmer would write restructured code as in List-

ings 5.14 and Listings 5.17 as this is a standard way to design efficient hardware. This

way of thinking architecture and coding is non-trivial task for software programmers. For

example, code in Listing 5.17 requires HLS programmers to think about the hardware

architecture at a clock cycle level such as how data moves from input to line buffer, then

shifting to window buffer.

Experimental Results: Convolution

Table 5.3 shows performance area results for the convolution designs. Software

design tends to use 67 times more clock cycles than the restructured design while both

designs achieving very similar frequency. As a result, the restructured design has 67

times more throughput than the software design. The software design uses less slices

because of limited parallelism and does not use any BRAMs in the logic due to the nature

of software code. In restructured code we stored three lines of input image to line buffers

which consumes three BRAMs.

Table 5.3. Convolution.

Area Performance

Slices BRAM Clock Cycles Throughput Frequency

Software 472 0 20889601 6.2 129
Restructured 627 3 307200 417 128
Ratio 0.7 0 67 0.01 1.007

5.2.8 Face Detection

In this section, I will explain design process of implementing a face detection

algorithm on an FPGA. Particularly, I will explain how to go from normal ”‘C”’ code to
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optimized restructured code for a face detection algorithm. Face detection algorithm in

this section is based on the Viola and Jones face detection algorithm [130].

Software Code

Viola and Jones algorithm has two steps; first step calculates integral image of

a given input image. In second stage, different scales of detection window slides over

the integral image to classify each candidate region as a face or not a face. In this stage,

a cascade of weak classifiers are used to decide if a candidate window is a face or not

a face. Next, we present software ”‘C”’ implementation of Viola Jones algorithm. The

important part of hardware oriented face detection algorithm is calculation of integral

image. Listing 5.18 presents software ”‘C”’ code for calculating integral image of size

MAX HEIGHT ×MAX WIDT H. Code in Listing 5.18 does not translate into efficient

hardware using high-level synthesis because of several issues. First of all, current ”‘C”’

implementation of the algorithm calculates integral image of input image using local

memories. Assuming input image has size of 640×480, this software implementation

must store 640× 480times8 bits of data to local storage. This requires at least 135

BRAMs of size 18K. Second, most image processing or computer vision algorithms

are implemented on hardware using a pixel processing technique. By pixel processing,

we mean that pixels stream into the design and stream out of the design. Streaming

pixels into design allows to create small local buffer (as in the case of convolution 5.2.7)

to use local memory efficiently. Software code in Listing 5.18 does not written to use

local memory efficiently. Next, we briefly discuss the high level hardware architecture

created by Cho et al. [38], and we present restructured HLS code for the integral image

calculation part.

1 void detectface(in_image [][], out_image [][]) {

2

3 // Integral Image calculation

4 for (i=0; i<MAX_HEIGHT; i++)
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5 {

6 for (j=0; j<MAX_WIDTH; j++)

7 {

8 if (i==0)

9 {

10 if (j==0)

11 {

12 Line[j] = in_image[i][j];

13 IntegralImage[i][j] = Line[j];t

14 }

15 else

16 {

17 Line[j] = Line[j-1] + in_image[i][j];

18 IntegralImage[i][j] = Line[j];

19 }

20 }

21 else

22 {

23 if (j==0)

24 {

25 Line[j] = in_image[i][j];

26 IntegralImage[i][j] = IntegralImage[i-1][j] + Line[j];

27 }

28 else

29 {

30 Line[j] = Line[j-1] + in_image[i][j];

31 IntegralImage[i][j] = IntegralImage[i-1][j] + Line[j];

32 }

33 }

34 }

35 }

36

37// Cascade of weak classifiers .

38....

39....

40

41}

Listing 5.18. Integral image

Restructured Code

Instead of calculating integral image for each size of image, the hardware archi-

tecture fixes the sliding window. In the hardware the size of window is fixed to 21×21.
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Using 21×21 sized window, it allows us to detect faces of size 21×21. In order to detect

faces larger/smaller than 21×21, the input image is scaled to different sizes. Figure 5.24

presents new hardware oriented face detection algorithm. In this architecture, integral

image is calculated only for 21×21 size window, and candidate window (integral image)

is passed to the cascade of stages. Each cascade calculates stage sum threshold. If the

calculated stage sum is above the pre-calculated stage threshold, then the window passes

to the next stage. If the calculated stage sum is less then the stage threshold, the candidate

fails. This means the calculation must stop for that candidate window and new window

must start processing from stage 0.Face Detection 

 ∑ 

Stage 0 Stage 1 Stage 21 

… Pass 

Fail 

Pass 

Fail 

Face 

Fail 

3 features 16 features 213 features 

if Sum(Results) ≥ StageThreshold then Pass else Fail 

Candidate  

 ∑ 

 ∑ 

 ∑ 

Figure 5.24. Hardware oriented face detection

Hardware architecture shown in Figure 5.24 relies on efficient integral image

calculation. With this architecture, we calculate integral image for fixed size. However, if

we want to calculate the integral image using the part of input image using a code like in

Listing 5.18, it will take at least 21×21 clock cycles (assuming memory of input image

has 1 read port). Thus we need to accelerate the calculation of integral image in hardware.

Ideally, we want to create integral image every clock cycle and must achieve II = 1.

Creating new integral image every clock cycle allows to achieve pixel rate processing.
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In order to create a new integral image in each clock cycle, we designed an

architecture in HLS. Our HLS architecture is the same version of architecture imple-

mented in Verilog from the work of Cho [38]. In this architecture, integral image is

created in each clock cycle by first summing pixels vertically, then by summing the pixels

horizontally. We give an example that demonstrates an efficient calculation of integral

image in Figure 5.25. We assume the input image has size 3×4. We create line buffers

and window buffers. Line buffer and window buffer creation process are the similar to

that one discussed in Section 5.2.7. Window buffer is created slightly different because

integral image is the sum of pixels to left and top of location at (x,y). While copying

columns of pixels from line buffer to window buffer, we must sum vertically (step 2) in

order to create a vertically accumulated integral image. Then use another extra window

to sum pixel in horizontal direction. This process (step 3) creates integral image for the

current clock cycle. After step 1, step 2 and step 3, the architecture allows to create a

new integral image in each clock cycle. For example, the next step (creating the integral

image for the next clock cycle) subtracts the first column from all 3 columns, and it also

copies a column (next column) from line buffers to the window buffer. This process can

be done in one clock cycle.

1 void detectface(in_image [][], out_image [][]) {

2

3 // Integral Image calculation

4 for (j=0; j<MAX_HEIGHT; )

5 {

6 for (k=0; k<MAX_WIDTH; )

7 {

8 /*

9 This is step 1.

10 */

11 #pragma HLS PIPELINE II=1

12 LineBuffer [0][k]= LineBuffer [1][k];

13 LineBuffer [1][k]= LineBuffer [2][k];

14 LineBuffer [2][k]= LineBuffer [3][k];

15 LineBuffer [3][k]= LineBuffer [4][k];

16 LineBuffer [4][k]= LineBuffer [5][k];
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6-3 9-3 (9-3) +2 

4) When we shift, we subtract first 
column from all columns and add 

new column to the last 

Face Detection: Integral Image 

Figure 5.25. Integral image calculation hardware architecture for 4×4 size image.

17 LineBuffer [5][k]= LineBuffer [6][k];

18 LineBuffer [6][k]= LineBuffer [7][k];

19 LineBuffer [7][k]= LineBuffer [8][k];

20 LineBuffer [8][k]= LineBuffer [9][k];

21 LineBuffer [9][k]= LineBuffer [10][k];

22 LineBuffer [10][k]= LineBuffer [11][k];

23 LineBuffer [11][k]= LineBuffer [12][k];

24 LineBuffer [12][k]= LineBuffer [13][k];

25 LineBuffer [13][k]= LineBuffer [14][k];

26 LineBuffer [14][k]= LineBuffer [15][k];

27 LineBuffer [15][k]= LineBuffer [16][k];

28 LineBuffer [16][k]= LineBuffer [17][k];

29 LineBuffer [17][k]= LineBuffer [18][k];

30 LineBuffer [18][k]= LineBuffer [19][k];

31 LineBuffer [19][k]= LineBuffer [20][k];

32 LineBuffer [20][k]= in_image[j][k];

33

34 /*

35 This is step 2.

36 Copy pixels from LineBuffer to WindowBuffer and sum vertically .

37 */

38 WindowBuffer [0][20] = LineBuffer [0][k];

39 for(int i=1; i<II_SIZE; i++){

40 WindowBuffer[i][II_SIZE -1] = LineBuffer[i][k]+ WindowBuffer[i-1][ II_SIZE -1];

41 }

42

43 /*

44 Step 3 and step 4.
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45 Copy pixels from LineBuffer to WindowBuffer and sum horizontally .

46 */

47

48 for (int wb_i=II_SIZE -1; wb_i >0; wb_i --)

49 {

50 for (int wb_col=II_SIZE -1; wb_i >0; wb_i --) {

51 WindowBuffer[wb_i][wb_col -1] = WindowBuffer[wb_i][ wb_col ];

52 }

53

54 }

55

56 // Saving the first column of integral image

57 for(int sub_col =0; sub_col <II_SIZE; sub_col ++)

58 {

59 int kk=0;

60 sub_column[sub_col] = IntegralImage[sub_col ][kk];

61 }

62

63 // This loop is shifting the integral window

64 for(int ii_shift =0; ii_shift <II_SIZE -1; ii_shift ++)

65 {

66 for(int ii_row =0;ii_row <II_SIZE; ii_row ++)

67 {

68 IntegralImage[ii_row ][ ii_shift] = IntegralImage[ii_row ][ ii_shift +1];

69 }

70

71 }

72

73 // This loop subtracts first column ( sub_column ) from columns right to it.

74 for(int t=0;t<II_SIZE -1; t++) {

75 for(int ii_shift =0; ii_shift <II_SIZE -1; ii_shift ++)

76 {

77 IntegralImage[t][ ii_shift] = IntegralImage[t][ ii_shift]-sub_column[t];

78 }

79 }

80

81 // This loop creates integral image every clock cycle.

82 for(int index =0;index <II_SIZE; index ++) {

83 IntegralImage[index][II_SIZE -1] = IntegralImage[index][II_SIZE -2] +

WindowBuffer[index ][II_SIZE -1];

84 }

85

86

87 // Cascade of weak classifiers using IntegralImage .

88 ....

89 ....
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90 }

91 }

92 }

Listing 5.19. Restructured code for integral image calculation

Experimental Results: Face Detection

Here, we will present experimental results for calculating integral image using

software ”‘C”’ code and restructured HLS code. Table 5.4 presents area and performance

results of calculating integral image for image size of 320×240. The Software repre-

sents hardware area and performance results obtained by synthesizing the code from

Listing 5.18. Restructured means hardware area and performance results by synthesizing

the code from Listing 5.19. Restructured uses 5 times more slices than Software because

of existing parallelism. Restructured uses only 20 BRAMs while Software uses 258

BRAMs. Restructured has a throughput of 1 meaning that it can calculate one integral

image in each clock cycle. Software must wait 921609 clock cycles to get the calculated

integral image. Frequency of Software is also 0.44 times worse than frequency of Re-

structured. Overall, restructured code for integral image allows to create efficient face

detection using high-level synthesis.

Table 5.4. Integral Image Creation.

Area Performance

Slices BRAM Clock Cycles Frequency (Clock Period)

Software 295 258 921609 124 (8.022)
Restructured 1021 20 307211 278 (3.589)
Ratio 0.2 12.9 3 0.44
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5.3 HLS User Study

Previous sections discussed impact of restructured code on the final generated

hardware from high-level synthesis. While restructured code improves quality of hard-

ware to be generated from high-level synthesis, writing a restructured code for software

programmers is challenging task. Restructured code writing process must be considered

in two different levels. First it must be considered in instruction level, and second it must

be considered in task level. We discussed instruction level restructuring in Section 5.2

(e.g., prefix sum, histogram). We also give task level restructuring in Section 5.2 (e.g,

FFT, convolution, face detection, matrix multiplication). In task level restructuring, the

structure of different tasks and their communication plays important role in high-level

synthesis. Since hardware is inherently parallel, hardware design paradigm is substan-

tially different than software design paradigm. This paradigm shift poses challenges for

software programmers when they are designing hardware even with high-level synthesis.

For example, software programmers might write a code using 3-loop structure or even a

recursive code for FFT which does not synthesis into hardware using high-level synthesis.

