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Abstract—As the number of units in underwater sensor arrays
grow, low-cost localization becomes increasingly important to
maintain network scalability. Methods using ambient ocean
noise are promising solutions because they do not require
external infrastructure, nor expensive on-board sensors. Here
we extend past work in stationary array element localization
from correlations of ambient noise to a mobile sensor array
[1]. After obtaining inter-node distance estimates using ambient
noise correlations, these distances can be used to determine a
relative localization of an array of mobile underwater sensor
platforms without introducing any external infrastructure or on-
board localization sensors.

In this work we explore the effects of receiver mobility on inter-
node distance estimation via correlations of ambient acoustic
noise. Through analysis and simulation, we develop an exact
solution along with a more tractable approximation to the peak
amplitude of the Time-Domain Green’s Function between the
two mobile receivers, which provides an estimate of their spatial
separation. Here we demonstrate that the mobile noise correlation
amplitude at the time delay for a sound wave traveling from one
receiver to the other can be modeled with the wideband ambiguity
function of a single sound source. We then use this approximation
to discuss selection of design parameters and their effects on the
noise correlation function.

I. INTRODUCTION

Understanding the planet’s oceans is key in understanding
our planet’s health. Ocean monitoring via sensor arrays can be
challenging because of the difficulty of communicating with
underwater sensor platforms. Beneath the surface, devices no
longer have access to radio communications, including GPS
which makes localization challenging.

In this work we will address the problem of estimating inter-
node distances between the receiver pairs of a slowly moving
underwater sensor array using only the ambient acoustic noise
recorded at each unit. A set of pairwise distance estimates for
all the nodes in our network is sufficient to come up with a
relative localization for the array elements [1] [2]. This can
then turn into a global localization solution if we know the
absolute positions of a few ‘anchor units’.

Past work in hydrophone localization shows that long term
correlations of ambient noise recorded at two nearby stationary
hydrophones can estimate the Time-Domain Green’s Function

(analogous to the impulse response in linear systems theory)
between the two receivers [3]. In isotropic sound fields, this
noise correlation function produces a peak at the time it takes
for a sound wave to travel from one receiver to the other
and thus can act as an estimator for the distance between
the receiver pair. This function can be used to estimate the
distance between our receivers by finding the times at which
these two peaks occur, as shown in Figure 1. In terms of
signal to noise ratio for this distance estimator, the average
amplitude of the two impulses gives our signal strength while
the standard deviation of the correlation noise outside of these
peaks is our noise level. There are two key problems which
arise as we extend this theory to the mobile receiver case:
Doppler shift and non-stationarity.

Fig. 1. Illustration of the ambient noise correlation function as a distance
estimator. For this estimator, we choose the distance corresponding to the
peaks amplitude of this function in either positive or negative correlation
time. Not to be confused with the ambient noise sources, the noise in this
estimator is the correlation noise level found beyond the two time-symmetric
peaks.

In the mobile case, the recorded signal at each receiver
undergoes a Doppler shift determined by the receiver’s relative
velocity with respect to each of the individual sources. For
a single source, the wideband ambiguity function, describes
the correlation amplitude of a Doppler shifted and delayed
signal with itself [4]. However, it remains to show how
this relates to the correlation of an entire field of sources



on the emergence of the Time-Domain Green’s Function.
Next, we have the complication of non-stationarity during
the correlation window. In the stationary receiver case, the
SNR of the noise correlation function as a distance estimator
increases with increasing correlation time windows [5]. When
the receivers are mobile the longer the correlation window, the
approximation of the system as roughly stationary becomes
worse and eventually may destroy the peaks of the noise
correlation function. Thus, in choosing our correlation time
window, we need to pick a time window which is both
long enough for the noise correlation peaks to emerge, but
short enough that the receivers don’t move too much during
correlation.

