
A Comparison of Feature Detectors for Underwater
Sonar Imagery

Peter Tueller
Computer Science and Engineering
University of California San Diego

La Jolla, CA, United States
ptueller@ucsd.edu

Ryan Kastner
Computer Science and Engineering
University of California San Diego

La Jolla, CA, United States
rkastner@ucsd.edu

Roee Diamant
Dep. of Marine Technologies

University of Haifa
Haifa, Israel

roee.d@univ.haifa.ac.il

Abstract—In this work we compare the performance of seven
popular feature detection algorithms on a synthetic sonar image
dataset. The dataset consists of a single mine-like object (MLO)
superimposed on three different backgrounds: grass, sand ripple,
and sand. We explore the performance of Harris, Shi-Tomasi,
SIFT, SURF, STAR, FAST, and ORB on each of these back-
grounds, and all the backgrounds at once by training an SVM
classifier. Performance is evaluated with ROC curves by com-
paring the number of correctly identified features belonging to
objects (True Positives) and the number of incorrectly identified
features belonging to background noise (False Positives).

Index Terms—feature detection, sonar, visual odometry

I. INTRODUCTION

Deriving information in an underwater environment is diffi-
cult; radio frequencies typically used for terrestrial commu-
nications do not propagate well, and cameras are severely
hindered by a lack of visibility. Sonar imagery, on the other
hand, can be a valuable tool for visualizing and analyzing the
seafloor. These images can be used for a number of tasks, such
as mine-like object (MLO) detection [3] [12], or odometry
and Simultaneous Localization and Mapping (SLAM) [10] [8].
Sonar has a number of weaknesses, though: it can suffer from
low resolution and high image acquisition time, as well as
significant shadows and distortions in the images themselves.

Current analysis of sonar imagery is done through human
observation or segmentation, where an image is divided into
’object’, ’shadow’, and ’background’ classes. At the core of
any autonomous approach such as segmentation and object
classification is a need for quantizing the details in an im-
age. This is typically done through a process called feature
detection.

Feature detection is an image processing technique that
identifies unique pixel regions that have a high probability of
being associated with a real object, and as such will provide
good initial estimates to begin the classification process 1.
Feature detectors have historically been developed and tested
on camera images. As opposed to light, sonar images are
created by sound reflections from the sea floor and from
submerged objects. Sonar images have a unique noise profile
and intensities that are of different texture from optical images.
In particular, sonar images are characterized by intensity
inhomogeneous backgrounds that are hard to model.

Fig. 1: General Feature Detection.

In this paper we present a method for comparison of feature
detector algorithms on sonar imagery.

II. FEATURE DETECTION

The particular feature detectors that we used are outlined
in Table I and their performance on one of the images in our
dataset can be seen in Figure 2. We chose these seven detectors
because they are the state of the art general-purpose detectors
that are readily available in the open source package OpenCV
[5].

Previous work on sonar feature detection has typically used
simple and fundamental methods of detection [3] [8] [17] [13]
whereas our detectors build on these fundamentals and have
been extensively used in other domains, such as visual SLAM
and object tracking in videos. These methods generally use
gradient filtering, as one would do for line detection, then
thresholding to select points of high intensity (so far this is
extremely similar to our Harris and Shi-Tomasi detectors),
and then clustering to remove extraneous features. Our feature
detectors examine a point in an image first, and then quantify
the pixels around it to determine how ”strong” of a point it
is. For example, FAST analyzes a ring of 16 pixels around a
point and if they are all a certain amount brighter or darker

than the center, it qualifies as a point. Additionally there is
a non-maximum suppression step where the only strongest
FAST features in a local area are retained. SIFT, SURF, STAR,
and ORB additionally add a scale component, where corners
of different sizes can be detected in the same pass. It is for
this flexibility and complexity that these feature detectors were
chosen over simpler approaches that have been historically
used.

(a) Original (b) Harris

(c) Shi-Tomasi (d) SIFT

(e) SURF (f) STAR

(g) FAST (h) ORB

Fig. 2: Simulated Images with Feature Detector Response.

