
Identifying and Measuring Security Critical Path for
Uncovering Circuit Vulnerabilities

(Invited Paper)

Wei Hu
School of Automation

Northwestern Polytechnical University
Xi’an 710072, Shaanxi, China
Email: weihu@nwpu.edu.cn

Armaiti Ardeshiricham and Ryan Kastner
Department of Computer Science and Engineering

University of California San Diego
La Jolla, California 92093, USA

Email: {aardeshi, kastner}@ucsd.edu

Abstract—Hardware is an increasingly attractive attack sur-
face since it controls low-level access to critical resources like
cryptographic keys, personally identifiable information, and
firmware. Unfortunately, it is difficult to assess the security
vulnerabilities of a hardware design, which is a consequence of
too few hardware security design tools and metrics. In this work,
we describe important security qualities of hardware designs
by formalizing hardware security metrics. We introduce the
concept of security critical path and show how it can be used to
evaluate properties related to confidentiality, integrity, and timing
channels. We describe techniques for evaluating the security
critical paths and assess their effectiveness in uncovering security
flaws in a number of different hardware designs.

I. INTRODUCTION AND MOTIVATION

Hardware is an attractive attack target as it controls low level
access to critical resources that manage confidential informa-
tion or important configuration data. There are many attacks
that have targeted hardware vulnerabilities. For example, a
recent attack exploited a subtle flaw in QualComm’s TrustZone
implementation to break the full disk encryption feature of
Android devices [1]. Timing channels in shared resources like
cryptographic core [2] and cache [3] leak the secret key and
other confidential information. Backdoors have been identified
in military level FPGA devices [4], opening up a door for
attackers to retrieve the AES key for protecting configuration
bitstream. There is suspicion of hardware Trojans residing in
defense weapon [5], which allowed a remote attacker to switch
off the system.

Hardware security vulnerabilities are notoriously hard to
detect and eliminate. Subtle design flaws often hide in hard-
to-cover corner cases [6]. Hardware Trojans are specifically
developed to reside in difficult-to-find locations, e.g., don’t
care conditions that are out of the reach of functional veri-
fication tools [7]. Power and timing side channel attacks are
extremely effective at uncovering confidential information [2],
[8] and are difficult to mitigate.

Unfortunately, there is little automation for detecting hard-
ware security vulnerabilities; companies typically fall-back
upon manual inspection of the hardware design in order
to identify the security vulnerabilities. This is largely the
consequence of the lack of effective tools to evaluate security
in the design flow. Hardware design tools cannot provide

answers to important design questions such as if one design is
more secure than another. Answering such questions requires
security metrics, which are fundamental to developing auto-
mated techniques so that tools can evaluate security alongside
performance, power consumption, resource utilization, and
other common hardware design metrics.

There is a substantial lack of metrics for measuring hard-
ware security. Our goal is to come up with a number of
qualitative and quantitative metrics that can be evaluated
during the design phase and allow quantitative measurement
of security. Specifically, we transfer the idea of critical path
from timing to security. We describe qualitative metrics for
identifying circuit paths related to security and quantitative
metrics for assessing the criticality of the security paths.
We use quantitative measurements to evaluate the security
paths in order to identify the security critical path. This gives
designers helpful information to pinpoint potential security
vulnerabilities and also allows comparison of relative security
of different hardware designs.

In this work, we make a first attempt at formalizing the
concept of security critical path in terms of confidentiality,
integrity, and timing channel properties. We identify these
paths using qualitative security metrics and quantify their
security using quantitative measurements. More specifically,
we make the following contributions:

• Formalizing the concept of security critical path and
proposing criteria for characterizing these paths;

• Providing security metrics for identifying security critical
paths and measuring their security;

• Presenting concrete design examples to demonstrate the
effectiveness of the proposed solution.

The remainder of the paper is organized as follows. Sec-
tion II describes our security evaluation methodology. In
Section III, we formalize the concept of security critical path
and propose criteria for characterizing such path. We provide
security metrics for identifying and measuring security paths in
Section IV. Section V shows examples on different hardware
designs to demonstrate how the proposed solution can help
uncover security vulnerabilities. We discuss potential research
direction in Section VI and conclude in Section VII.