To solve this problem, we will begin by examining the emer-
gence of the Time-Domain Green’s Function from correlations
of ambient noise to see which components of the process
will carry to the mobile receiver case. Next we will directly
apply the wideband ambiguity function to the noise correlation
function to provide an exact solution to the expected value
of the noise correlation function’s peak amplitudes, assuming
one knew everything about the ambient noise sources in the
environment and their spatial distribution. Since the exact
solution requires immense knowledge about the ambient sound
environment, we will then develop a practical approximation
to the noise correlation function’s peak amplitude as a function
of the stationary noise correlation function and the wideband
ambiguity function of a single source. Finally, we will use
this approximation to formulate an objective function for
optimizing the SNR of the noise correlation function distance
estimator which can be used to choose the optimal correlation
time window and determine maximum mobility conditions for
a given SNR requirement.

The contributions of this paper are:
• An exact solution to the expected value of the noise cor-

relation function peak amplitude between two receivers
moving with constant velocity

• A first order approximation of the peak amplitude of
the noise correlation function using the noise correlation
function’s peak amplitude in the stationary receiver case
and the wideband ambiguity function for a single noise
source

• An objective function for optimizing the SNR of the NCF
distance estimator which can be used to choose the opti-
mal correlation window length and determine maximum
mobility conditions for a given SNR requirement

II. BACKGROUND

A. Distance Estimation via Ambient Noise

The key result we build on is the emergence of an estimate
of the Time-Domain Green’s Function from correlations of
ambient acoustic noise between two hydrophones [3] [6]. The
Time-Domain Green’s Function describes the propagation of
a wave from one point in space to another and is analogous
to the impulse response used in linear systems theory. In the
context of sensor arrays, the Time-Domain Green’s Function

(now referred to as TDGF) between two receivers tells us
how a source will propagate from one receiver to the other.
We will first consider the system shown in Figure 2 in which
two receivers record sound sources originating from different
locations indicated with triangles over some time window T .
For a system with a single direct path between two receivers,
the TDGF will look like two symmetric impulses at ±Rc where
R is the distance between the two array elements and c is
the speed of sound. If we know c, we can then estimate
the distance between the two receivers. Here we present an
intuitive explanation for the emergence of the TDGF from
ambient acoustic noise correlations which will be important
to understanding how receiver motion during correlation will
affect the emergence of correlation peaks at ±Rc .

Fig. 2. Example of receiver and source setup in a 2D plane. Sources s1 to
sj are distributed around the receiver pair and represent active sources at this
instant in time. Receivers r1 and r2 are separated by a distance R and each
have velocity vi along the axis passing through the pair.

The first insight in developing the theory of ambient noise
correlation is that the cross correlation function has a well-
defined directivity pattern, meaning it is sensitive to sources
originating from certain directions more than others. To see
this, consider the scenario pictured in 2. The time delay
produced by a single distant source under cross correlation
is given as a function of angle of approach θ0 (defined with
respect to the axis between our receiver pair):

τs =
R

c
cos(θ0) (1)

Since cos(θ0) changes slowly near θ0 = 0 and θ0 = π,
we expect sources with angle of approach near the axis of
the receivers (θ0 ≈ 0 and θ0 ≈ π) to produce delay estimates
closer in time to each other than those off the axis through the
receivers. Consequentially, we expect larger correlation peaks
to build up near τs corresponding to θ0 ≈ 0 or π than any-
where else. Specifically, this τs is ±Rc gives the time of flight
from one receiver to the other. As demonstrated in [6], the
relative proportion of sources contributing to the correlation
peak at τ = ±Rc can be modeled using the directivity of
the correlation function. Using this, the authors in [6] show



that the ratio of ‘coherent’ sources (sources contributing to
a correlation peak at τ = ±Rc ), versus ‘incoherent’ sources
(those contributing to correlation peaks elsewhere) can be
expressed as:

Ratio(θ0) =

√
2πfc
c

R
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(
B
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)2
) 1

4

sin(θ0) (2)

where θ0 is the angle of approach. In an isotropic sound field
(meaning uniformly distributed source locations), the number
of coherent sources is far greater than any θ0 corresponding to
a different time difference of arrival. Thus by correlating over
long time windows the noise correlation function produces
roughly symmetric peaks at τ = ±Rc .