III. OBJECT CLASSIFICATION

To perform classification, we train and execute an SVM
model, which can generically be seen in Figure 3. First, the
features across the entire dataset are randomly split four ways.
One part is retained as the test set and the remaining three
are retained as a single training set. That training set is then
randomly split four ways, and one part is retained as the cross-
validation set. The SVM model is trained on the remaining
three parts using a set value for gamma and cost. The model’s
performance on the cross-validation set is examined and saved.

The model is then retrained using a different gamma and cost
and the performance is examined, and this is done a total of
thirty times. The model that used the gamma-cost combination
that resulted in the highest performance on the cross-validation
set is then used to evaluate performance on the test set.

Fig. 3: Feature Classification.

The core of our object classification process is using a Sup-
port Vector Machine (SVM) to label each feature as ’object’
or ’non-object’. We found that using a simple threshold for
labeling yielded poor performance, and we did not already
have a model of our feature space, so we needed some machine
learning method. Our dataset was relatively limited, so training
an SVM model was the most apt method. The model takes the
parameters returned by the detectors in OpenCV, as well as
the following calculated parameters.

Objects in an image typically have multiple features as-
sociated with it, and as such we want the relative position
information to serve as an input to our SVM model. We do not
want the absolute position information to be an input, though,
as an object may appear at any position in the image. So we
calculate two parameters that correspond to feature density.

The first parameter describes any given feature’s distance
to the closest centroid. If there is a single object in an
image, as our simulated dataset is set up to be, then one
centroid would be associated more strongly with that object
over the other centroid. Therefore, theoretically, features that
have smaller distances to their nearest centroids would be more
likely associated with an object. The pseudocode is outlined
in Algorithm 1.

The second parameter is an implementation of Equation 21
in a paper presented by R. Diamant et al. [6]. This value
quantifies the relative distance from a single point to all other
points in the image: features that are near to many other
features will have a lower value than features that are in sparse
areas of an image. The MATLAB code is listed as CalcWeights
in the appendix.

We quantify the performance of a feature detector by gener-
ating a Receiver Operating Characteristic (ROC) curve. The y-
axis represents the total number of True Positives (features that
were correctly labeled as ’object’) and the x-axis represents the
total number of False Positives (features that were incorrectly
labeled as ’object’). A feature detector that performs well will

Feature Detector Description Pros Cons

Harris [7] Computes differential with respect to each direction.
5 parameters.

Distinguishes corners and
edges well

Susceptible to scale vari-
ance

Shi-Tomasi [16] Very similar to Harris but uses a simpler thresholding
method for accepting or rejecting corners. 3 param-
eters.

Distinguishes corners and
edges well

Susceptible to scale vari-
ance

STAR [11] Based off of the CenSurE feature detector [1], multi-
scale detector with no subsampling. 5 parameters.

Efficient, robust to view-
point changes

Susceptible to brightness
changes

FAST [14] Computes difference in brightness based off neigh-
bors in Bresenham circle. 3 parameters.

Efficient Not robust to significant
noise, susceptible to scale
and illumination variance

SIFT [9] Computes oriented gradient histograms for patches
around a point. 4 parameters.

Rotation and scale invariant Computationally expensive,
susceptible to blur

SURF [4] A more efficient approximation of SIFT. 3 parame-
ters.

Faster than SIFT Susceptible to viewpoint
and illumination change

ORB [15] Replacement for SIFT that builds off of the FAST
detector. 6 parameters.

Scale and rotation invariant,
good for real-time, resilient
to noise

Generally fewer features

TABLE I: Comparison of feature detectors.

ALGORITHM 1
Distance to Nearest Centroid
nClasses← 2
kMeansIterations← 15
centroids← kMeansInitCentroids(features, nClasses)
for i = 1 : kMeansIterations do
idx← findClosestCentroids(features, centroids)
centroids← computeCentroids(features, idx, nClasses)

end for
for pinfeatures do
distCentroid1← norm(p− centroids(1))
distCentroid2← norm(p− centroids(2))
if distCentroid1 < distCentroid2 then

distance(p)← distCentroid1
else
distance(p)← distCentroid2

end if
end for

generate an ROC curve that approaches near the upper-left
corner (i.e. yields a high number of true positives and a low
number of false positives).