Hardware efficient FFT is designed by running different FFT stages in parallel in a

structured way. This kind of knowledge and expertise require software programmers

to think like a hardware designer and write a code that represents parallel hardware

architecture both in instruction and task level. To find out how different designers use

HLS, we did a small assignment based study in class (CSE237C) in Fall 2014 quarter at

UCSD. This study has two parts which are explained below:

5.3.1 User Study-1

During the class, students got hands on training regarding using high-level syn-

thesis for 8 weeks. Initially, students did three mini assignment projects using high-level
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synthesis (as part of normal class) such as FIR filter, Phase detector and DFT. For the

next assignments, we divided the class into two groups (group A and group B). Then

students are asked to do their fourth assignment with following conditions:

• Individuals knew FFT and sorting algorithms (explained in the class)

• They are asked to design an FPGA that fits on a device (xc7vx1140tflg1930-1)

• They are suggested to use any resources (books, papers, application notes, source

codes)

• Group A was supposed to design FFT hardware for different sizes (64, 1024 and

8192)

• Group B was supposed to design sorting hardware for different sizes (1024, 16384,

and 262144)

• Duration of assignment was two weeks.

Table 5.5. User Study-1.

Size of Team Team

1 individual 2 individuals Total teams

FFT (Group A) 3 5 8
Sorting (Group B) 3 6 9

Table 5.5 presents teams and their assigned project for the first study. Figure 5.26

and Figure 5.27 present hardware area and performance (throughput) results for FFT-64

and FFT-1024. These results are from synthesis stage of HLS. We present synthesis

results because 3 out of 8 teams did not get implementation (place and route) results due

to long place and route time. Figure 5.28 and Figure 5.29 present hardware area and

performance (throughput) results for Sorting-1024 and Sorting-16384. FFT results are
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from Group A, and sorting results are from Group B. Next, we will discuss our findings.

We compared these results to the one which designed and optimized by ourselves. Our

HLS designs are generated from restructured code. We provided f actor = t1/t2 where t1

is throughput of our design and t2 is throughput of each team’s design. These f actor is

shown in Figure 5.26, Figure 5.27, Figure 5.28, and Figure 5.29.FFT – 64 results: Huge variance 0.003X – 65941 X 

Team 1 Team 2 Team 3 Team 4 Team 5 Team 6 Team 7 Team 8 

DSP48E 101 622 166 86 24 170 2010 33 

FF 37254 57863 32123 17255 3159 26956 234276 7912 

LUT 51218 67181 41154 27395 3106 40680 235010 17640 

Throughput  0.308550553 1.795203217 3.702606635 0.324612089 0.266854532 1.184834123 59.24170616 2.72241E-05 
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Figure 5.26. Hardware area and performance (throughput) results for FFT-64.

Team 1 Team 2 Team 3 Team 4 Team 5 Team 6 Team 7 Team 8 

DSP48E 18 16 20 224 24 18 2304 33 

FF 4107 11852 4487 43978 3938 38231 402351 7985 

LUT 4294 16547 4193 72602 4647 25985 390315 17681 

Throughput 0.001046368 0.000444548 2.15628E-05 0.00302686 0.011989821 0.003131168 0.015709813 1.02072E-06 
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Figure 5.27. Hardware area and performance (throughput) results for FFT-1024.

Extreme optimizations: Three teams (team 2, team 3 and team 7) out of eight

obtained better results than our results for FFT-64 as shown in Figure 5.26. After
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analysing their designs, we found out that their designs do not properly place and route

due to extreme optimizations using high-level synthesis. Place and route failed because

three teams (team 2, team 3 and team 7) applied optimization directives to generate

fast (fully pipelined) but infeasible design. For example, pipelining and partitioning

input/output array for 1024 size sorting generates 1024 registers.

Huge variations: Both for sorting and FFT, teams obtained results which have

huge variations (0.02X - 53570X) for FFT and (027 - 243383X) for sorting-1024. This

kind of variation resulted from unlimited or huge design space exploration capability of

high-level synthesis. Since high-level synthesis allows faster but larger design space, it

also increases optimizing software written in C code with high-level synthesis directives,

it explores vast design space exploration. Due to unlimited (or very large) design space

exploration capability provided by high-level synthesis, it becomes more difficult to find

”‘good”’ designs among many ”‘bad”’ designs. It becomes especially true once size

of design grows larger because larger design will have more design space exploration

options than smaller designs.

Unstructured software vs. Structured hardware design: In general, hardware

design is a structured process. On the other hand, software design (software code writing)

is unstructured process meaning that software code is usually written targeting Von Neu-

mann architecture. For example, both FFT and sorting can be designed using recursive

functions. These recursive functions are converted to nested loops when we convert it

from initial unsynthesizable ”‘C”’ code to synthesizable ”‘C”’ code. Synthesizable ”‘C”’

code does not necessarily express a ”‘C”’ code that translates into an efficient hardware.

For example, FFT will be written in ”‘C”’ using 3-nested loops as shown in Listing 5.10

which does not translate into efficient hardware.

Since software code is unstructured, it is difficult to translate un-restructured

code to restructured code automatically with high-level synthesis. Thus, designers must
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provide hint that tells the structure of the computation by modifying the code. Next, we

present results from our second study.

Team 9 Team 10 Team 11 Team 12 Team 13 Team 14 Team 15 Team 16 Team 17 

BRAM 16 2 2 18 16 18 20 2 2 

FF 2897 326 535 4872 4559 38530 70931 2272 407 

LUT 4671 458 842 9003 14872 65883 113661 2364 710 

Throughput  0.007138025 0.003685221 0.004437345 0.168460774 1.086767519 0.009253202 0.048098082 1.24661E-06 0.006215445 
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Figure 5.28. Hardware area and performance (throughput) results for Sorting-1024.

Team 9 Team 10 Team 11 Team 12 Team 13 Team 14 Team 15 Team 16 Team 17 

BRAM 32 32 32 416 32 416 576 0 32 

FF 3038 5300 555 9624 4559 47272 72942 0 447 

LUT 5097 5248 867 27472 15433 86123 117195 0 747 

Throughput  0.000318817 0.000179755 0.000211624 0.009683232 0.779010345 0.000438436 0.001510253 0 0.000279436 
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Figure 5.29. Hardware area and performance (throughput) results for Sorting-16384.

5.3.2 User Study-2

The summary of study is shown in Table 5.6. We switched projects between

group A and group B. Different than first study, we provided list of restructured sub

modules for FFT and sorting. We also asked teams to follow a certain structure, and

provided an example of structured design in HLS. Students are asked to do their fifth
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assignment with following conditions:

• Individuals knew FFT and sorting algorithms (explained in the class)

• They are asked to design an FPGA that fits on a device (xc7vx1140tflg1930-1)

• We provided list of restructured HLS codes for sub modules of FFT and sorting.

• We asked to follow a structure.

• Group A was supposed to design sorting hardware for sizes (1024, 16384)

• Group B was supposed to design FFT hardware for sizes (64, 1024)

• Duration of assignment was a week.

Table 5.6. User Study-2

Size of Team Team

1 individual 2 individuals Total teams

Sorting (Group A) 3 5 8
FFT (Group B) 3 6 9

Figure 5.30, Figure 5.31, Figure 5.32 and Figure 5.33 provide final hardware area

and throughput results for FFT and sorting. For FFT-64 average throughput increased

by 2.5X , and for FFT-1024 average throughput increased by 43X . In this study, teams

achieved better throughput and area results in a shorter time than study 1. The same

kind of trend is also can be observed from Figure 5.32 and Figure 5.33 for sorting.

Sorting-1024 and sorting-16384 throughput results improved by 2.6X and 16X .
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Team 9 Team 10 Team 11 Team 12 Team 13 Team 14 Team 15 Team 16 Team 17 

DSP48E 138 96 138 144 96 129 138 120 96 

FF 13969 11637 45187 19576 32449 12134 136069 11390 11637 

LUT 22452 19313 74807 15545 38353 20970 82073 20082 19313 

Throughput  2.472187886 1.489269811 1.511875784 4.164410944 3.583715596 0.213857084 10.72846261 0.040360924 1.489 
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Figure 5.30. Hardware area and performance (throughput) results for FFT-64 after
providing templatesThroughput improved by 43X 

Team 9 Team 10 Team 11 Team 12 Team 13 Team 14 Team 15 Team 16 Team 17 

DSP48E 218 144 144 240 200 200 240 200 144 

FF 34462 18845 48642 33156 32820 21140 44703 19314 18845 

LUT 47226 31472 126018 26961 48171 36114 42345 33989 31472 

Throughput 0.187286961 0.118513321 0.110797554 0.455000455 0.055940926 0.012440757 0.666560017 0.01245504 0.119 
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Figure 5.31. Hardware area and performance (throughput) results for FFT-1024 after
providing templates
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Team 1 Team 2 Team 3 Team 4 Team 5 Team 6 Team 7 Team 8 

BRAM 68 224 100 84 100 32 100 100 

FF 128968 9820 6597 6021 10856 3678 10625 6592 

LUT 183450 18020 17320 19218 15677 8485 17630 17322 

Throughput  0.140105471 0.024020792 0.064322829 0.019006789 0.123700526 8.70793E-05 0.122137703 0.064322829 
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Figure 5.32. Hardware area and performance (throughput) results for Sorting-1024 after
providing templates

Team 1 Team 2 Team 3 Team 4 Team 5 Team 6 Team 7 Team 8 

BRAM 608 800 608 132 608 32 608 608 

FF 11148 10187 7133 6601 11648 3678 11353 7128 

LUT 20012 18622 18517 20856 17027 8485 18959 18519 

Throughput  0.010069615 0.006006664 0.004025697 0.001656094 0.008768616 3.4559E-08 0.007647582 0.004 
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Figure 5.33. Hardware area and performance (throughput) results for Sorting-16384
after providing templates

All in all, restructured design plays an important role in high-level synthesis in

order to generate efficient hardware. Writing a restructured code requires substantial

hardware expertise. We must consider restructured design both in instruction level and

task level. Instruction level restructuring is done to remove (e.g., RAW dependency)

while task level restructuring is done to allow tasks to run in parallel. Quality of hardware

design generated by high-level synthesis improves when 1 ) high-level synthesis tool is
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given restructured code for sub modules which take care of instruction level parallelism,

2) high-level synthesis tool is given structure of computation which hints overall structure

of computation. Next, we address some challenges about generating restructured code

and purpose a solution to make the hardware design process with high-level synthesis

easy for software programmers and domain experts.

5.4 Challenges

Today’s HLS tools are close to overcoming challenges of manual hardware

(HDL) design. This is due to result of more than three decades of research. Despite

this, HLS tools are still the domain of hardware experts. In this chapter, we studied

code restructuring for different kinds of kernels (regular and irregular). We also studied

code restructuring in different levels (instruction level and task level). Most software

engineers are not familiar with HLS coding styles presented in Section 5.2 because

it requires developers to write restructured code targeting a specific implementation

and knowledge of the underlying FPGA. One way to make the restructuring easier for

software programmers is through the use of automated compiler techniques and domain

specific HLS templates. Automated compiler equipped with automatic parallelization

and memory optimization techniques such as Polyhedral models promise to efficiently

generate optimized HLS code from software code [140, 42, 14]. These kinds of models

work well for generating restructured code in instruction level. However, automatic

parallelization alone is not enough since some kernels require creation of efficient

hardware architecture. Next, we will discuss challenges and possible solutions that make

code restructuring easier for domain experts.
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5.4.1 Restructured Code Generation: Instruction level

Instruction level restructuring as discussed in Section 5.2.1 poses challenges to

achieve II = 1. One way to solve instruction level code restructuring is by designing

source-to-source translator. Before synthesizing the code with high-level synthesis, we

can run the code via source-to-source (S2S). One problem with this approach is that

each HLS tool (vendor) has to write its own source-to-source translator. However, these

source-to-source translators share a set of common rules. For example, we can make

general rule for prefix sum (as following to algorithmic codes show) in the algorithmic

level. Then, HLS designers must make sure their tool follows these pre-defined rules on

the static source code and generates restructured HLS code before doing scheduling and

binding.

Algorithm 5: an exam-

ple algo 1

1 s0← x0

2 forall the i← 1 to k do

3 si← si−1 + xi

4 end

5 ;

6 ;

Algorithm 6: an exam-

ple algo 1

1 sum← x0

2 s0← sum

3 forall the i← 1 to k do

4 sum← sum+ xi

si← sum

5 end

5.4.2 Restructured Code Generation: Task level

Task level code restructuring is much more difficult than instruction level code

restructuring for a number of reasons. First, it requires domain expertise. Designer must

know his/her application well in order to extract parallelizable tasks. (e.g., FFT). Second,

it requires hardware expertise. Designer must understand trade-offs between different
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hardware design choices. These hardware choices are running those tasks in sequential

way, running those tasks in parallel way with memory between them, or running those

tasks in parallel as streaming way. Since task level code restructuring requires both

domain expertise and hardware design expertise, we propose a solution that is generally

applicable. In our approach, we propose to study different application domains; this

study has two goals. First is to extract core kernels (computations) shared by higher level

applications in that domain. Second is to identify computational structures among those

core kernels in each application domain. If we know core kernels and computational

structure, then it is easier to write restructured code as shown in our HLS user study.