Borrowing vocabulary from [6] and [1], we use the term
‘endfire’ to refer to the region around θ ∈ {0, π} for which
sound sources make a significant contribution to the correlation
peaks at τ = ±Rc . We can define this region more specifically
using the directivity of the cross correlation function between
our receivers and choosing the angle θendfire to be the effec-
tive beamwidth of the beam centered on θ = 0 or equivalently
θ = π.

To get the cleanest correlation results, this technique uses
the preprocessing pipeline shown in Figure 3 to compute the
noise correlation function, which consists of bandpass and
whitening steps. The bandpass step gives us control over what
sorts of ambient sounds we look at, while the whitening step
mitigates the effects of strong frequencies on the correlation.
After preprocessing, we compute the noise correlation function
using:

Cy1,y2(τ) =
1

T

∫ T/2

−T/2
y1(t)y2(t− τ)dt (3)

NCF (τ) =
Cy1,y2(τ)

1
T

√(∫ T/2
−T/2 y

2
1(t)dt

)(∫ T/2
−T/2 y

2
2(t− τ)dt

) (4)

Fig. 3. Preprocessing pipeline used to compute the noise correlation function.
The bandpass step allows us to focus on a specific noise frequency band, and
the whitening step prevents the correlation from being biased by dominant
frequency components.

B. The Wideband Ambiguity Function

For a single source, the problem of the correlation of a
Doppler shifted signal across two receivers is modeled by
the wideband ambiguity function, originally developed for

studying radar responses to high velocity targets using broad
spectrum radar pulses [4]. The ambiguity function describes
the matched filter response of a delayed and Doppler mis-
matched pulse with the original signal. In computing the noise
correlation function over a single source, we are essentially
running a matched filter across our receivers and thus the
wideband ambiguity function describes how our correlation
will behave with receiver velocity and delay errors. As shown
in [4] for a single source s, the wideband ambiguity function
for cross correlation can be written as:

A(τ, β) =

∫
s(t)s∗(β(t+ τ))dt (5)

In particular we will be interested in the normalized version
of this function for a broadband, flat spectrum, Gaussian
signal. Normalized in this case meaning we want to know
the correlation coefficient between the original signal and the
Doppler shifted and delayed signal. In [7] the authors compute
the normalized ambiguity function for just that signal and find
the following:

ρ(γ = 0, µ̇) =
1

2b
[Si((a+ 1)b)− Si((a− 1)b)] (6)

with:
Si(x) =

∫ x

0

sinx

x
dx

and a = 2
fc

, and b = π
2 (Bµ̇T ), where fc denotes the center

frequency of our signal, B denotes its one-sided bandwidth,
and T denotes the length of our correlation window, γ indi-
cates the delay error, and µ̇ denotes the rate of change for
the time delay between our two receivers. For a single mobile
receiver, µ̇ = vrel

c and for two mobile receivers it is given as
1+

v2
c cos(θ2)

1+
v1
c cos(θ1)

− 1.

Fig. 4. Example of a zero time delay error cut of the normalized ambiguity
function for a broadband, flat spectrum, Gaussian pulse.

This function represents the zero delay error cut of the
ambiguity function of the matched filter over two receivers,



which describes the correlation peak as a function at time delay
τ = R

c , corresponding with the separation of the receivers at
time 0 (halfway through the correlation), and relative Doppler
shift across each receiver µ̇.