IV. ANALYSIS

Our dataset is comprised of 600 synthetic sonar images,
which previous work has shown to be a good substitute when
approaching feature and MLO detection [2]. It is split into
three parts corresponding to the background texture used: sand,
sand ripples, and grass, with 200 images in each. Within each
of those three categories, 120 contain an MLO and 80 do not.
Across all images, the intensities of the object, shadow, and
background have been varied so as to mimic different levels of
sonar quality. Each of the seven feature detectors were tested
four times: once for each background category and once using
all the images irrespective of background.

For each feature detector, four SVM models were trained
on each dataset: Sand, Ripple, Grass, and All. The models
were trained in accordance to the process described in the

previous section, using a maximum of 200 features from each
image, for an upper bound of 40,000 features as inputs. The
detectors Harris, Shi-Tomasi, and FAST each had 3 parameters
associated with each feature: the distance to nearest centroid
and H value as described in the previous section, and intensity.
The remaining detectors had 4 parameters in addition to those
same 3: size, angle, octave, and ID, which are automatically
computed by the detection step in OpenCV.

The model for each detector-dataset pair was used to predict
whether each feature was an ’object’ or not. The features
that were labeled as ’object’ were sorted according to their
intensity, and a final threshold was applied. The threshold first
included the strongest point, and the number of true positives
and false positives was calculated, then it included the next
strongest point, and true positives and false positives were
calculated, until eventually all features were included. At each
threshold, then, the number of true positives and the number
of false positives was calculated. These numbers have been
plotted as ROC curves in Tables II and III.

From Tables II and III we can see that the Harris, Shi-
Tomasi, and FAST detectors performed well in the model
that included the dataset containing all the images. However,
the simple gradient-based approaches Harris and Shi-Tomasi
had very wide variation across each individual dataset, which
indicates that the models that are trained in particular parts of
the environment do not transfer well to other parts. FAST, on
the other hand, seems to generally perform well in all datasets.
This can be attributed to its simplicity in outright rejecting
regions that do not have consistent definition (as one would
see in a line or point), like Harris and Shi-Tomasi, while also
integrating a nonmaximum suppression step that eliminates
spurious features corresponding to noise.

There are some detectors that perform particularly well in
certain scenarios. SURF, for example, has the best perfor-
mance in the Sand dataset, but average in the others, while
ORB performed quite well in the Ripple dataset, in contrast
to Harris, Shi-Tomasi, SIFT, and STAR, all of which yielded
very poor performance in that particular dataset.

Dataset Harris Shi-Tomasi SIFT

Example Sand Image

Example Sand Ripple Image

Example Grass Image

TABLE II: ROC curves

V. CONCLUSION

This paper presented a method by which to compare feature
detectors on sonar imagery. There remain additional opportuni-
ties for comparison beyond the scope of this paper, however. In
particular, this paper only presented an analysis on a simulated
dataset, but, with care, a dataset comprised of real sonar
images could be curated to develop additional dimensions
of comparison, especially with regards to detecting multiple
objects in a scene.

Also, these feature detectors were operated using fixed
parameters. A method for parameter exploration could be
developed to optimize the classification performance of each
feature detector. In particular we may expect ORB to perform
better with more optimal parameters, because it is fundamen-
tally based on FAST, which yielded the highest performance
on these datasets.

REFERENCES

[1] Motilal Agrawal, Kurt Konolige, and Morten Rufus Blas. Censure:
Center surround extremas for realtime feature detection and matching.
In European Conference on Computer Vision, pages 102–115. Springer,
2008.

[2] Christopher Barngrover, Ryan Kastner, and Serge Belongie. Semisyn-
thetic versus real-world sonar training data for the classification of mine-
like objects. IEEE Journal of Oceanic Engineering, 40(1):48–56, 2015.

[3] Christopher M Barngrover. Automated Detection of Mine-Like Objects
in Side Scan Sonar Imagery. PhD thesis, UC San Diego, 2014.

[4] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up
robust features. In European conference on computer vision, pages 404–
417. Springer, 2006.

[5] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software
Tools, 2000.

[6] Roee Diamant, Lars Michael Wolff, and Lutz Lampe. Location tracking
of ocean-current-related underwater drifting nodes using doppler shift
measurements. IEEE Journal of Oceanic Engineering, 40(4):887–902,
2015.