II. HARDWARE SECURITY EVALUATION METHODOLOGY

Figure 1 shows the design flow for identifying and quan-
tifying security critical paths. Our method targets the early
hardware design and testing phases as this is where we have
the most flexibility to make changes to the design, which
are often necessary to patch security flaws. Given register-
transfer or gate-level netlist, our technique employs qualitative
metrics to identifying security related paths. We then use
qualitative metrics to evaluate the criticality of these security
paths and rank the security paths based upon the quantitative
measurement results. Assuming an effective metric, the most
critical security path will have the highest probability of being
associated with a security vulnerability.

design

Hardware 

design

Security 

paths critical path

Security 

critical path vulnerability

Security 

vulnerability

Design modification

Qualitative 

metrics

Quantitative 

metrics

Fig. 1. The proposed security evaluation framework incorporates different
qualitative and quantitative metrics to identify security-relevant paths and
assess their criticality to reveal security vulnerabilities.

In the following two sections, we address two important
elements in Fig. 1. We formalize the concepts related to
security path and security critical path in Section III. We
present qualitative and quantitative metrics for identifying and
evaluating security paths in Section IV.

III. SECURITY CRITICAL PATH

A hardware design netlist can be represented as a di-
rected graph G = (V,E), where the set of vertices V =
{v1, v2, · · · , vn} are the circuit nodes (i.e., logical elements)
and the set of edges E = {e1, e2, · · · , em} defines the
connections between the nodes. Here, a vertex can be a
primary input/output, Boolean gate, or flip-flop when working
at the gate level. At RTL, vertices represent adders, multipli-
ers, multiplexors, registers and other coarser grained circuit
elements. A path in digital hardware is a sequence of edges
that connects a sequence of nodes. It starts from a source node
(e.g., primary input), traverses through adjacent nodes under
defined connection relations and ends at a destination node
(e.g., a primary output or register).

Hardware designers already use path-based techniques to
reason about circuit reliability and correctness. For example,
path delay is an effective parameter for arguing about timing
failure. Control and data flows paths are fundamental for
modeling security related behaviors, and there are various
techniques that can determine the existence of information
flows via circuit paths [9]–[15]. In this work, we provide a
formal framework to summarize and compare these existing
techniques. And we show how to extend them to provide a
measure of the path’s “criticality”.

In order to understand hardware security properties, we need
to associate the circuit with security attributes and augment
addition logic for security attribute propagation. A frequently
used technique is hardware information flow tracking (IFT).
Information flow models can be employed to systematically
evaluate paths in digital circuits with respect to security. IFT
tools extend the original circuitry with security attributes and
logic to propagate these attributes. This means that all wires
and registers are assigned with security labels, and additional
tracking logic is added to propagate these labels. As we will
show later, flexibility in crafting different label definition and
propagation strategies results in a rich environment for security
evaluation. A digital design that is enhanced with IFT features
can be defined as follows:

Definition 1 - An IFT-Extended Circuit is a directed
graph GIFT = (VIFT , Etaint) where the set of vertices
VIFT = {(v1, v1IFT ), (v2, v2IFT ), · · · , (vn, vnIFT )} and the set
of edges Etaint = {(e1, e1taint), (e2, e2taint), · · · , (em, emtaint)}
are lists of tuples that capture security attributes alongside the
Boolean functionality. Apart from the original functionality,
all nodes and edges are associated with security labels and
tracking logic for label propagation, respectively. The security
labels (eitaint) and propagation logic (viIFT ) can be vectors,
which allows the IFT model to tracks multiple forms of
information flows through distinct channels. For example,
the IFT model can track functional and timing flows in two
different channels [15], [16]. We use the notation eit to refer
sensitivity label of ei (i.e., being secret or untrusted), and eiτ to
capture timing variations of ei. Each security label (i.e., eit or
eiτ ) could be a single bit or multiple bits to provide qualitative
or quantitative analysis, respectively. We first define security
path in terms of confidentiality, integrity, and timing channel
based on a qualitative IFT model and then define the notion
of criticality under quantitative metrics.