III. PROBLEM FORMULATION

We make the following simplifying assumptions to develop
our theory on the effects of receiver mobility during noise
correlation:
• Our sources are stationary in space, transient in time,

and generated from uncorrelated Gaussian processes with
mean 0 and variance σ2

s

• Our sources have a spectrum extending beyond the band-
width over which we correlate

• All sources propagate in a single direct path from source
to receiver

• In correlation preprocessing, we use fmin ≥ 100Hz
• There are a large number of sound events over our

correlation time window
• Our receiver velocity is significantly less than the speed

of sound in the medium and is taken with respect to the
axis through the receivers

These assumptions form the simplest case for describing the
effect of receiver motion on the noise correlation function. Our
assumption of correlation bandwidth smaller than the noise
bandwidth is reasonable so long as we choose our bandwidth
and center frequency in a manner consistent with the actual
spectrum of ambient ocean noise. The constraint of fmin ≥
100Hz ensures that our correlation directivity intuition holds
since low frequencies exhibit much less directivity than higher
frequencies for a pair of omnidirectional receivers.

We choose to take the receiver velocity along the axis
because in a relatively uniform spatial distribution of short
sound events, the relevant velocity term is how much the
receivers move with respect to each other since the sound
field looks the same in all directions. In a more directional
sound field, the rotation of the receivers would be important
because it would affect the distribution of sources in the endfire
regions over time. However, strongly directional sound fields
tend to distort the emergence of the Time-Domain Green’s
Function from correlations of ambient noise, so this method
is unsuitable for those environments.

IV. EXACT SOLUTION

Here we build on the previous section to relate the normal-
ized ambiguity function for a single source ρ(γ = 0, µ̇) to the
noise correlation function at time τ = ±Rc in the presence of
constant receiver velocity.

In a field of j sound sources, we can write the signal
received at receiver i as:

xi(t) =

N∑
j=1

αi,jsj((βi,j(t+ µi,j) +Dj) (7)

where αi,j is the attenuation between source j and receiver i,
βi,j is the time scaling between source i and receiver j (with

βi,j = (1+ vi
c cos(θi,j)), µi,j is the time delay for the source

traveling to the receiver at the start of correlation, and Dj is
the start time of source j.

Next, we define the following:

σ̂y =

√√√√∫ T
2

−T
2

y2(t)dt (8)

as the square root of the energy of a signal y(t).
Next, we have the correlation coefficient ρy1,y2(τ) given by:

ρy1,y2(τ) =
1

σ̂y1 σ̂y2

(
1

T

∫ T
2

−T
2

y1(t)y2(t− τ)dt

)
(9)

Finally, let y′(t) be the ideal bandpass filtered version of
y(t), as performed in the noise correlation pre-processing step
before whitening. We can then relate the noise correlation
function to the velocity correlation coefficients for each in-
dividual source in our field as follows:

NCFx1,x2
(τ, t, v1, v2) = ρx′

1,x
′
2
(τ) (10)

=
1

σ̂x′
1
σ̂x′

2

1

T

∫ T
2

−T
2

x′1(t)x
′
2(t− τ)dt (11)

Then, since we assume uncorrelated sources, the cross terms
in the product x′1(t)x

′
2(t− τ) cancel and we are left with:

1

σ̂x′
1
σ̂x′

2

N∑
j=1

α1,jα2,j
1

T

∫ T
2

−T
2

s′1,j(t)s
′
2,j(t− τ)dt (12)

Since s′1,j and s′2,j are related as time scaled and shifted
versions of each other, we can replace the integral with their
normalized ambiguity function to obtain:

1

σ̂x′
1
σ̂x′

2

N∑
j=1

α1,jα2,j σ̂s′1,j σ̂s′2,jρs′1,j ,s′2,j (τ, µ̇j) (13)

After further simplification and reduction taking advantage
of our flat, bandpass power spectrum after preprocessing, we
obtain:

NCF (τ, t, v1, v2) =

∑N
j=1 α1,jα2,j σ̂s′1,j σ̂s′2,jρs′1,j ,s′2,j (τ, µ̇j)