[7] Chris Harris and Mike Stephens. A combined corner and edge detector.
In Alvey vision conference, volume 15, pages 10–5244. Citeseer, 1988.

SURF STAR FAST ORB

TABLE III: ROC curves continued

[8] Hordur Johannsson, Michael Kaess, Brendan Englot, Franz Hover,
and John Leonard. Imaging sonar-aided navigation for autonomous
underwater harbor surveillance. In Intelligent Robots and Systems
(IROS), 2010 IEEE/RSJ International Conference on, pages 4396–4403.
IEEE, 2010.

[9] David G Lowe. Distinctive image features from scale-invariant key-
points. International journal of computer vision, 60(2):91–110, 2004.

[10] Paul Newman, John J Leonard, and Richard Rikoski. Towards constant-
time slam on an autonomous underwater vehicle using synthetic aperture
sonar. In Proceedings of the eleventh international symposium on
robotics research, Sienna, Italy, 2003.

[11] OpenCV. STAR Class Description. https://docs.opencv.org/2.4/
modules/features2d/doc/common interfaces of feature detectors.html#
StarFeatureDetector%20:%20public%20FeatureDetector. [Online;
accessed 18-April-2018].

[12] Scott Reed, Yvan Petillot, and Judith Bell. An automatic approach to
the detection and extraction of mine features in sidescan sonar. IEEE
journal of oceanic engineering, 28(1):90–105, 2003.

[13] David Ribas, Pere Ridao, Jose Neira, and Juan D Tardos. Slam using an
imaging sonar for partially structured underwater environments. In In-
telligent Robots and Systems, 2006 IEEE/RSJ International Conference
on, pages 5040–5045. IEEE, 2006.

[14] Edward Rosten and Tom Drummond. Machine learning for high-speed
corner detection. In European conference on computer vision, pages

430–443. Springer, 2006.
[15] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb:

An efficient alternative to sift or surf. In Computer Vision (ICCV), 2011
IEEE international conference on, pages 2564–2571. IEEE, 2011.

[16] Jianbo Shi et al. Good features to track. In Computer Vision and Pat-
tern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer
Society Conference on, pages 593–600. IEEE, 1994.

[17] Stefan Williams, Gamini Dissanayake, and Hugh Durrant-Whyte. To-
wards terrain-aided navigation for underwater robotics. Advanced
Robotics, 15(5):533–549, 2001.

APPENDIX

f u n c t i o n h n = Ca lcWeigh t s (NodeLoc , x ba r)

%NodeLoc i s e v e r y s i n g l e l o c a t i o n o f t h e f e a t u r e s
%x bar a l i s t c o n t a i n i n g t h e E u c l i d e a n d i s t a n c e from e v e r y f e a t u r e t o a
%c o n s i s t e n t l o c a t i o n i n t h e image .

D i s t a n c e M e a s u r e = 1 . / x ba r ;

n u m t r u s t e d n o d e s = l e n g t h (x ba r) ;

h n = z e r o s (1 , n u m t r u s t e d n o d e s) ;
f o r nRx = 1 : n u m t r u s t e d n o d e s

h nk = z e r o s (1 , n u m t r u s t e d n o d e s) ;
f o r kRx = 1 : n u m t r u s t e d n o d e s

i f kRx ˜= nRx
SUMMER1 = 0 ;
SUMMER2 = 0 ;
f o r jRx = 1 : n u m t r u s t e d n o d e s

i f (jRx ˜= nRx) && (jRx ˜= kRx)
Temp = 1 / D i s t a n c e M e a s u r e (jRx)* . . .

(1−(NodeLoc (kRx , :) −NodeLoc (nRx , :)) . . .
* (NodeLoc (jRx , :) −NodeLoc (nRx , :)) ’ / . . .
(D i s t a n c e M e a s u r e (nRx)* D i s t a n c e M e a s u r e (kRx))) ;

SUMMER1 = SUMMER1 + Temp ;
SUMMER2 = SUMMER2 + D i s t a n c e M e a s u r e (jRx) ;

end
end
h nk (kRx) = SUMMER1 / SUMMER2;

end
end
h n (nRx) = sum (h nk) ;

end