Definition 2 - A Security Path is any path in the circuit that
starts from a node with sensitivity label of HIGH (i.e., being
secret or untrusted) and ends in a node which is supposed
to maintain a LOW (i.e., public or trusted) label. We denote
a security path as ε = {ei, · · · , ej}, where eit is HIGH and
ejt should be LOW to adhere to confidentiality or integrity
policies. The set of all security paths are represented with
ξ. We use the notation εi.ej to refer to edge ej from path εi.
The existence of security path indicates potential data leakage
or unprivileged access via that path. Similarly, we can define
a security path that points out leakage through a timing side
channel, exploitable even in cases when the attacker cannot
directly read the leaked data.

Definition 3 - A Timing Channel Security Path is any
path in the circuit that starts from a sensitive node and ends
in a node that should be timing invariant. We denote such a
path as ετ = {ei, · · · , ej}, where eit is HIGH and ejτ should
be LOW. The set of all such paths are represented with ξτ .
Simply said, timing channel security path is a type of security
path corresponding to timing information leakage.

Once identified, the set of security paths pinpoint vulnerable
places in the design. However, they fall short in indicating the



amount of information which may leak through these paths
and the potential severity of the security flaw. Thus, we seek
quantitative methods, which enable comparison between paths.

Definition 4 - A Security Critical Path is defined under a
quantitative security metric Q and refers to a path that is the
most vulnerable to security attacks among the set of security
paths. Security path εi is the critical path if and only if the
following holds:

Q(εi.ejt ) ≥ Q(εk.ejt ) ∀εk ∈ ξ (1)

Definition 5 - A Timing Channel Security Critical Path is
the most vulnerable path with respect to timing side channel
attack among all the timing channel security paths analyzed
with a quantitative security metric Q. Security path εiτ is the
timing channel security critical path if and only if

Q(εiτ .e
j
τ ) ≥ Q(εkτ .e

j
τ ) ∀εkτ ∈ ξτ (2)

To better understand the notion of criticality, consider the
AES-T1700 benchmark from Trust-HUB.org. This benchmark
contains a hardware Trojan triggered by a 128-bit counter.
When activated, the key is loaded into a shift register and
modulated to leak through an unused pin, namely Antena (as
spelled in the benchmark).

� 

Normal AES-128 Core 
message 

cipher key 

Modulator Key shift register Antena 

Trigger 
128-bit counter Baud generator 

Fig. 2. Architecture of the AES-T1700 benchmark from Trust-HUB. The
benchmark contains a hardware Trojan that modulates key bits to leak through
a RF (radio frequency) channel.

We label the key as HIGH in order to understand its security
(similar analysis can be performed for the message). The
security label of cipher can be declassified to LOW considering
that it is protected by the AES algorithm and also publicly
observable. Here, all circuit paths originating from the key to
cipher and Antena are security paths, i.e., the paths in green
and red. However, only the path in red would be considered as
security critical. This path feeds individual key bits to Antena.
The key can be retrieved by decoding the RF signal transmitted
from this pin. This path is more vulnerable to security attack,
considering that the ciphertext is generated by a correct AES
implementation and thus secure. In the next section we discuss
how the red paths can be distinguished from the green ones
employing quantitative security metrics.

IV. SECURITY METRICS

A. Qualitative Metrics

1) Graph Connectivity: Connectivity analysis is a general
technique for path search on graphs. To employ it as a metric
for security path search, we need to extend the circuit graph

with security attributes and constrain the search to start from
a HIGH node and end at a LOW one.

Graph connectivity can be an efficient metric for calculating
all security paths, considering that the complexity of the graph
search problem is bounded by O(n2). However, it may report
non-existent paths since it does not take into account the
functionality of circuit nodes such as a path disallowed by
a security policy (e.g., access to a protected memory space)
or under certain configuration (e.g., scan a disable debug port).
In design practice, this method can be used to profile all
potential security paths, providing a good starting point for
further analysis.

2) Miter Based Equivalence Checking: Miter based equiv-
alence checking provides a precise solution for determin-
ing if there is a path between two circuit nodes. Given a
Boolean function F = f(x1, x2, · · · , xn), we can construct
two functions F0 = f(x1, x2, · · · , xi = 0, · · · , xn) and
F1 = f(x1, x2, · · · , xi = 1, · · · , xn) with xi evaluated to
zero and one respectively. By formally checking if F0 and F1

are equivalent, we can determine if there is a path from xi

to F . To check for a path starting from an internal node, we
need to cut the input cone to that node and make its output a
new primary input.