Nσ2
s′

√
E
[
α2

1,j

β2
1,j

]
E
[
α2

2,j

β2
2,j

]
(14)

Noting that the numerator converges to its expected value
for large N as well, we finally obtain:

NCF (τ, t, v1, v2) =
E
[
α1,jα2,j σ̂s′1,j σ̂s′2,jρs′1,j ,s′2,j (τ, µ̇j)

]
σ2
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β2
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E
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]
(15)

=
E
[
α1,j

β1,j

α2,j

β2,j
ρs′1,j ,s′2,j (τ, µ̇j)

]
√
E
[
α2

1,j

β2
1,j

]
E
[
α2

2,j

β2
2,j

] (16)



V. DEVELOPING A USEFUL APPROXIMATION

While Equation 15 gives us an exact expression for the noise
correlation function between two moving receivers in a sound
field with a known distribution, it is not particularly insightful
in this form. Here we develop an approximation relating the
noise correlation function amplitude at the receiver separation
at time t = 0 as a function of velocity to the correlation
coefficient of a single source across the two receivers.

A. Behavior of Endfire Sources

Fig. 5. Virtual source argument in pictures demonstrates how we can represent
a set of sources in the endfire region as a single virtual source. We begin with
a set of sources in the endfire region. Due to the small angle of sources in
the endfire region, we can nudge off-axis sources onto the axis through the
receivers with approximately the same effect on the receivers. Now that the
receiver velocity with respect to all these sources is the same we can replace
the sources with a single virtual source with a time series equivalent to the
sum of the axis sources. After noise correlation preprocessing, this virtual
source captures the net effect of all the endfire sources.

We first note that only sources inside the endfire beam
will make significant contributions to the noise correlation
function. Sources outside this beam do not make a meaningful
contribution to the noise correlation peak at τ = +R

c (which
we will refer to as τ+).

Note that the net effect of these sources as heard by receiver
i can be written as:

xi(t) =
∑
j∈E+

αi,jsj(βi,j(t+Di,j)) (17)

where E+ denotes the set of sources in the endfire beam
corresponding to τ+.

The key insight in developing our approximation is that
these sources in a given endfire beam collectively can be
approximated with a single source. Recall that βi,j = 1 +
vi
c cos(θi,j) and that in an endfire beam, cos(θi,j) is near 1

for all sources and both receivers. Thus, we can approximate
βi,j in the endfire region using this small angle approximation
for cosine as βi,j ≈ 1+ vi

c , removing the dependence on θ for
the velocity term. Physically, this approximation is equivalent
to nudging all endfire sources onto the axis passing through
the receivers. This new process behaves like a single source on
the axis passing through the receivers since the received signal
x(t) is the same if we replace the set of sources now on the
axis with a single source equal to a linear combination of the
individual sources on the axis. Since we assume the original
sources are all Gaussian, this virtual source is as well.

Finally, to demonstrate the applicability of the Gaussian
matched filter wideband ambiguity function to the model, we
show that after pre-filtering, the virtual source produces a
pre-correlation term with flat power spectrum over a given

bandwidth. For a single source with receiver motion, in the
frequency domain we get the following:

Si,j(f) =

∣∣∣∣ 1

βi,j

∣∣∣∣Sj ( f

βi,j

)
e−j2πfDi,jβi,j (18)

From 18 we can see that the receiver motion either expands
or contracts the original source spectrum by a relatively small
amount since for low receiver velocity βi,j ≈ 1 since we
assume that vi

c � 1. By linearity of the Fourier transform,
we can then see that the received signal spectrum for a set
of sources will be a slightly dilated version of the original
spectrum. After bandpassing out our frequencies of interest
and whitening via extracting the Fourier transform phase,
we’re left with spectral properties matching what we would
see in the stationary case. Therefore we can approximate
the set of sources in the endfire beam during the correlation
window as a single virtual source. The mobile noise correlation
function for this virtual source is then given by the normalized
wideband ambiguity function for a broadband, flat spectrum
source. Next, we relate this approximation back to the full
field noise correlation in which we have sources both inside
and outside the endfire beams.