Assuming, we know the computational structure and core kernels, we can suggest a

tool chain as below. In Figure 5.34, we show the overview of a proposed tool chain to

allow software developers to use HLS tools more easily. In this section, we discuss some

challenges to be solved in order to realize this flow.

DSL 
Restructured 

Code 
DSL 

Compiler 
Application 

Code 

DSL HLS Templates 

Computer 
Vision 

Linear 
Algebra 

Machine 
Learning 

Pattern Descriptions 

Bulk 
Synchronous 

Streaming 
Fork 

and Join 

HLS  
Tools 

Figure 5.34. Design flow for software programmers using HLS templates (restructured
code) and parallel programming patterns

We propose domain specific HLS templates to ease generation of restructured

code for common kernels. Domain specific HLS templates define an efficient hardware

architecture for certain classes of common kernels that have the same or similar com-

putational patterns. Common kernels with the same or similar computational patterns

are very prevalent in real world applications, and some research has done to classify ker-
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nels according to computational patterns [16]. Current classification techniques mostly

target general parallel programming practices (e.g., multi-core CPU). We can classify

frequently used kernels in FPGA applications according to hardware architecture. For

example, sliding window is a common architectural pattern shared both by Sobel and

Gaussian filters and both map to the same hardware architecture, convolution, which can

be implemented as an HLS template.

While there is no universal way to classify/extract kernels according to their

computational/communicational patterns, we purpose a solution with three steps:

1. Identify common kernels from applications from a variety of applications

2. Classify these kernels according to their efficient hardware architectures.

3. Make domain specific HLS templates for those kernels based on their class of

hardware architecture.

While having domain specific HLS template for every kernel is not possible,

having domain specific HLS templates for the common kernels will ease the use of FPGA

by software programmers. Further research is needed to identify, classify and making

domain specific templates for the most common kernels for HLS tools. These domain

specific templates must by tool independent and define underlying hardware architecture

in an efficient way. Domain specific HLS templates are incorporated into the design flow

to design kernels as shown in Figure 5.34.

5.4.3 Complex Application Design

Real world applications are complex, and almost universally contain several

computational kernels. Therefore, software programmers must be able to connect and

map multiple kernels of an application on an FPGA. The main challenge here is: What

is the best way connect the kernels designed with domain specific templates in HLS to
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facilitate task level parallelism? State-of-the-art HLS tools provide interface directives

such as ap fifo to specify a port as a FIFO, or ap memory to specify a memory port.

However, these kind of low level interface optimizations require hardware domain exper-

tise. In general FPGA systems for applications such as video processing, digital signal

processing, wireless systems, and data analysis rely on dataflow streaming architectures

[100]. The programming model for dataflow streaming programs differ significantly from

traditional processor (both CPU and GPU) implementations for software programmers.

An easy programming model is needed to allow software programmers to exploit dataflow

streaming architectures. In this work, we propose an approach to provide communication

among kernels efficiently according to Pattern Description. Pattern Description repre-

sents common programming models such as streaming dataflow and bulk synchronous

(CUDA programming model) based on common parallel programming patterns such as

Fork/Join, Partition which are known to software programmers.

5.5 Conclusion

In this chapter, we demonstrated that HLS tools can generate high quality hard-

ware (high performance and low area). However, this requires writing the input code in a

way that reflects low level architectural hardware knowledge, which we call restructured

code. In this chapter, we formally defined code restructuring and give several examples

of code restructuring for regular and irregular kernels. As of today, code restructuring

still remains the HLS developer’s task and requires hardware expertise and domain

knowledge. Code restructuring promises accessibility of FPGAs for domain experts.

In next chapter, we presented an approach that promise to ease the usage of high-level

synthesis by domain experts.
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Chapter 6

Composable, Parameterizable Tem-
plates for High-Level Synthesis

6.1 Introduction

High Level Synthesis 

Domain 
Experts 

Template Pool 

HLS HW 
Experts 

Create new 
template 

Re-templatize 

Our  
Approach 

Figure 6.1. An abstraction layer that separates domain knowledge from hardware skills.

In this chapter, we present an approach to help separate domain knowledge from

hardware expertise in order to create more efficient implementation of an application

on an FPGA. Our approach is based on our experience building various restructured

codes over 3 years of time. The importance of restructured code in high-level synthesis

is presented in Chapter 5. We have seen that each domain has a number of basic kernels

that share the same or similar computational primitives. This indicates that these kernels

can and should be built using a highly optimized restructured code that is efficiently

153
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translated into efficient hardware in HLS. These restructured code are developed by

hardware designers that have intimate knowledge of both the domain, hardware design,

and the HLS tools.

The basic building block of our approach is a composable, parameterizable

template which are modular entities written in a restructured code. These templates are

easily composed to create new templates that are automatically optimized for efficient

synthesis by HLS tools. This is enabled by utilizing existing templates that follow pre

described rules and common data access patterns. These composed templates are added

to the template pool and can be later used to compose more complex templates. In this

way, domain experts simply need to use an existing template, or form a new template for

their specific applications.

The key to our approach is the ability to efficiently create hardware implementa-

tions for complex applications through hierarchical composition using a small number of

highly optimized templates. These templates are composable and parameterizable, which

enable them to easily, and in most cases, automatically build more complex templates.

Similar to platform - based design [31], our approach is a structured methodology (based

on rules and functions).

Platform-based design theoretically limits the space of exploration, yet
still achieves superior results in the fixed time constraints of the design
[31].

Hardware design expertise is required at the initial stage of the process to con-

tribute primitive templates for composition. However, we show that the number of

primitive templates is small for many applications across several domains. We also

show that it is possible to automatically generate efficient, high performance hardware

implementations through the careful use of composable, parameterizable templates. Our

method targets towards application programmers who have little hardware design exper-
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tise and HLS expertise. It is also useful for HLS and/or hardware design experts as they

can use or methods easily develop applications and perform design space exploration.

This general process is shown in Figure 6.1.

The major contributions of this chapter are:

1. A novel approach based on composable, parameterizable templates that enables

the design of applications on an FPGA by separating the domain knowledge from

hardware design skill.

2. A theoretical treatment of the composibility and parameterization of templates in

order to combine basic templates into more complex ones.

3. The development of basic templates across application domains, and case studies

of how to compose these templates into more complex applications that meet

demanding performance constraints.

The rest of this chapter is organized as follows. We continue with a discussion of

motivating example. Section 6.3 and Section 6.4 formalizes the notation of a template

and composition of templates. Section 6.5 presents experimental results. Section 6.6

discusses related work. We conclude in Section 6.7.

6.2 Motivating Example: Sorting

The goal of this section is to motivate the research by stepping through an

example that demonstrates how small number of basic templates can be composed to

create a hardware implementation that efficiently sorts large numbers. We show how two

basic optimized templates, prefix sum and histogram, can be combined in a hierarchical

manner to create highly efficient implementations of different sorting algorithms. First,

we combine the prefix sum and histogram templates to create a counting sort template.
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This in turn will be used to develop several parameterized implementations of a radix sort

template. We use two data access patterns (bulk-synchonous and fork/join) to compose

these basic templates into more complex templates.

We will quickly and briefly discuss the basics of the counting and radix algorithms.

Counting sort has three primary kernels which are ripe for basic templates. These code

blocks are: histogram, prefixsum, and another histogram operation. Figure 6.2 a) and

b) shows how these histogram and prefix sum templates are used to build a counting

sort template. Creating an efficient counting sort template requires functional pipelining

between the three templates using a data access pattern that we call bulk-synchronous. We

will later argue, and show in a number of examples, that this sort of functional pipelining

is generalizable to a large range of applications.

It must be mentioned that it is quite important that the initial templates are

optimized in a manner that enables them to be efficiently composed. While we do not

have space to describe such optimizations for histogram and prefix sum, it is not simply

creating a functionally correct implementation. Care must be taken to insure that they

can be composed efficiently. This largely boils down to insuring that each template can

be suitably pipelined. Details on how to make these subtle, but extremely important

transformations can be found in [87].

Radix sort performs counting sort n times for n radix (digits). Therefore, we

can compose a radix sort template using counting sort templates. Again, to develop an

efficient implementation, we require functional pipelining of the counting sort templates.

In this case, we can build multiple implementations of radix sort, as depicted in Figure 6.2

c) and d). Figure 6.2 c) depicts a bulk-synchronous implementation using three counting

sort templates. This hierarchical composition provides on good radix sort implementation

that can be added into the template library. Figure 6.2 d) provides another implementation

of radix sort. Here we combine two of the previously developed radix sort templates



157

Histogram (H) H 

P 

H 
Prefix sum (P) 

(a) (b)  (c) 

CS 

CS 

CS 

RS RS 

(d) 

Counting
Sort (CS) 

Radix 
Sort (RS)  Radix Sort (RS)

Figure 6.2. a) Initial templates for histogram and prefix sum. b) A counting sort template
built using histogram and prefix sum templates. c) Radix sort built with counting sort
templates using a bulk-synchronous data access pattern. d) A different implementation
of radix sort composed using a fork/join data access pattern on two radix sort templates.

hierarchically using a fork-join data access pattern. This provides another option in the

design space with different performance and area. Both of these can be added into the

template library and later be used to compose more complex templates.

Based upon this example and our experience developing applications on FPGAs,

we argue that domain programmers can efficiently build hardware implementations if

they are provided with templates that are easily composable. We aid the composability

by using a number of common data access patterns, e.g., bulk-synchronous, fork/join

(mapreduce). By providing some optimized basic templates, and methods for automati-

cally composing new templates in an efficient manner using these data access patterns,

we show that it is possible to create highly efficient hardware implementations across a

wide swath of application domains. In the following sections, we discuss the theory and

algorithms behind automatic composition of templates.

6.3 Templates and Compositions

In this section, we present a theory behind templates and necessary conditions

for their composition. The template compositions are done on a meta-model named

abstract templates. The abstract templates is a superclass of certain templates which
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have the same functionality, but with different architectures. Let us start by defining

necessary properties for the abstract templates. We define three universal sets: T , P, and

I. T is a set of the abstract templates, {t1, t2, ..tn}. P is a set of ports for the templates

where P = {p1, p2, ..pm}; Pi and Po are sets of input ports and output ports, respectively,

where P = Pi∪Po and Pi∩Po = /0. I is a set of template interfaces applicable to ports,

{i1, i2, ..in}.

Definition 1 A port is a tuple p = (d, i) ∈ P, where d is a direction of in/our port and

i ∈ I. We use d(p) and i(p) to represent the direction and interface of the port p.

Templates are composed based upon their port properties and allowed structural patterns.

Patterns will be discussed later. The Definition 2 defines port properties which are defined

by forward/backward (FC/BC) compatibility which are defined below. The Definition

3 defines templates and their composability properties based upon forward/backward

compatibility.

Definition 2 (Forward/Backward Compatibility) For ∀p1, p2 ∈ P, if d(p1) == out ∧

d(p2) == in∧ i(p1) == i(p2) ⇒ FC (p1, p2) = 1. If d(p1) == in∧ d(p2) == out ∧

i(p1) == i(p2)⇒ BC(p1, p2) = 1.

Definition 3 An abstract template is a tuple t = (IN,OUT, f ) ∈ T with following prop-

erties: 1) IN ⊂ Pi∧OUT ⊂ Po, 2) |IN| ≥ 1∧|OUT | ≥ 1, 3) f (IN) = OUT .

IN(t), OUT (t), and f (t) represent a set of input ports, a set of output ports,

and the functionality of t, respectively. Abstract template is an abstract class used for

composition purposes. Actual architectures are represented by optimized architectural

instance templates which are subclasses of abstract template. The abstract template

tınT can have multiple variants of optimized architectural instance templates which

has the same functionality and ports with the abstract template t. We use a set Ati
I =
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{ti j|ti j is instance templates } where i = 1, ..k to denote k instance templates of an

abstract template ti. In the rest of the paper, we use instance template to refer optimized

architectural instance template and template to refer both abstract and instance template.

An instance template ti j is a tuple ti j = {II,a} where II is the throughput of ti j and a

is the area of ti j. We use II(ti j) and a(ti j) to represent throughput and area of instance

template ti j.
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Figure 6.3. Patterns. a) Bulk synchronous, b) Fork/Join, c) Merge, d ) Tiled computation,
e) Sliding window. Symbol c refers to channel. Channel is a communication medium
such as a fifo or a memory.

Now we define rules and functions that must hold in order to compose two or

more templates to form a new template. Template composition is done using patterns.