Miter based equivalence checking has been employed by
existing secure path verification tools such as Cadence Jasper
and Mentor Graphics SecureCheck [9]–[11]. Its computational
complexity is typically O(2n). However, it only indicates if
there is a path between two circuit nodes without reporting
path details. It can be used in combination with graph con-
nectivity analysis to precisely determine all security paths.

3) Taint and Information Flow: Taint and information
flow analysis extends the original digital circuit with security
attributes and logic for performing attribute propagation. Given
a HIGH source node, this metric can determine which nodes
HIGH information could possibly flow to through testing or
verification. When combined with graph search, it can be used
to calculate all potential security paths.

There are various information flow models that can be used
as our metric. A conservative information flow model always
propagate security attribute as it is. Specifically, the output of a
node will be marked as HIGH whenever there is a HIGH input
to that node. Similar to graph connectivity analysis, it does not
consider the functionality of circuit nodes either. More precise
information flow models such as gate and register transfer
level information flow tracking [12], [13] take into account
the functionality of nodes and input values when determining
if HIGH information could propagate under the given input
condition. These precise models can reduce the number of
false paths indicated by a conservative one.

We can also associate different security attributes and labels
with different information flow models. Binary security labels
are effective in identifying security paths related to confiden-
tiality and integrity properties [12]. Multi-level security labels
allow a finer classification of security classes and provide more
insights about information flow behaviors [14]. In order to
capture a timing channel security path, we need to extend the



binary IFT model with a timing label and additional logic for
tracking timing information flows [15].

Information flow analysis is a frequently used technique for
verifying security properties. The computational complexity
of this metric is typically O(22n). Practical information flow
analysis methods usually allow a certain amount of false
positives to reduce verification cost.

B. Quantitative Metrics

Qualitative metrics are effective for calculating the set of
security paths. However, we also need quantitative metrics
for evaluating the security of these paths and identifying the
security critical path.

1) Path Length: Path length is a straightforward metric.
Unlike timing, where longer paths tend to cause a timing
failure, shorter paths are more likely to be security critical.
Generally, as data propagate through more circuit nodes, we
would learn less information about the original input. This
can be confirmed by quantitative measurements using another
metric in the following subsection.

Path length is a simple metric that can be computed in linear
time. However, unlike path delay, which is the sum of wire and
node delays along that path, there is no established connection
between path length and security. A major reason is that our
circuit model does not have a parameter for security similar
to delay. We either need to reveal a connection exists or rely
on more effective metrics.

2) Mutual Information: Mutual information is an informa-
tion theoretic measure that describes the amount of infor-
mation we can learn about one signal by observing another.
Figure 3 shows the different amounts of information we can
learn about input A at different circuit nodes. Our mutual
information measurements are in bits.

A
B

C

D

n1

n2

n3

n4

n5

n6

O

g1

g2

g3

g4

g5

g6

g7

I(A; A) = 1 I(A; n2) = 0.3113 I(A; n4) = 0.2190

I(A; n5) = 0.0188

I(A; n6) = 0.2190

I(A; O) = 0.0488

I(A; n3) = 0

I(A; n1) = 0

Fig. 3. Mutual information between input A and signals at different circuit
nodes. It decreases as the input propagates through more gates.

Mutual information is more a measurement of mutual
dependency of two variables. It correlates to the probability
for one variable to take a certain value when a specific value
is observed at another. Mutual information has been shown
to be an effective measurement for quantifying information
leakage [17]. However, it is usually estimated from a large
number of discrete samples. The accuracy highly depends on
effective and precise estimation of distributions, which can be
hard for variables with a huge state space.

A possible solution is to estimate mutual information in a
compositional manner. We can construct a library for Boolean
gates, which defines the mutual information between each

input and the output under different input distributions. This
can be used as a metric of how much information would
propagate on average by each gate. Given a security path,
a multiplication of mutual information for all the gates along
the path would be used as a quantitative metric for evaluating
security. Such compositional mutual information can be easily
estimated. It also reveals the trend that we can learn less
information about the original input after it propagates through
more gates. However, it does not take into account of the
distribution of the inputs at internal nodes and thus can be
less accurate than mutual information measurement.