B. Relationship to Stationary Noise Correlation Function

Under this virtual source argument, we are approximating
the net effect of all our endfire sources with a single source
on the axis through the receiver pair. We now need to show
what happens to this function when we include the noise
from sound sources outside the endfire beam. Combining this
approximation for the sources in our endfire beam with the
exact solution presented in equation 15 we get:

NCF (τ+, v1, v2) ≈

∑
j∈E+

[
α1,j

β1,j

α2,j

β2,j

]
N

√
E
[
α2

1,j

β2
1,j

]
E
[
α2

2,j

β2
2,j

]ρ(0, µ̇axis)
(19)

The term in front of the normalized ambiguity function
cut ρ(0, µ̇axis) can be approximated as a constant A. Since
we assume v

c � 1, we have βi,j ≈ 1 and thus this front
term is approximately constant. We know at zero velocity this
approximation should be equal to the exact expression for the
noise correlation function over the given distribution of sound
sources. Since ρ(0, 0) = 1 for our virtual source, we have:

A = NCF (τ+, v1 = 0, v2 = 0) (20)

Thus we can approximate the noise correlation function as:

NCF (τ+, v1, v2) ≈ NCF (τ+, 0, 0)ρ(0, µ̇axis) (21)

which holds as long as our low velocity assumption is
correct.

The proposed approximation does two important things.
First, it decouples the effects of receiver velocity from the
actual distribution of sound sources in our environment. Sec-
ond, it shows the behavior of the noise correlation function at
our time of interest looks like a scaled version of the behavior
of a single source on the axis passing through the receivers.



VI. SIMULATIONS

To confirm the proposed hypotheses on the noise correlation
function’s behavior under receiver velocity given our assump-
tions, we present simulation which show that our proposed
first order approximation holds.

A. Simulation Setup

Each simulation scenario begins with picking a distribution
of sound sources and a set of paths for each receiver. We select
the start and end position of each receiver for each velocity
such that halfway through the correlation the receivers are the
same distance apart. This ensures that we always have the
same separation at t = 0 regardless of the receiver velocity.

Sources are generated using independent bandpassed stan-
dard normal processes for a duration of 0.1 seconds. The
spatial distribution of sources varies from experiment to ex-
periment, however the distribution of start times is distributed
uniformly over the experiment time window in all cases.

To propagate the sources to each receiver, we use the model
in which the signal received is given by:

si,j(t) =

(
1

1 + d

)
sj

((
1 +

vrel
c

)
(t+D)

)
(22)

which corresponds with our receiver having a constant velocity
with respect to the source (reasonable since our sources
are short in duration and our receivers move slowly) and
attenuation due to spherical spreading ≈ 1

d where d is the
distance from source to receiver (corresponding with a 1

d2

dropoff in signal energy). The 1
1+d attenuation factor ensures

that a source at 0 distance from our receiver experiences no
attenuation and corresponds with a source origin power of
σ2
s = 1.
Holding the source distribution constant, we generate audio

as heard by each receiver for a set of constant velocities.
We then repeat the experiment with a new realization of the
source positions and start times for a set number of trials
depending on the variance inherent in the distribution. For
example, results from isotropic distributions tend to be noisier
than those with sources only in the endfire beams, so we
perform more trials on the isotropic distributions in order to
increase the certainty of our results.