In this work, we consider patterns shown in Figure 6.3. Tiled computation and sliding

window are explained in Chapter 5 and they are defined as computational patterns. Merge,

Bulk Synchronous and Fork/Join are structural patterns. Merge pattern follows from

fork/join pattern. Thus, we will give formal rules for bulk synchronous pattern and

fork/join pattern. We use BSComposability and FJComposability functions for bulk

synchronous and fork/join patterns. BSComposability and FJComposability functions

are main blocks to check if two or more templates can be composed to form a new
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template based on bulk-synchronous or fork/join data access patterns, respectively. In

the following we will define these two functions. In order to define bulk-synchronous

composability of t1, t2, ..tn ∈ T , we check the composability of every consecutive pair of

templates using a binary composability property, BinaryComposability, which is defined

below. Based on BinaryComposability, we define the BSComposability function.

Rule 1 A binary composability function is defined for ∀t1, t2 ∈ T if 1) |OUT (t1)| =

|IN(t2)|, 2) FC(pi, p j) = 1 for ∀pi ∈ OUT (t1) there exist only one p j s.t p j ∈ IN(t2),

then we say that BinaryComposability(t1, t2) = 1

Rule 2 The function BSComposability is defined as BSComposability(t1, t2, t3, ..tn) = 1

if ∀ ti, ti+1 ∈ T BinaryComposability(ti, ti+1) = 1 where i = 1,n−1

In order to define fork/join composability of t1, t2, ..tn ∈ T , there are two con-

straints. We assume t1 is the fork, and tn is the join. Then the fork join composabil-

ity function, FJComposability, is defined by checking ForkComposability and then

JoinComposability rules.

Rule 3 The function ForkComposability is defined as ForkComposability(t1, t2, ..tn) =

1 where {t1, t2, t3, ..tn} ∈ T if 1) |IN(t1)| == 1∧ |OUT (t1)| == n− 1, 2) |IN(tk)| =

|OUT (tk)|, ∀k = 2,n, 3) ∀pi ∈ OUT (t1) if ∃pk ∈ IN(tk) such that following conditions

hold:

ForwardCompatibility(pi, pk) = 1∧BackwardCompatibility(pk, pi) = 1

Rule 4 The function JoinComposability is defined as JoinComposability(t1, t2, ..tn) = 1

where {t1, ..tn} ∈ T if 1) |IN(ti)|== 1∧|OUT (ti)|== 1, ∀i= 1,n−1 |IN(tn)|== n−1,

2) ∀pk ∈ OUT (ti) for i = 1,n−1 if ∃p j ∈ IN(tn) s.t. ForwardCompatibility(pk, p j) =

1∧BackwardCompatibility(p j, pk) = 1



161

Rule 5 This rule states that FJComposability(t1, t2, t3, ..tn) = 1 is where {t1, t2, t3, ..tn} ∈

T if ForkComposability(t1, t2, ..tn−1) == 1 ∧JoinComposability(t2, t3..tn) == 1. Next,

we define sub rule of FJComposability. For a template t, if IN == IN1 ∪ IN2, ..INn,

OUT == OUT1 ∪OUT2, ..OUTn and ∃ f (t) such that f (IN1) == OUT 1, f (IN2) ==

OUT 2, .. f (INn) == OUTn, then t is n-way FJ composable.

Based on definitions and rules above, we define template composition functions.

Template composition is a way of structurally composing existing templates from T

based on data access patterns such as bulk-synchronous and fork/join. We omit the proofs

here for the sake of brevity.

Lemma 1 if BSComposability(t1, t2, ..tn) == 1 for {t1, ..tn} ∈ T , then⇒ BS(t1, t2, ..tn)

maps to a new template tnew where tnew has all properties defined in Definition 3.

Lemma 2 if FJComposability(t1, t2, ..tn) == 1 for {t1, ..tn} ∈ T , then⇒ FJ(t1, t2, ..tn)

maps to a new template tnew where tnew has all properties defined in Definition 3.

BS and FJ functions are ways of constructing a new template tnew for a new

functionality, which later can be used as an existing template. We also define a general

strategy to parameterize any code block. If there is a functionality which does not have

corresponding template in T , we rely on users making a new template and contributing

it to our system. The users add the new template to the system by defining the abstract

properties of the template. The properties are derined in a standard xml format to be used

for automation. Loop optimization works at [34, 140, 64] can be used here. This area

of research needs further investigation. We believe that our approach, as in Figure 6.1,

eventually fills this gap by producing more and more templates in a disciplined manner.



162

6.4 Template Parameterization

In this section, we describe how to compose templates in a highly optimized

manner and provide trade-offs on performance and area. When composing new templates

based on the rules defined in previous section, we have two constraints: 1) composition

algorithm, 2) parameterizable architecture generation.

6.4.1 Composition Algorithm

A domain expert is designing an application A with n kernels, i.e., A = {k1, ..kn}.

Assume that there exists at least one template that can be used to implement each ki.

The input to the algorithm is a set of templates T , user input data, and an optional user

constraints UC. UC is a tuple UC = ( fu, IIu,au) where fu is frequency, IIu is throughput,

and au is area. The area, au, is considered as a weighted combination of BRAMs and

LUT/FFs. Next, we present an algorithm for constructing a new template using bulk-

synchronous function (BS) in Algorithm 7. Due to limited space, we only present an

algorithm for BS. The same principle and algorithm applies to FJ function using Rule 5.

The algorithm has four sub routines. The FindInstances calls GetAllInstance

sub routine for each abstract template ti. The GetAllInstance returns a set MA containing

optimized instance templates. As disscuessed in previous section, abstract template is a

black box, and each abstrat template has a number of instance templates. This is because

in our framework, we want to seperate functionality from the underlying microachiectural

hardware, and letting our framework choose the one based on user constraints. For

example, as shown in Figure 6.4, matrix multiplication abstract template has a number

of instances. Each instance is implemented in different microarchiecture (streaming, 1

processing element (PE), 4 PE with streaming) having different performance and area

based on user constraint. Based on user constraint (e.g., input data size), the algorithm
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selects different instance templates. This is importan because some applications have a

intersection points between different instance templates where certain instance template

is better than another around that point. We call it performance breaking point. This will

be disscussed in more detail experimental section.

After FindInstances routine, MA set contains all instance templates necessary to

implement an application A. MA has a matrix-like structure where column i represents

the same class of templates that can be used to implement kernel ki. To illustrate this

process better, we give an example in Figure 6.4 (a). The k1,k2,k3, and k4 are kernels

which can be implement by abstract templates t1, t2, t3, and t4. In the next step, we call

subroutine ComposabilityCheck which returns a set of graphs (each graph contains a set

of tempaltes composable based on BS model). The routine checks Rule 1 for each ti j, ti j+1

pair, and Rule 2 for the selected set of ti j. In the case of fork/join, we use Rule 5 to check

composability. After this step, we obtain one or more sub-graphs of MA as shown in the

Figure 6.4. The optimal algorithm (maximizes throughput) to find instance templates

runs checks all possible paths in each graph. The optimal algorithm runs O(n× k× k).

Currently, we do greedy algorithm which selects a graph that has t1i where the II(t1i) is

minimum. The result of this algorithm returns a graph G which starts from a selected

t1i as a source. The next step, ConstructBulkSynchronous, accepts input G and outputs

a path from a source of G to a sink of G. This procedure returns path that contains a

set of instance templates for the given application A based on BS. In this process, we

consider two cases; When UC = /0, the algorithm selects each next instance template

greedily which maximizes throughput. If UC 6= /0, then we model the selection as a

a cost function using closest point problem [115] between UC and a set of candidate

instance templetes. The function GetAllComposableTo returns all composable templates

from the current vertex vi. For example, in Figure 6.4, if we are on t14 of G2, then

GetAllComposableTo retuns t22 and t24 The CalculateClosestPair function calcualtes
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cost from the current vertex vi to all other vertices returned by GetAllComposableTo.

The next instance template tik is selected based on a value of closest point between pair

of (IIa,au) and a II(ti j),a(ti j) where ti jis a set of all candidate instance templetes. This

process is performed in VertexWithMinCost function. Based on UC, if a certain template

fall to meet IIu, we apply parameterized template generation and selection, which will

be discussed in Section 6.4.2. The final step, CodeGeneratorBS, generates optimized

HLS code. This will be discussed in Section 6.5.

6.4.2 Parameterization

k1 k2 k3 k4 

t1 t2 t3 t4 

t11 t21 t31 t41 

t12 t22 t32 t42 
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Figure 6.4. Composition example. a) Bulk-synchronous model, b) An example relation-
ship between abstrat and instance templates.

Instance templates allow users to have parameterizable architectures. This enables

instance templates to provide flexibility that leverages area and performance trade-off by

providing different instances of an abstract template. The flexibility of instance templates

provides two benefits: 1) adjusting throughput to global throughput or to user specified

constraints when composing template, 2) template selection based on user constraints

or user input data size. Both of these benefits are crucial when composing templates.

The former benefit provides easy way to achieve throughput increase/decrease based on

user constraints. We name it parameterizable speed-up in this paper. The latter benefit
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of instance template is essential to provide optimized architecture for the user, which

selects certain architecture based on user constraint or user input data. For example, RS1

and RS2 in Figure 6.4 (b) are the same instance templates for radix sort that represent

the architecture as in Figure 6.2 (c). Based on different parameters and user input data

size, RS1 and RS2 has different throughputs for a given data size as shown in Figure 6.4

(b). We will discuss this example in detail in Section 6.5. Currently, this process of

selecting optimized architecture for specific user constrain is being done manually by HLS

experts. With our approach, we will automate this process by leveraging user constraints

and analysing user input data. Since templates have pre-defined high-level structures,

throughput, II(ti j), and area, a(ti j), are linear functions of input data size. They can be

determined differently for regular and irregular programs; for regular programs, II(ti j)

and a(ti j) are defined by exploiting the user input data and instance template structures.

For irregular programs such as sparse matrix vector multiplication, we rely on design

space exploration to determine II(ti j) and a(ti j).

6.5 Experimental Results

We used Vivado HLS 2014.1 as a back-end HLS tool. Our approach can be

easily modified for use with another HLS tool. Here, we present an approach that

shows composing templates based on an abstract template. This kind of composition

can be easily done using existing scripting languages such as Python. Each instance

template is a Python class inherited from an abstract template class. For example,

prefixsum abstract class identifies the functionality of prefix sum. Implementation classes

inherit from abstract prefix sum class and implements different versions of prefix sum

hardware architecture. An abstract template class can consists of fields to model ports,

interfaces, and functionality for its child classes. In this work, we define interfaces

based on Vivado HLS interface specification [10]. The abstract template implements the
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HLSCodeGenerator function which writes HLS code using pre-defined structure. Each

instance template inherits this method and calls it with template specific parameters, e.g.,

optimization parameters, bit width, size, number of functional units, etc. By default all

templates include the dataflow directive. When a template is composed using existing

templates, the HLSCodeGenerator subroutine traverses each instance template and

generates separate HLS code for each of them. Then it generates a top-level function

which calls the generated instance templates. The dataflow directive is placed in top level

function which functional pipelining in both BS and FJ data access patterns.

Next, we present area and performance results of different primitive templates.

We use Template and OSC to indicate code generated from our method and optimized

synthesizable code for HLS, respectively. OSC is a HLS code highly optimized by HLS

expert using HLS #pragmas. This codes is not rewritten to target low level architectural

features. It is code written optimized for software and using HLS pragmas. It is how a

good software programmer would write the code and use the HLS tools based on our

experience in teaching HLS over three years of a graduate student class. On the other

hand, Template is generated using our parameterizable templates. In the following, we

start by comparing Template against OSC. Then, we present two examples of achieving

parameterizable speed-ups using templates. Finally, we use several of those highly

parameterizable templates to design five large applications. Due to space constraints, we

present only few results of applications designed using templates. The applications are

Canny edge detection and different kinds of matrix inversion. All results are obtained

from place and route. The target device is Zynq.

Template vs. OSC: Figure 6.5 shows throughput of Template and OSC designs

for various templates designed. Level 0 is a primitive template and includes the 0prefsum,

0histo, 0gaussian, 0conv, 0hufftre, 0thrh, 0Imgadjt, 0bicubic, 0dilation, 0erosion, 0bit rev,

0butter, 0SpMV 0 kernels. For templates 0dilation, 0erosion, and 0thrh kernel, Template
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is better than OSC by around 1.1−1.5X . This is because those templates can be highly

optimized using only HLS only directives. For kernels 0gaussian, 0conv, 0bicubic,

0bit rev, 0butter and 0hufftre, we see several orders of magnitude of improvement. This

is because these templates require low-level micro-architectural knowledge in order to

generate efficient hardware. The second level kernels are designed using the templates

from the Level 0. For example, 1CntSort is built on using 0histo and 0prefsum. FFT

is built using 0bit rev and 0butter. 1SpMV is built by composing several of 0SpMV 0

templates using the fork join data access pattern. Several templates in Level 1 use linear

algebra primitives such as vector-vector multiplication. Since linear algebra primitives

are easier to design in HLS than others, we omitted their results from Figure 6.5. For

example, 1IntegImg is built by composing 0conv and vector subtraction. Level 2 are

five applications composed using existing templates from Level 0 and Level 1. We will

discuss applications later. Next, we will elaborate parameterizability of our templates.