3) Taint Probability: Taint probability is defined as the
probability for a signal to have a HIGH security label. It
measures the controllability of the HIGH input on that signal.
Figure 4 shows the taint probability of signals along all the
security paths. Here, output taint labels are calculated using
the GLIFT method [12]. The output of a gate will be marked
as tainted (i.e., HIGH) if and only if at least one tainted input
has an influence at the output. The output of the XOR gate has
a higher taint probability than its inputs. This is caused by a
reconvergent fanout loop.

A
B

C

D

n1

n2

n3

n4

n5

n6

O

g1

g2

g3

g4

g5

g6

g7

p = 1 p = 0.5

p = 0

p = 0

p = 0

p = 0.375

p = 0.125

p = 0.375
p = 0.5

p = 0

p = 0

Fig. 4. Taint probability measurements between input A and signals at
different circuit nodes.

As mentioned, the GLIFT model was employed for taint
propagation in this example. Sometimes, we may want to
allow some relaxation in the precision of label propagation
policy. Take the two-input AND gate as an example, we
may always allow tainted information in one of the inputs to
propagate while the other input still adheres to the GLIFT label
propagation policy, or in a conservative manner, always allow
tainted information in both inputs to propagate regardless of
the input condition. This enables various tradeoffs between the
quality and complexity of this metric.

V. DESIGN EXAMPLES

In this section, we demonstrate how security critical paths
can help uncover hardware security vulnerabilities using real-
istic design examples.

A. Design Flaw

Consider an AES design from dpacontest.org as shown in
Fig. 5. The AES core is functionally correct. However, it
contains a design flaw that feeds the intermediate encryption
results to the ciphertext, leaking a significant amount of
information about the key and plaintext.

We first label the key as HIGH and use qualitative metrics
to calculate security paths. Through graph connectivity or



A
dd

 k
ey

 

Key scheduler 
S-

B
ox

 

Sh
ift

 ro
w

s 

M
ix

 c
ol

um
ns

 

A
dd

 ro
un

d 
ke

y 

S-
B

ox
 

Sh
ift

 ro
w

s 

A
dd

 ro
un

d 
ke

y 

message 
cipher 

key 

� 

round 

M
U

X
 

Fig. 5. Architecture of an AES core from dpacontest.org.

information flow analysis, we can identify multiple security
paths from the key to the cipher. The shortest path feeds
key xor message directly to the output. Other paths assign
the intermediate encryption results after different rounds to
cipher. We then mark the message as HIGH and perform
similar security path search.

Using path length as a simple quantitative metric, we
suspect that the shortest path (i.e., the one in red) is the security
critical path. We further use mutual information to measure the
amount of information we can learn about a key or plaintext
byte after different AES rounds1. In our test, we set plaintext
(or the key) to constant when performing mutual information
measurement for the key (or plaintext) and run 100000 random
tests. Table I shows the mutual information between the lowest
key byte (i.e., key[7:0]) or plaintext byte (i.e., message[7:0])
and the lowest two encryption intermediate result bytes (i.e.,
cipher[7:0] and cipher[15:8]). We see similar mutual infor-
mation results for other key and plaintext bytes in our test.

From Table I, the mutual information between key[7:0]
(or message[7:0]) and cipher[7:0] is close to 8 bits after
the first add key operation. This means that we can almost
learn 100% information about this key byte, which is caused
by the design flaw associated with the security critical path.
After the first round of encryption, the mutual information
measurement will quickly decrease to about 0.54 bits. This is
the result of the confusion and diffusion introduced by the AES
algorithm. The mutual information between key[7:0] and the
second intermediate encryption result byte is low, indicating
mutual independency. Mutual information measurements have
confirmed that the path in red is security critical.

B. Timing Channel

Figure 6 shows an RSA core from opencores.org. The core
is also functionally correct. However, the core contains a
timing channel in that it takes different number of clock cycles
to encrypt different messages.

We label individual key bits as HIGH in our analysis.
Qualitative metrics such as hardware IFT (e.g., GLIFT and
RTLIFT) indicates that there are security paths from the key
bits (except for the least significant key bit) to both the
ciphertext and ready signals. The security paths to ciphertext is
desirable because the key should have an effect on encryption
result. However, the key is not flowing to the ready signal

1We measure mutual information at the byte level so that we can collect
enough samples to accurately estimate the distributions of the key, plaintext
and intermediate encryption result segments.