In simulation we explore the following source distributions:
1) Sources on the axis passing through the receiver pair
2) Sources distributed in the 2D endfire regions of the

receiver pair
3) Sources distributed isotropically over the 2D plane con-

taining the receivers
4) Receivers at constant 10m depth, sources distributed

isotropically in a 2D plane at the surface
Case 1 serves as a verification of our intuition that sources

on the axis behave like a single virtual source on each side
of the receiver pair. Case 2 serves to demonstrate that our
proposed approximation holds for sources in the endfire beams
of the receivers. Cases 3 and 4 demonstrate the most realistic
cases in which we test to see how well our approximation
holds in isotropic sound field cases. Case 4 is a more realistic

case of source distribution, more closely representing surface
noise seen in practice [8].

After computing the empirical noise correlation function
values for each value in each trial, we compute the mean
and standard deviation of the estimates which we use to form
90% confidence intervals for the average noise correlation
amplitude of each receiver pair velocity across our set of
source distribution realizations. This gives us a relative sense
of certainty about these empirical estimates.

These simulations are intended to demonstrate that our
model does indeed reflect the behavior of the noise correlation
function in a simple environment.

B. Simulation Results

First, we confirm our previous argument that the noise
correlation function of a set of sources along the axis passing
the receivers is well modeled by the ambiguity function of a
single source on the axis.

Fig. 6. Predicted and simulated correlation coefficients for a single receiver
moving, with all sources distributed uniformly along the axis between the
two receivers. The y axis is the noise correlation function amplitude at τ+
and the x axis is the velocity of receiver 2. Red indicates simulated values
along with 90% confidence intervals and blue is the predicted quantity:
NCF (τ+, 0, 0)ρ(0, µ̇axis). Overall we see a close match between simulated
and predicted values. This confirms our intuition that many sources along the
axis between the receivers behaves like a single source.

Figure 6 demonstrates that as predicted, sources on the axis
passing through our receiver pair can be modeled with a pair
of virtual sources, one for each endfire beam of our receiver
pair. Note that our peak value for the correlation is not equal
to 0.5 for sources along the axis, due to the correlation pre-
processing and sources between the two receivers contributing
to peaks not at τ = τ+ or τ = τ−.

Next, we demonstrate that a field composed of only sources
in the endfire beams is approximated by the ambiguity function
for a single virtual source on the axis passing through the
receivers.

Though not as good an approximation as the axis case,
here we can see that our approximation holds reasonably
well. In this case, the approximation tends to underbound the
experimental bounds by a narrow margin. In the higher center



Fig. 7. Simulated and predicted noise correlation amplitude for varying veloc-
ities with sources distributed in the endfire regions of the receivers. The y axis
is the noise correlation function amplitude at τ+ and the x axis is the velocity
of receiver 2. Red indicates simulated values along with 90% confidence
intervals and blue is the predicted quantity: NCF (τ+, 0, 0)ρ(0, µ̇axis). Like
the axis case in Figure 6, the predicted values match the simulated values for
low velocity, but tend to underbound the simulated values for larger velocities.
This demonstrates that the approximation of sources in the endfire region as
all being on the axis holds reasonably well.

frequency and bandwidth cases, the peak noise correlation
value drops off much faster as a function of receiver velocity,
but the approximation holds much more tightly because of the
narrower endfire beamwidth in these cases.

In the cases with isotropically distributed noise, we start
to see some interesting effects. Our approximation holds rea-
sonably well for different bandwidths and center frequencies
(Figures 8, and 9).

Fig. 8. Simulated and predicted noise correlation amplitude for varying
velocities with sources distributed isotropically in the 2D plane of the
receivers, B = 400, fc = 300. The y axis is the noise correlation
function amplitude at τ+ and the x axis is the velocity of receiver 2. Red
indicates simulated values along with 90% confidence intervals and blue is the
predicted quantity: NCF (τ+, 0, 0)ρ(0, µ̇axis). As predicted, the isotropic
field case shown here is close in behavior to the endfire case in Figure 7.
This demonstrates that the proposed approximation holds in the case of an
isotropic field of sound sources.