Performance 
Breaking Point 

Figure 6.6. (a) Performance graph showing performance breaking point (PBP). Tem-
plates provide a means to select right tempalte based on PBP. (b) Area

Parameterization: Parameterization plays a vital role in Algorithm 7 when

composing templates to meet a throughput requirements. Here we describe the parame-

terizable templates for prefix sum and histogram. The result is shown in Figure 6.7. First,

we optimized both of them targeting low level hardware architecture by removing data

and read after write dependencies. This is same as the template in Level 0 in Figure 6.5.
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We call this Lev0. Then using these Lev0 designs, we applied different combinations of

parameterizable speed-up factors using FJ and BS data access patterns. The prefix sum

is composed based on FP pattern while histogram is composed based on FJ pattern. The

speed-up factor (shown as Factor in the Figure 6.7) is the unrolling factor for OSC and

Lev0 designs. OSC−X means speed-up factors of X . The same convention follows for

Lev0 designs. For BS and FJ designs, the speed-up factor is the task level parallelism

factor. In both cases, OSC designs does not give the desired throughput regardless of

unrolling factor. In the Lev0 designs, the throughput does increase, but it does not scale

as expected. This is because the clock frequency is also increasing with higher speed-up

factor. BS and FJ, both designs perform and scale as expected according (4, 8, 16) to

speed-up factor. Algorithm 7 selects the histogram template with fifo interfaces as parallel

task of FJ.

Next we present three different radix sort templates in Figure 6.6. RS1, RS2

are templates composed as in Figure 6.2 (c) with different parameters, and RS FJ is a

template as in Figure 6.2 (d). Sorting algorithms use less slices, and usaully BRAM is

important area metric. Thus, in the Figure 6.6 (b), we presented throughput and BRAM

utilization. RS1 and RS2 have similar area usage, and RS FJ has larger area (2-8 times)

usage than RS1 and RS2 due to higher parallelism. In this case if UC is maximizing

throughput with minimum area. Our algorithm transparently selects an archeicture based

on user constraint balancing performance breaking point. Algorithm 7 selects RS1 for

input data size 213−215 based on performance breaking point, and it selects RS2 for input

data size 216−219 as shown in the Figure 6.4. If UC is empty or maximum throughput,

the algorithm selects RS FJ.

Canny Edge Detection: Next, we argue that the hardware generated from our

approach has competitive area and performance results. We compare area and perfor-

mance of applications composed with templates with other published work. We use two
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Figure 6.7. Developing parameterizable templates for a) Histogram, b) Prefixsum

cases: Canny edge detection and matrix inversion. The Canny edge detection algorithm

is divided into four stages, Gaussian smoothing, edge strength identification, non maxima

suppression, and double thresholding. All four stages can be designed using highly

parameterizable convolution and histogram templates from our template pool. We com-

posed a new template for Canny edge using BS function. The generated code of Canny

edge runs for Q/VGA sizes. Table 6.1 shows the throughput as a frames per second and

hardware utilization for our designs and previous work. Our results are comparable to

these published application papers.

Matrix Inversion: Three matrix inversion templates are composed using FJ LU

and Cholesky decomposition, and linear algebra templates. Table 6.1 shows a comparison

between our results and previously published works [70, 74] for 4×4 matrix inversion.

For the sake for comparison, we implemented our designs to a Virtex4 device. In general,

our performance is 7-18X better than [70, 74] but our area is 2-7X larger than those

works. Our design uses 32-bit numbers while [70] is using 20 bit numbers.
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6.6 Related Work

Several HLS vendors provide libraries, e.g., OpenCV and linear algebra from

Xilinx. They provide a first step towards making FPGA designs more accessible. While

experienced HLS users find these libraries useful, it is difficult for a domain programmers

to use them since they require low level hardware expertise. Our technique goes further

than just static libraries; these libraries are typically not composable or parameterizable.

In fact, we can use the functions in these libraries as basic templates. The work [39, 90]

present similar approaches to this work terms of facilitating composability of reusable

components. The work [39] defines accelerator building block as a service for hardware

blocks and the work[90] presented a study of IP core composition. Both of these works

compose low level IP cores. Therefore, our approach can provide functionality to them

by generating composable IP cores or accelerator blocks. Several other works such as

Chisel [18], FCUDA [105] and others [57, 121] present domain-specific language based

approach to design an FPGA system. This work is orthogonal to our research. For

example, we can use HLS code generated from [57, 121] to make new templates and use

them in our framework.

BALBOA [51] and subsequent works [123, 117] present component composition

and theoretical framework for the system-level design. These works focus on much

wider compositional framework than our approach. In our work, we restrict the design

space exploration with known best design practice templates and patterns. We believe

restricting the design space exploration with known templates and patterns eventually

allow to generate efficient hardware from high-level synthesis.

System level design automation [8] and compositional high-level synthesis [48]

present an approach to select hardware components while doing inter/intro optimiza-

tions among components. The main building blocks (or assumptions) of these works
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are existing components. These components, in fact, can be modelled as composable

parameterizable templates. Thus our work can be used as a components for [8, 48].

Different than these works, we assume the users of our work will be pure software

programmers without any hardware knowledge. Thus, our work provides higher-level of

abstraction by composable parameterizable templates. Our work also does not provide

direct component descriptions in (VHDL, Verilog, SystemC, or C/C++), we provide meta

description of templates which are flexible to apply different compositional (FJ, BS)

functions. This abstraction allows our work to be part of existing works such as [8, 48],

or use the existing works to compose hierarchical templates.

Limitations: The success of this work is dependent on building enough primitive

templates to cover all applications. Ideally, users contribute to the system by providing

their templates. Instead of relying on users, we take a domain-specific approach where

we studied certain domains such as database operations, image processing, linear algebra,

and compression. For example, there are a handful of primitive database operations

that are needed as templates. Sorting is a one such primitive. There are many methods

for sorting including sorting networks, bitonic sort, and fifo-based merge sort. When

we have a composable templates for these sorting primitives, we can compose complex

hierarchical sorting. These composed sorting primitives can be used to build median

operator, and eventually allow us to cover almost all database operations.

In total, we have developed over 40 templates; Using these templates, we im-

plemented the following applications: Sorting (Merge, Insertion, Hybrid, and Radix),

linear algebra (matrix multiplication, LU/QR/Cholesky decomposition, matrix inver-

sion, Gaussian elimination), data compression (Huffman encoding), image processing

(Gaussian blur, Susan corner detection, Harris corner detection, face recognition, face

detection, lane detection, ). Unfortunately, we do not have the space to describe all

of these applications, but these templates available for general public through an open
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source github repository (link not provided to maintain blind review).

6.7 Conclusion

In this chapter, we described a theoretical framework for parameterizable and

composable HLS templates. Based on this theoretical framework, a new composable

template can be built using existing composable templates hierarchically based on certain

patterns. This new template will have new functionality and will be added to the template

pool for later usage by domain experts. We built a highly optimized library of basic

parameterizable templates and showed how to compose them to create a number of large

applications from various domains. These designs were highly optimized and easily

developed using our framework. Next, we will present a framework ”Resolve” which

uses existing sorting templates and decorator pattern to generate customized sorting

archiecture for a user given parameters.
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Algorithm 7: Procedures of BS construction algorithm
1 Procedure BulkSynchronous()

Data: UC = { fu, IIu,au}, D = data T = {t1, t2, ..tn}
2 //Call the subroutines here
3 Procedure FindInstances()

Data: T = {t1, t2, ..tn}
Result: MA=set of instance templates for each ti

4 forall the ti ∈ T do
5 in=GetAllInstancesOf(ti, D), i = 1, ..n
6 end
7 return MA

8 Procedure ComposabilityCheck()
Data: MA
Result: G=A set of graphs of composable templates

9 return G
10 Procedure ConstructBulkSynchronous()

Data: G(V,G)
Result: BS= BSComposability set of templates

11 currentVertex = v0
12 if UC is /0 then
13 while i < n do
14 Select next v ∈V s.t. v(II) is minimum BS.AddToBS(v)
15 currentVertex = selected(v)
16 end
17 end
18 else
19 foreach (vi) do
20 templates = GetAllComposableTo(vi) BS.AddToBS(v)
21 foreach (templates) do
22 cost = CalculateClosestPair(vi, templates)
23 end
24 currentVertex = VertexWithMinCost()

BS.AddToBS(currentVertex )
25 end
26 end
27 return BS
28 Procedure CodeGeneratorBS()
29 //Omitted for brevity
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Table 6.1. Hardware area and performance results.

Canny Edge Matrix Inversion

QVGA/VGA Ref [67] Ref [55] MI Ref [70] Ref [74]

Throughput 464/134 400 240 2.44 0.33 0.13
Size * 360x280 512x512 4x4 4x4 4x4
Frequency 121/140 27 120 100 - 115
BRAM 9/9 - - 10 1 9
Width 8/8 - - 32 20 20



Chapter 7

Resolve: Automatic Generation of a
Sorting Architecture

7.1 Introduction

In this chapter, we will demonstrate a case to compose templates to build highly

optimized custom applications. To that end, we introduce Resolve: A framework that

generates high performance sorting architectures by composing basic sorting architectures

implemented with optimized HLS primitive templates. We built templates for basic

sorting algorithms. Using these templates and common patterns, we presented a small

domain-specific language which generates customized sorting architecture for a user

requirement.

This concept is shown in Figure 7.1. We note that this is similar to std :: sort

routine found in Standard Template Library (STL), which selects a specific sorting

algorithm from a pool of sorting algorithms. For example, insertion sort is selected for

lists smaller than 15 elements and then switches to merge sort for larger lists. We believe

a routine like std :: sort for HLS is important to facilitate FPGA designs for non-hardware

experts. Our framework is designed to integrate into a heterogeneous CPU/FPGA system

using RIFFA [72]. This allows application programmers to quickly and easily create fully

functional, heterogeneous CPU/FPGA sorting systems. We focused sorting application

176
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domain because sorting is a widespread and fundamental data processing task especially

in the age of big data.

Sorting is widely studied algorithmic problem [76] that is applicable to nearly

every field of computation: data processing and databases [94, 32, 62], data compression

[26], distributed computing (MapReduce) [46], image processing, and computer graphics

[25, 79]. Each application domain has unique requirements. For example, text data com-

pression typically requires sorting arrays with less than 704 elements [11]; MapReduce

sorts millions of elements; databases must sort both large and small size arrays.

The major contributions of this chapter are:

1. The design and implementation of highly optimized basic sorting architectures,

using sorting primitives written in a high-level synthesis language

2. A framework to generate hybrid sorting architectures by composing basic algo-

rithms

3. A comparison of these generated sorting architectures with other sorting architec-

tures implemented on a FPGA

The rest of this chapter is organized as follows. Section 7.3 describes the optimiza-

tion of standard sorting primitives, and how to use them to create efficient architectures

for ten basic sorting algorithms. Section 7.4 presents our framework. Section 7.5 provides

experimental results. Section 7.6 discusses related work, and we conclude in Section 7.7.

7.2 High-Level Synthesis Optimizations

We present results using the Vivado HLS tool from Xilinx. Vivado HLS is a

state-of-the art tool used by both academia and industry. While the coding techniques

and optimizations that we use are specific to Vivado HLS, these general ideas can be

applied to other tools. We refer the reader to [10] for available optimizations.
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Most modern high-level synthesis tools from academia [30, 105] and industry

[1, 10] provide optimizations that are typically embedded in input source code as a

pragma. Two common optimizations are pipeline, which exploits instruction level

parallelism, and unroll, which vectorizes loops. Unfortunately, designers must often

write special code (i.e., restructured code) to generate good hardware. This restructured

code requires substantial hardware expertise [56, 89].

Basic Sorting Elements 

Merge 
Unit 

Prefix 
sum 

Smart-
Cell 

Basic Sorting Algorithms 

Insertion 
Sort 

FIFO-Merge 
Sort 

Radix 
Sort 

Sorting 
Architecture 
Generator 

User constraints  
(size, performance, area,..) 

An efficient customized  
Sorting Architecture 

1 

2 

3 

Figure 7.1. The sorting framework.