Fig. 9. Simulated and predicted noise correlation amplitude for varying
velocities with sources distributed isotropically in the 2D plane of the
receivers, B = fc = 1000. The y axis is the noise correlation function
amplitude at τ+ and the x axis is the velocity of receiver 2. Red indicates
simulated values along with 90% confidence intervals and blue is the predicted
quantity: NCF (τ+, 0, 0)ρ(0, µ̇axis). Similar to Figure 8 the prediction
matches the simulation well. This shows that the proposed approximation
also holds for different center frequencies and bandwidths.

Finally, we get to the most realistic case of sources residing
in a plane above the receivers, corresponding with surface
noise above receivers at constant depth. Like the previous two
cases, we see that our predicted noise correlation value tends
to underbound the experimental data by a small margin. This
is acceptable from a design perspective because it allows us to
choose our correlation parameters such that we will achieve
slightly better than predicted performance. Similar to the 2D
case we see that our approximation works well in the surface
noise case (Figures 10).

Fig. 10. Simulated and predicted noise correlation amplitude for varying
velocities with sources distributed isotropically on the surface plane 10m
above the receivers, B = 400, fc = 300. The y axis is the noise correlation
function amplitude at τ+ and the x axis is the velocity of receiver 2. Red
indicates simulated values along with 90% confidence intervals and blue is the
predicted quantity: NCF (τ+, 0, 0)ρ(0, µ̇axis). In this more realistic noise
distribution case, the behavior similar to that in Figure 8 shows that this
approximation holds for this surface noise distribution as well.



VII. NOISE CORRELATION SNR

From previous work in ambient noise correlation [5], we
know the signal to noise ratio of the amplitude of the TDGF
peak to the correlation noise level is proportional to:

SNR ∝

(√
BT√
fc

)
(23)

Applying the mobile case approximation from Equation 21
(NCF (τ+, v1, v2) ≈ NCF (τ+, 0, 0)ρ(0, µ̇)) in the mobile
case to this SNR expression, we get:

SNR ∝

(√
BT√
fc

)
ρ(vaxis, B, T, fc) (24)

After combining with the wideband ambiguity function
given in 6, we find that the signal to noise ratio is no longer
monotonically increasing with increased correlation time and
bandwidth. In terms of optimization, this provides us with an
objective we can maximize over to get the best possible signal
to noise ratio for given conditions. While the optimization for
this is fairly straightforward (since one can quickly compute
the objective over a large set of parameter values), there are
two interesting problems this objective can address: optimal
time window selection and maximum mobility conditions.

To find the optimal time window for a given receiver
velocity, one can simply maximize Equation 24 over T . For
determining the maximum tolerable velocity, one can choose
a maximum attenuation α for the stationary case (i.e. the
mobile amplitude must be at least α times the stationary
case amplitude), represented by ρ(vaxis, B, T, fc). Then, after
finding the minimum time window Tmin required for the noise
correlation function to emerge, one can find the maximum
velocity the system can tolerate such that T > Tmin and
ρ(vaxis, B, T, fc) >= α.

VIII. CONCLUSION

In exploring the effects of receiver mobility on inter-node
distance estimation via correlations of ambient noise we’ve
demonstrated that we can model the mobile noise correlation
problem using the wideband ambiguity function. By approx-
imating the set of noise sources in the endfire beams of our
receiver pair as a single virtual source, we can reduce the
problem of finding the noise correlation function of a mobile
receiver pair to solving the normalized wideband ambiguity
function of a single source on the axis through the receivers.
Through simulation over common sound source distributions
we’ve shown that with appropriate scaling this approximation
predicts the amplitude of the mobile noise correlation func-
tion reasonably well, typically underbounding the simulated
values by a small margin. We then demonstrated how this
approximation can be combined with past work on the SNR
of the noise correlation function to form an objective function
for optimizing the SNR of the noise correlation function as
a distance estimator in the mobile case, which can be used
to select correlation time window and determine maximum

mobility conditions for applying this method to inter-node
distance estimation.
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