7.3 Hardware Sorting

This section presents our sorting primitives, their hardware implementations

using HLS, and the implementation of ten basic sorting algorithms using these primitives.

Figure 7.1 shows the structure of our framework. It has three components: 1) Block

1© is a library of parameterizable sorting primitives. These sorting primitives are the

building blocks of our framework. They are implemented in HLS and optimized to

generate efficient hardware, as demonstrated in 7.2. Block 2© represents our basic sorting

algorithms. The algorithms use the sorting primitives to implement all the basic sorting

algorithms on an FPGA using high-level synthesis. Block 3© is the sorting architecture

generator. Here we use the sorting primitives and basic algorithms to generate optimized



179

Ta
bl

e
7.

1.
So

rt
in

g
A

lg
or

ith
m

s
ev

al
ua

tio
ns

w
he

n
im

pl
em

en
tin

g
th

em
us

in
g

H
L

S.
n=

nu
m

be
ro

fe
le

m
en

ts
to

so
rt

.*
n=

nu
m

be
ro

f
in

se
rt

io
n

so
rt

ce
lls

,t
*=

nu
m

be
ro

fc
om

pa
re

-s
w

ap
el

em
en

ts

Pa
ra

lle
lH

L
S

Im
pl

em
en

ta
tio

n

A
lg

or
ith

m
na

m
e

SW
C

om
pl

ex
ity

Ta
sk

s
C

om
pl

ex
ity

St
or

ag
e

M
ai

n
So

rt
in

g
Pr

im
iti

ve
s

Se
le

ct
io

n
so

rt
O
(n

2 )
2

O
(n

2 /
2)

O
(2
×

n)
C

om
pa

re
-s

w
ap

R
an

k
so

rt
O
(n

2 )
n

O
(n

)
O
(n

2 )
H

is
to

gr
am

,C
om

pa
re

-s
w

ap
B

ub
bl

e
so

rt
O
(n

2 )
2

O
(2
×

n2 )
O
(2
×

n)
C

om
pa

re
-s

w
ap

In
se

rt
io

n
so

rt
O
(n

2 )
-

n
n*

C
om

pa
re

-s
w

ap
,i

ns
er

tio
n-

ce
ll

M
er

ge
so

rt
O
(n

lo
g

n)
-

O
(n
)

O
(2
×

∑
lo

gn
)

M
er

ge
U

ni
t

Q
ui

ck
so

rt
O
(n

lo
g

n)
or

O
(n

2 )
t

O
(n
/t

lo
g

n/
t)

O
(n
×

t)
Pr

efi
x

su
m

C
ou

nt
in

g
so

rt
O
(n
×

k)
(k

=3
)

3
n

(k
-1

)n
Pr

efi
x

su
m

,H
is

to
gr

am
R

ad
ix

so
rt

O
(n
×

k)
(k

=4
)

4
n

(k
-1

)n
Pr

efi
x

su
m

,H
is

to
gr

am
,C

ou
nt

in
g

So
rt

B
ito

ni
c

so
rt

-
t

lo
g2 n

O
(n
×

t)
C

om
pa

re
-s

w
ap

O
dd

-e
ve

n
tr

an
s

so
rt

O
(n

2 )
t*

O
(n

2 /
t∗
)

O
(t
∗)

C
om

pa
re

-s
w

ap



180

hybrid sorting architectures to meet the user constraints.
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Figure 7.2. Initial hardware architecture of sorting primitives generated from HLS. a)
compare-swap, b) select-value element, c) merge, d) prefix-sum, e) histogram, f) insertion
cell

7.3.1 Sorting Primitives

This section presents optimized HLS implementations of our sorting primitives.

Previous works presented a list of several common sorting primitives, e.g., compare-swap,

select-value, and a merge unit [77]. After analyzing more common sorting algorithms,

we added three more primitives to this list: prefix-sum, histogram, and insertion-cell.

Our basic sorting algorithms (presented in Section 7.3.2) are implemented efficiently

in hardware using these six sorting primitives. Figure 7.2 shows the initial hardware

architectures generated from HLS code for our sorting primitives.

Section 7.2 described how restructured HLS code is necessary to generate efficient

hardware. In this section, we will present the optimization of prefix sum, merge primitive

and insertion-cell.

1 #pragma HLS DATAFLOW

2 // omitted partition

3 // pragmas

4 stage1(IN, TEMP);

5 ...

6 stage(TEMP , OUT);
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7 }

Listing 7.1. Prefix sum dataflow

1 stage1(in, t) {

2 for(i=0; i<SIZE; ++i) {

3 #pragma HLS UNROLL factor =4

4 #pragma HLS PIPELINE

5 t[i] = in[i-1]+in[i];

6 }}

Listing 7.2. Prefix sum stages

In Chapter 5, we deeply covered design and implementation of prefix sum. As

an additional example, we present another optimized HLS block for prefix sum which

implements the reduction pattern in [66]. The reduction pattern uses log(n) parallel

stages to compute a prefix sum of size n in parallel. The individual stages do not have

the data dependency seen in the previous example. Listing 7.1 shows a high-level prefix

sum implementation using a reduction pattern. The stage functions are implementations

of the parallel stages without the data dependency. The Listing 7.2 shows the code for

the first stage function. Since there is no data dependency, it is straightforward to get a

speed up of 4 or more by unrolling and cyclically partitioning as in Listing 7.2.

When possible, we implemented multiple versions of optimized sorting primitives

to facilitate further design space exploration. For example, the prefix sum presented in

Chapter 5 achieves the desired unrolling factor with reduced frequency, while the prefix

sum in Listing 7.1 with the same unrolling factor achieves higher frequency.

1 void MergeUnit(hls::stream <int > &IN1 , hls::stream <int > &IN2 , hls::stream <int > &OUT){

2 int a,b;

3 // read IN1 and IN2 into a,b

4 for(int i=0;i<n;i++) {

5 #pragma HLS PIPELINE

6 if(a<=b) {

7 OUT.write(a);

8 if(!IN1.empty ())

9 IN1.read(a);
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10 else

11 a=LARGE_NUMBER;

12 }else{

13 OUT.write(b);

14 if(!IN2.empty ())

15 IN2.read(b);

16 else

17 b=LARGE_NUMBER;

18 }

19 }

20 }

Listing 7.3. FIFO based streaming merge primitive

The merge primitive merges two sorted n/2 size arrays into an array of size n.

Figure 7.2 (c) architecture of merge primitive. We implemented merge primitive using

C arrays and using streams. Here we present implementation of merge primitive using

stream in HLS. Listing 7.3 shows the HLS implementation of streaming fifo-based merge

unit. Here the IN1 and IN2 are two sorted arrays and OUT is the merged output. The

loop in line 4 runs n times where n/2 is the size of IN1 and IN2. We pipelined this loop

to get an initiation interval of 1, reading one element from IN1 or from In2 into a or b in

a clock cycle. Next in lines 6-9 and 12-15, we write the smaller of a or b into the output.

The else part of the logic on line 11 and 17 is used to get all the input array elements

out of fifo by sending largest number. Input fifos can be modelled using an array or

using hls :: stream <> interface. We found out that hls :: stream <> is the best suited

to implement (for performance) fifo-based merge sorter than using an array.

The insertion-cell (Figure 7.2 (f)) is a sorting primitive used in insertion sort

to design hardware-oriented insertion sort. It has an input, output, a comparator and a

register. The insertion-cell compares the current input with the current value in current

register. The smaller value between the current register and the current input is given

as an output if the sorting direction is ascending. We will give an example of particular

implementation of insertion-cell in Section 7.3.2 when we present implementation of
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insertion sort. Next, we present basic sorting algorithms using these optimized sorting

primitives.

7.3.2 Sorting Algorithms

In this section, we elaborate on the HLS implementation of our selected sorting

algorithms. These algorithms are classified into four categories based on their struc-

ture: nested loop, recursive, non-comparison, and sorting network. These categories

help us to identify HLS optimizations. Table 7.1 summarizes the results of our HLS

implementations.

Nested Loop Sorting Algorithms

The Selection Sort algorithm finds the minimum or maximum element in an array

and swaps it with the first or last element until the list is sorted. This algorithm runs in

O(n2), where n is the number of array elements. In HLS, we can pipeline the inner loop

to get II = 1, which still gives us O(n2) time. In HLS, we can implement better design

by finding the minimum and maximum elements in parallel, which reduces the number

of iterations in the outer loop by a factor of 2. This gives us O(n2/2) time. In general,

selection sort does not translate into high performance hardware using HLS. However, it

can produce an area-efficient sorting algorithm implementation.

Rank sort algorithm sorts by computing the rank of each element in an array, and

then inserting them at their rank index. The rank is the total number of elements greater

than or less than the element to be sorted. Sequential rank sort has a complexity of O(n2).

The rank sort algorithm can also be fully parallelized in HLS: To sort an array of size n,

there are n units operating in parallel computing the rank of each element. However, this

process uses 2×n2 storage (BRAM) to sort the array of size n. Rank sort can be useful

when designing sorting hardware in HLS because it is a good algorithm for exploring



184

area and performance trade-offs.
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Figure 7.3. Hardware architecture of linear insertion sort

Insertion sort iterates through an input array maintaining sorted order for every

element that it has seen. Insertion sort has a complexity of O(n2). Listing 7.4 shows a

software-centric HLS implementation of insertion sort. We attempted to pipelined the

inner while loop in line 5, however, because of loop exit test in line 5 on variable j =

and the update of j an initiation interval of 1 is not possible. This makes the software-

centric HLS implementation of insertion sort (as it is in Listing 7.4) worse than the HLS

implementations of selection sort or rank sort.

1 void InsertionSort (array) {

2 for (i=1; i < SIZE; i++){

3 index = array[i];

4 j = i;

5 while ((j > 0)&& (array[j-1] > index) ){

6 #pragma HLS PIPELINE II=1 // II >1

7 array[j] = array[j-1];

8 j = j - 1;

9 }

10 array[j] = index;

11 }}

Listing 7.4. Insertion Sort code for HLS design
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However, insertion sort can be implemented in hardware efficiently using lin-

ear array of insertion-cells [104, 20, 84, 15] or using sorting networks [96]. We will

discuss sorting network implementation in HLS later. Now we present insertion sort

implementation based on a recent work [15] which implements linear insertion sort.

Figure 7.3 shows architecture from the work [15]. In this architecture a series of cells

(insertion-cell primitives) operate in parallel to sort a given array. It compares the current

input (IN) with the current value in current register (CURR REG). The smaller of current

register and the current input is given as an output to OUT . The Listing 7.5 shows the

source code that represents the hardware architecture in Figure 7.3. The lines 1-12 shows

code that represents a insertion-cell architecture. The cell function must save its current

value between calls; This is done with a static variable. A cascade of insertion-cells

are modelled in HLS code using dataflow pragma (see [10]) and series of calls to cell

functions as shown in 12-19 lines of Listing 7.5. Since we have to store the values in

(CURR REG) of each cell, we created n copies of the cell function. With this HLS

implementation, we achieve O(n) time complexity to sort an array of size n.

1 T cell0(hls::stream <T> &IN, hls::stream <T> &OUT){

2 static T CURR_REG =0;

3 T IN_A=IN.read();

4 if(IN_A >CURR_REG) {

5 OUT.write(CURR_REG);

6 CURR_REG = IN_A;

7 } else

8 OUT.write(IN_A);

9 return CURR_REG;

10 }

11 ...

12 void InsertionSort(hls::stream <T> &IN, hls::stream <T> &OUT){

13 #pragma HLS DATAFLOW

14 // Function calls;

15 cell0(IN, out1);

16 cell1(out1 , out2);

17 ...

18 cell7(out7 , OUT);

19 }
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Listing 7.5. Insertion Sort code for HLS design based on the hardware architecture in
Figure 7.3.

Recursive Algorithms

Merge sort and Quick sort is not implementable in HLS because of recursive

functions. In the software implementation of merge sort, there are two tasks. One task

partitions the array into individual elements, and the second merges those units. Thus

main work is done in the merging unit, which is implemented with merge primitive.

Merge sort can be implemented in HLS using merge sorter tree [77] or using

odd-even merge sort. The Listing 7.6 shows skeleton code for streaming merge sorter

tree. In this code, IN1, IN2, IN3 and IN4 are n/4 size input and OUT is n-size output.

MergePrimitive1 and MergePrimitive2 respectively merges two sorted list of array size

n/4 and n/2. Using dataflow pragma, we can functional pipeline all the functions in the

code. Merge sort based on odd-even merge also uses merge sorting primitive to sort a

given n size array in n time complexity parallelizing nlogn tasks.

1 void CascadeMergeSort(hls::stream <int > &IN1 ,

2 hls::stream <int > &IN2 , hls::stream <int > &IN3 ,

3 hls::stream <int > &IN4 , hls::stream <int > &OUT){

4 #pragma HLS DATAFLOW

5 #pragma HLS stream depth =4 variable=IN1

6 for(int i=0;i<SIZE /4;i++) {

7 // read input data

8 }

9 MergePrimitve1(IN1 , IN2 , TEMP1);

10 MergePrimitve1(IN3 , IN4 , TEMP2);

11 MergePrimitve2(TEMP1 , TEMP2 , OUT);

12 }

Listing 7.6. FIFO based streaming merge sorter tree

Quick sort uses a randomly selected pivot to split an array into elements that are

larger and smaller than the pivot. After selecting pivot, a function named pivot f unction
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does the following. In pivot f unction, all elements smaller than pivot will be placed on

the left side of it in the array, and all equal or greater elements come after that. This

process will be repeated for the smaller portion and greater portion separately. The

software complexity of this algorithm is n2 in the worst case and nlogn in the best case.

We implemented non-recursive version of quick sort in HLS by selecting a pivot in

a constant time. The main work is done in pivot f unction and we use prefix sum to

optimize the quick sort. To implement the quick sort in HLS, we can run t tasks to divide

the work of pivot f unction to sort n size array into n/t. The integration of t results from

tasks can be done using prefix sum.

Non-comparison based

Counting sort has three stages. An example of counting sort for 8-element input

array is shown in Figure 7.4 (a). In the first stage, the counting sort computes the

histogram of elements from the unsorted input array. In the second stage, it finds prefix

sum of previous stage. In the given example, the 0+3 = 3 is written in the index 1 of

this stage. The final stage puts the array in sorted order. First it reads the value from

the unsorted input array. Then it finds the first index of that element from the prefix

sum stage and writes it to the output array. Then it increments the index in the prefix

sum (again histogram) by one. Parallel counting sort can be designed using dataflow

pipelining of three stages (histogram, prefix sum, histogram), and it runs in n time using

n×k (k is usually 3) memory storage. The 3n storage is used between intermediate stages

of dataflow pipelining.

Radix sort sorts input by applying counting sort by k times for each radix one after

another. Usually, counting sorts are applied to the input array in bit radices. For example,

to sort 32-bit integers, we can apply counting sort four times to each of the hexadecimal

digits. We can implement fully parallel radix sort in HLS by dataflow pipelining of each
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Figure 7.4. An example hardware architectures for counting sort and radix sort

counting sort. Each counting sort has a throughput of n, thus fully parallel radix sort will

have a throughput of n. To store the outputs of intermediate stages, we need n×k storage.

Here k is usually 4 for 32-bit number or 8 for 64-bit number. Thus to sort 32-bit number

in parallel, we use 3×n storage (3 intermediate memory storage) as shown in Figure 7.4

(b). Our empirical results suggest that radix sort is good for small to medium size (1012)

arrays.

Sorting networks

Sorting networks are [96] popular parallel algorithm sorting network is a network

of compare-swap primitives connected by wires. Bubble sort is a particular algorithm

that can be implemented this way. The minimum of the inputs x0 and x1 is assigned

to the upper wire and the maximum goes to the lower wire. Figure 7.5 (a) shows an

example of compare-swap element used in sorting networks. Figure 7.5 (b), (c), (d)

show the networks generated by bubble sort, bitonic and odd-even transposition sorting

algorithms. Due to parallel nature of sorting networks, they are easier to implement in

HLS but does not scale well. This requires balancing the parallelism and area in HLS and

will be discussed later. For example using parallel n compare-swap elements, odd-even

transposition sort can sort an n size array in O(n). We do not cover the HLS code used
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Figure 7.5. Sorting networks. a) Odd-even trans sort (Bubble sort), b) Bitonic sort, b)
Odd-even transposition sort

for sorting networks because they are straightforward to write.

7.4 Sorting Architecture Generator

In this section, we will present sorting architecture generator from the user’s

perspective. Users can use our framework in two different ways. The first way for doing

design space exploration of particular sorting algorithm for a range of user parameters.

The second way is relying on a sorting framework to generate customized sorting archi-

tecture for a given user constraints. In the rest of this section, we focus on the second

way of using the framework. The flow of using our sorting framework is shown in

Figure 7.7. We define user constraint as a tuple UC(T,S,B,F,N) where T , S, B, F and N

are throughput, number of range of slices, number of range of block rams, frequency for

a sorting design of size N. We define V as a set of sorting designs that can do sorting of

N size array. Sorting architecture generation is a problem to find a design D of the form
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D(T,S,B,F,N) that satisfies UC.

16 

Sort ::=  
         | SS n 
         | RS n 
         | BS n 
         | IS n 
         | MS n 
         | QS n 
         | RD n 
         | BtS n 
         | OET n 
         | OEM n 
         | Merge Sort Sort     
  

match Sort (n, v)::=  
                     | SS n     emit SS (v) 
                     | RS n    emit RS (v) 
                     | BS n    emit BS (v) 
                     | IS n    emit IS (v) 
                     | MS n    emit MS (v) 
                     | QS n    emit QS (v) 
                     | RD n    emit RD (v) 
                     | BtS n    emit BtS (v) 
                     | OET n    emit OET (v) 
                     | OEM n    emit OEM (v) 

RD::= | RD v1 | RD v2| BD v3| RD v4| RD v5 
BtS::= | BtS v1 | BtS v2| BtS v3| BtS v4| BtS v5 
…  

a) 

b) c) 

Figure 7.6. SS=Selection sort, RS = Rank sort, BS=Bubble sort, IS=Insertion sort,
MS=Merge sort, QS=Quick sort, RD=Radox sort, BtS=Bitonic sort, OET=Odd-even
transposition sort, OEM=Odd even merge sort. a) Sorting architecture variants for
particular algorithm, b) Sort function grammar, c) Code generator

The framework is written in Python and implemented as a small domain-specific

language. Figure 7.6 shows simplified grammar of the language. Sorting architectures

defined in previous section are defined by types for instance, RD and IS. Each sorting

algorithm has a number of different implementations, called variants. For example radix

sort, RD, has five variants: RD v1,RD v2,RD v3,RD v4,RD v5,. The sort function can

use any sorting algorithm, or hybrid composition of one or more algorithms. For example,

to sort an array of size n, sort can be any of followings:

sort::=SS, RS, BS, IS, MS, QS, RD, BtS, OET, OEM

or

sort::= Merge(Sortn/2, Sortn/2)

or

sort::=Merge (Merge(Sort n/4, Sort n/4), Merge(Sort n/4, Sort n/4))
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from components import InsertionSort 
from components import MergeSort 
from components import RadixSort 
 
.... 
 
conf = Configuration.Configuration(…) 
#sort = RadixSort(10, “RadixSort”, 32, 4) 
  
Input_array = [1,2,3,..]    
@TopLevel 
def sort(input_array_a, BW, options=[]): 
    //Write python sorting 
        … 
 
#Call   
sort(input_array, 32, fastest) 

Sorting 
Architecture 

Selection 

ISE/Vivado 

bitstream 

HLS/ 
Synthesis/ 

Simulate/P &R 

1 

2 

3 

Figure 7.7. Sorting architecture generation

Based on the sort function (primitive or hybrid merge), the framework generates

specific variant of sorting architecture. Thus our framework completely abstracts the

underlying architectural details from the user, and allows the user to generate an optimized

architecture in a matter of minutes.

To use the framework, the user writes python code as in Figure 7.7. It has

three components: 1© is a library of the template generator classes for existing sorting

algorithms (e.g., InsertionSort, MergeSort). There are currently eleven classes, some with

multiple architecture variants. All these classes inherit from base class called Sorting. The

Sorting class provides common class methods and members (e.g., size, bit width) for all

the sorting algorithms. Each class provides parameterizable functions tailored to specific

sorting algorithm. For example, RadixSort.optimized II1(size,bit−width) generates

optimized Radix sort with II = 1, while f unctional pipelining(size,bit width) generates

dataflow pipelined radix sort for a given parameters. 2© is HLS project generator and

configuration class. The configuration class accepts four parameters. These are FPGA

device, frequency, clock period, simulate true, implement true, and name of the module.
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If simulate true = 1 then the generated design is simulated and verified in modelsim. If

the implement true = 1, then the design is physically implemented.

Algorithm 8: Customized Sorting Architecture Generation
Data: UC={T,S,B,F,N}, V={V1,V2, ..Vm}, P={N/2,N/4..}
Result: D=architecture for UC, R=performance area results

1 if UC is 1 then
2 [D,R]=SorterGenerator(V, N)
3 end
4 else
5 foreach (P) do
6 [D,R]=SorterGenerator(V, P)
7 if R(II)< N then
8 emitMerge(D, P)
9 if sim/impl is 1 then

10 R = Simulate D R =Implement D
11 end
12 end
13 end
14 Procedure SorterGenerator()

Data: V,N
Result: D,R

15 TS(1,2, ..,m)=CalculateThroughput(V,N)
16 S = min(V1(t),V2(t), ..Vm(t))
17 [D,R]=emitCode S
18 if sim/impl is 1 then
19 Simulate D Implement D
20 end
21 end

Block 3© is where the users write their TopLevel function that calls the sort-

ing routine. The TopLevel is a python decarator which allows us to add additional

functionality to the existing python code. Once TopLevel decorator starts executing,

it does several things: First, it generates customized sorting architecture tailored to

user provided parameters using Algorithm 8. Here V is a set of all different variants

of existing sorting architectures, D and R are returned sorting design and respective

simulation/ implementations results. User provides UC. UC must contain at least one
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element which is size of array to sort (N). If UC is one, then sorter generates a design

from existing designs which has the highest throughput using SorterGenerator function.

The SorterGenerator function uses initial II of each variant to calculate throughput

of them (T S). We assume II of each variant is known.For example, we know linear

sort (LIS) has II = 1, so the T S(LIS) = 1×N. Then it generates design D and returns

report R. In the case of |UC| > 1, we must satisfy these conditions: UC(T ) > D(T ),

UC(S)< D(S), UC(B)< D(B), UC(F)> D(F). We presented a heuristic approach in

line 5-13 for UC(T ) > D(T ). Procedure for conditions can be written in similar way.

Here it heuristically finds a design D that has a throughput R(II)< N because throughput

of sorting design is limited by N.

7.5 Experimental Results

We present the performance and area results for a representative sample of archi-

tectures generated by our framework. We also compare our HLS designs with existing

RTL implementations of sorting hardware architectures. All designs implemented target-

ing xc7vx485tffg1761-2 using Xilinx’s Vivado HLS 2014.4 tool. Performance results

are presented in terms of million samples per second (MSPS) or Megabytes per second

(MB/s). Instead of competing for best results, we have opted to show a broad set of

architectures to highlight the composability of our framework.

In our experiments we first implemented seven different sorting algorithms for

three different problem sizes (32, 1024, and 16384). These sorting architectures are

used later when we compose algorithms. These are Selection Sort, Rank Sort, Linear

Insertion Sort, Merge Sort (two variants), Radix Sort (two variants), Bitonic Sort, and

Transposition Sort (two variants). The results are tabulated in Table 7.2

For single-algorithm architectures, selection sort and rank sort have the worst

throughput/area trade-off. In HLS implementations of both of these algorithms, we
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created an architecture where two processing units run in parallel as discussed above.

Rank sort provides 508 MB/s because of achievable parallelism for a small (32) size. For

a larger n, their respective throughput decreases significantly due to required amount of

compare-swap element needed to make them faster (embarrassingly parallel). Linear

insertion sort operates best when n <= 1024, and suffers as n increases. The number of

slices increases linearly as the number of insertion cells increases. Designs, Mergesort is

based on (cascade of merge units) odd-even merge sort algorithm [76]. At this moment,

full merge sort is using local memories (BRAMs) as a intermediate storage between

stages.

Radixsort8 and Radixsort4 sort using 8-bit and 4-bit radices respectively. In 8−

bit variant of radix sort there are 4 parallel task and in 4−bit variant there are 8 parallel

tasks. Radix sort has a good area-throughput trade-off; In the 4-bit implementation,

doubling the area produces a 4-times speed-up with higher frequency. This makes it

suitable for medium size (1K-8K) size array sorting in for high frequency. Bitonic sort

achieves highest throughput for arrays smaller than 1024 elements, however it is not

scalable.

After the break, in Table 7.2 we present four hybrid sorting architectures. These

are Merge(Stream) and Merge4, Merge8, and Merge16+Radix. Merge(Stream) is

a streaming merge sort that operates on pre-sorted inputs. Thus, Merge(Stream) is

suitable for in scenario where sorting is done on CPU-FPGA heterogeneous systems.

Merge4+Radix uses Merge sort to combine four 4096-element Radix sorts, which

gives the highest throughput design with less than 170 Block RAMs. Merge8+Radix

and Merge16+Radix are similar designs as with Merge4+Radix. Merge4+Bitonic is

hybrid of bitonic and merge primitive. Generation of these architectures can be automated

in our framework based on Algorithm 8. For example, if UC(T =H,n= 16384,B< 170),

then Merge4+Radix should be selected based on Algorithm 8.
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End-to-end sorting system: We integrated a generated design for insertion sort

with CPU using RIFFA [72]. HLS sorting architectures use AXI stream in HLS. Then

corresponding signals of AXI interface is connected to signals of RIFFA. The area and

performance of the demo is shown in Figure 7.3. RIFFA uses 12 channels each is 128-bit

long. Currently, we area using only 32-bit of one channel to transfer data between CPU

and FPGA. If we use more channels, our demo system can be faster.

Table 7.3. Area and performance of End-to-End demo

LUT FF BRAM Frequency

Insertion sort + RIFFA Demo 11868 8793 19 125

7.6 Related work

There are a variety of published works exploring sorting architectures on FPGA

platforms. Several works have implemented a single sorting algorithm on a FPGA

[104, 84, 20, 139, 95], and some have explored high performance sorting of large size

inputs [32, 77].

Table 7.4. Streaming insertion sort generated in this paper vs. Interleaved linear insertion
sorter [104].

16 64 128 256

Throughput (MSPS) [104] 18.6 4.6 2.33 1.16
Throughput of this work (MSPS) 22.1 5.3 2.54 1.29
Ratio 1.18X 1.13X 1.08X 1.1X

Slices [104] 278 1113 2227 4445
Slices of this work 187 792 1569 3080
Ratio 0.67X 0.7X 0.7X 0.69X

In this paper, we compare throughput and area results of generated HLS designs

with the interleaved linear insertion sorter (ILS) by Ortiz et al. [104], sorting networks
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by Zuluaga et al. [139] and merge sorter by Koch et al. [77]. We selected these works

because insertion sorter is usually best suited for small size arrays, while sorting networks

are used for both small and medium size arrays, and a merge sorter is best for larger size

arrays. The Table 7.4 presents throughput and area results of interleaved liner insertion

sorter (ILS) and our streaming insertion sorter for different sizes (16, 64, 128 and 256).

We calculated slices of ILS by using slices per node × number of elements (size). Slices

per node for w= 1 is obtained from [104]. The throughput is the number of mega samples

per second for a given size (size=16, 64, 128 and 256). Our insertion sorter has average

1.1X better throughput while using 0.6X less slices.

We also compared our bitonic sort results to the bitonic sorting network presented

in [139]. Our work achieves 7X better throughput for size 16 and achieves the same

throughput for size 2048 using 200 more block rams. Using hybrid design (1024 linear

insertion sort + streaming merge sort), we can achieve the same throughput almost using

no block ram with our framework. We also compared our results with work by Koch

et al [77] which sorts 64-bit integers of size 43K. We generated a sorting architecture

(hybrid of radix and merge sort) for 64-bit data that sorts 43K size array. We achieved the

same throughput (1 GB/s) using 3 times more BRAMS. We use more BRAMS because

[77] implements fifo-based merge sort using a shared memory blocks for both input

streams. Writing a fifo by two different processes while doing functional pipelining is

not supported by current HLS tool.

7.7 Conclusion

In this chapter, we present a framework that generates customized sorting archi-

tectures. The framework is built using templates of basic sorting algorithms and design

patterns. The framework provides a small embedded domain-specific language built in

Python (mainly sort function). Generated designs have competitive results with manually
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design RTL sorting architectures. In the future, we plan to fully automate the generation

of end-to-end custom sorting architectures using RIFFA.
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Chapter 8

Future Research Directions

High-level synthesis method generates high quality RTL when the input code is

restructured to reflect underlying micro-architectural details. Restructured code writing

process remains difficult and non-intuitive task. One needs 1) domain knowledge about

the application, 2) hardware design expertise, and 3) the ability to translate the domain

knowledge into an efficient hardware design in order to write restructured code for an

application. In this thesis, instead of generating all possible hardware (using different

combination of ”C”+directives) from HLS code, we studied the best hardware designs for

common applications kernels, and we developed a number of highly parameterizable tem-

plates for HLS. We learned that having highly optimized HLS templates allow us to build

domain-specific tools to design hardware (e.g., sorting) using different computational

and structural patterns. We suggest following researches directions which immediately

follow from this work.

8.1 End-to-End System Design

In addition to the programming model challenges presented above, verification

and communication with HLS kernel on a real FPGA is essential. Current methods of

verifying an HLS core on a real FPGA involve several tool flows and non-trivial IP cores

such as, DDR controllers, PCI Express Interfaces, and DMA engines to access FPGA
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memory from an external processor. Using the vendor specific tools with correct IP

cores remains difficult even for hardware engineers. One way to solve this problem is

providing easy to use high level communication framework between FPGA and host

CPU (or FPGA to FPGA or FPGA to Network). Open source frameworks such as RIFFA

provide a good abstraction for software developers to access communicate with an FPGA

[72]. Integrating easy to use frameworks such as RIFFA with HLS tools will allow easy

verification of application code for software developers.

8.2 Design Space Exploration

Design space exploration (DSE) with HLS tools is an essential feature for explor-

ing the performance, area, and power trade-off of different architectures and underlying

implementations. Currently, DSE with HLS is usually done manually. Automatic, but

efficient DSE for given code is needed to allow HLS users to tailor hardware for their

specific needs. Since DSE is a difficult problem because of large search space, blindly

optimizing C/C++ code does not produce efficient hardware. In fact doing DSE on the

provided code will result excessive run-time for a single run with current state-of-the-art

HLS tools. Using restructured domain specific templates as an input to DSE will allow

automatic and efficient DSE with HLS. This is due to the fact that restructured domain

specific templates efficiently capture the hardware architecture. These hardware architec-

tures are represented by small number of restructured HLS codes. As a result, domain

specific templates reduce the size of the search space. As a future work, it is natural to

build an automated tool based on domain-specific restructured HLS templates which will

provide faster and efficient design space exploration of a given domain.

In addition to above research directions, building domain and application specific

restructured code and identifying computational patterns are important to generate opti-

mized accelerators. We identified following application domains which can benefit from
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hardware accelerators.

8.3 Data Processing on an FPGA

FPGAs provide opportunities to process high-volume data in a fast and efficient

way. Studying the ways to enable any ”‘data scientist”’ to benefit from designing FPGAs.

This can be done by studying common database kernels and finding ways to make them

highly parametrizable and composable in a structured way (like sorting). Some of the

immediate candidates of database operations are combining sorting to join operation.

This acceleration will allow to join two database tables in hardware. This research

allows us generate a scalable ”accelerated custom”’ processor for most data processing

operations from user constraints. This will allow ”‘data processing”’ to benefit both from

performance and power efficiency of FPGAs.

8.4 Machine Learning Acceleration

In the past, I designed a number of efficient hardware architectures for various

computer vision algorithms. Based on these experiences, I will explore domain-specific

language based hardware acceleration designs for machine learning algorithms. The

primary goal of this project is to generate highly optimized hardware architectures for

low power mobile devices without writing low-level RTL and to enable scientists and

software programmers to benefit from performance and power efficiency of hardware

accelerators easily. Additionally, this research will benefit large companies such as

Google, Facebook and Amazon. If successful, this research allows efficient computation

of many applications that run on large clusters (data centers).



Appendix A

HLS Codes

A.1 Restructured Code

We provided following restructured HLS codes for different domains. Each folder

contains necessary restructured code (*.cpp files), testbench files (* test.cpp) and scripts

to create a project. These restructured designs grouped into four different folders and

uploaded into bitbucket repository (https://bitbucket.org/janarbek/templates). We also

present set of restructured HLS designs for sorting domains. Our restructured HLS

sorting covers all basic sorting algorithms. Restructured designs for sorting domain is

located in different repository (https://bitbucket.org/janarbek/sortingframework).
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1) Linear algebra restructured HLS designs:

/

linearalgebra

vecvec

matvec

matmat

spmv

matrixdecomposition

lu

qr

cholesky

matrixinversion

lu

qr

cholesky

gaussianelimination

2) Signal processing restructured HLS designs:

/

signalprocessing

FFT

FIR

DFT

phaselocker

channelequalizer

Following are computer vision codes.
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3) Computer vision restructured HLS designs:

/

vision

tutorial

convolution

skincolordetection

lanedetection

harris

cannyedge

facerecognition

facedetection

4) Other restructured HLS designs:

/

misc

histogram

prefixsum

Huffman

LM

BFS

A.2 Streaming and Blocking Matrix Multiplication

1

2 typedef struct{

3 DTYPE a[BLOCK_SIZE ];

4 } blockvec;

5

6 typedef struct{

7 DTYPE out[BLOCK_SIZE ][ BLOCK_SIZE ];

8 } blockmat;
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9

10

11 void matmatmul(hls::stream <blockvec > &matrix1 , hls::stream <blockvec > &matrix2 ,

hls::stream <blockmat > &out , DTYPE it)

12 {

13 #pragma HLS DATAFLOW

14

15 blockvec m ;

16 DTYPE v = 0;

17 DTYPE c11 = 0;

18 DTYPE c12 = 0;

19 DTYPE c21 = 0;

20 DTYPE c22 = 0;

21

22 blockmat out_temp;

23 int counter =0 ;

24 counter = it%BLOCK_SIZE;

25

26 blockvec tempA;

27 blockvec tempB;

28 static DTYPE A[BLOCK_SIZE ][SIZE];

29 // Need to fix A[i][j] and A[i+1][j]

30 if(counter ==0) {

31 for(int i=0;i<BLOCK_SIZE;i=i+BLOCK_SIZE) {

32 for(int j=0;j<SIZE;j++) {

33 #pragma HLS PIPELINE II=1

34 tempA= matrix1.read();

35 A[i][j] =tempA.a[0];

36 A[i+1][j] =tempA.a[1];

37 }

38 }

39 // coutMatrix2D (BLOCK_SIZE , SIZE , A);

40 }

41

42 for(int i=0;i<BLOCK_SIZE;i=i+BLOCK_SIZE) {

43 c11 = 0;

44 c21 = 0;

45 c12 = 0;

46 c22 = 0;

47 for(int j=0;j<SIZE;j++) {

48 //#pragma HLS UNROLL factor =4

49 #pragma HLS PIPELINE II=1

50

51 tempB =matrix2.read();

52

53 // These are block sizes 0 and 1
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54 c11 = c11 + A[i][j]*tempB.a[0];

55 c21 = c21 + A[i+1][j]*tempB.a[0];

56

57 c12 = c12 + A[i][j]*tempB.a[1];

58 c22 = c22 + A[i+1][j]*tempB.a[1];

59

60 }

61

62 out_temp.out [0][0] =c11;

63 out_temp.out [1][0] =c21;

64 out_temp.out [0][1] =c12;

65 out_temp.out [1][1] =c22;

66

67

68

69 out.write(out_temp);

70 }

71 }

Listing A.1. Streaming and blocking matrix multiplication

1

2 for(int it1 =0;it1 <SIZE;it1=it1+BLOCK_SIZE){

3 for(int it2 =0;it2 <SIZE;it2=it2+BLOCK_SIZE){

4

5 row = it1;// row + BLOCK_SIZE * factor_row ;

6 col = it2;// col + BLOCK_SIZE * factor_col ;

7

8 for(int i=0;i<BLOCK_SIZE;i=i+2){

9 for(int k=0;k<SIZE;k++){

10 // Send BLOCK_SIZE x SIZE matrix portion of A whenever needed.

11 if(it%BLOCK_SIZE ==0) {

12 strm_matrix1_element.a[0] = matrix1[row][k];

13 strm_matrix1_element.a[1] = matrix1[row +1][k];

14 strm_matrix1.write(strm_matrix1_element);

15 }

16

17 strm_matrix2_element.a[0] = matrix2[k][col];

18 strm_matrix2_element.a[1] = matrix2[k][col +1];

19 strm_matrix2.write(strm_matrix2_element);

20 }

21 }

22 matmatmul(strm_matrix1 , strm_matrix2 , strm_out , it);

23 strm_element_out = strm_out.read();

24 matrix_hwout[row][col] = strm_element_out.out [0][0];

25 matrix_hwout[row +1][ col] = strm_element_out.out [1][0];
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26 matrix_hwout[row][col+1] = strm_element_out.out [0][1];

27 matrix_hwout[row +1][ col +1] = strm_element_out.out [1][1];

28

29 it = it +1;

30 }

31

32 }

Listing A.2. Streaming and blocking matrix multiplication testbench
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