M
o
d
S
q
u
ar
e

cipher

ready

C
o
n
d
.

key

message

4

M
o
d
M
u
lt

Fig. 6. Architecture of an RSA core from opencores.org.

in a functional manner. Instead, it determines when ready
should be asserted. Using an IFT model extended with a timing
label [15], we have detected a timing channel security path
from the key to the ready signal.

We then assess the criticality of such a timing channel se-
curity path for six different 128-bit RSA architectures using a
quantitative metric. This allows a comparison of their security
in terms of timing leakage. We measure the mutual infor-
mation between individual key bits and encryption time (i.e.,
when ready is asserted) under 6000 allowed RSA key pairs.
Here, the R-2-L implementation performs repeated square-
and-multiply from right to left. The L-2-R-always design
inserts a dummy multiply to balance the conditional branch
of the RSA algorithm. The Power-ladder algorithm carefully
redesigns the algorithmic flow so that both modular multiply
and square are performed regardless of the current key bit.
The Montgomery design uses the Montgomery multiplier. The
Base-blind algorithm introduces a random number to mask the
messages. The Exponent blind algorithm introduces a random
number to protect the private key.

From Fig. 7, the R-2-L design tends to leak more infor-
mation about the key since it is unprotected. The Exponent-
blind design better protects the key than the Base-blind design.
The Montgomery design has the smallest leakage because
the modular multiplication runs in constant time so that the
runtime variation caused by the plaintext can be eliminated.

From the results, quantitative metric allows a comparison of
relative security, which could provide an answer to important
design questions such as if one design is more secure and if
one mitigation technique is more effective than another. This is
an important step for developing automated hardware security
evaluation tools.

VI. POTENTIAL RESEARCH DIRECTIONS

A. Extending the Concept of Security Path for More Security
Properties

Currently, we have formalized the idea of security path and
security critical path for confidentiality, integrity and timing
channel security properties. However, security vulnerabilities
such as power side channel and hardware Trojan fall out of
this scope. A potential research vector is to extend the concept
of security path for a wider range of security properties. A tie
between power side channel as well as hardware Trojan and
security is switching probability, which may provide a possible
solution.



TABLE I
MUTUAL INFORMATION BETWEEN THE LEAST SIGNIFICANT KEY (OR PLAINTEXT) BYTE AND THE LOWEST TWO ENCRYPTION INTERMEDIATE RESULT

BYTES AFTER DIFFERENT ROUNDS OF ENCRYPTION (BITS).

Mutual information AddKey r1 r2 r3 r4 r5 r6 r7 r8 r9 r10
I(key[7:0]; cipher[7:0]) 7.9979 0.5410 0.5466 0.5474 0.5441 0.5459 0.5494 0.5434 0.5428 0.5395 0.5436

I(key[7:0]; cipher[15:8]) 0.5460 0.5463 0.5438 0.5420 0.5454 0.5488 0.5459 0.5420 0.5428 0.5473 0.5396
I(message[7:0]; cipher[7:0]) 7.9979 0.5376 0.5456 0.5450 0.5431 0.5438 0.5435 0.5435 0.5437 0.5452 0.5461
I(message[7:0]; cipher[15:8]) 0.5460 0.5466 0.5473 0.5466 0.5440 0.5466 0.5415 0.5438 0.5425 0.5423 0.5412

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124
Key Bits(0-127)

R-2-L L-2-R-always Power-ladder Montgomery Exponent-blind Base-blind

M
u

tu
a
l 

In
fo

rm
a
ti

o
n

 I
(k

i;
T

)/
b

it

Fig. 7. Mutual information between key bits and the runtime measurements for different 128-bit RSA implementations.

B. Security Metrics

Security metrics are important factors for identifying and
evaluating security paths. However, our current security metric
library still has a limited capacity. Deriving more effective
security metrics for both qualitative and quantitative assess-
ment of security is an essential element for the development
of automated hardware security tools. In addition, we need
effective ways for calculating the security metrics, e.g., precise
estimation of statistical and information theoretic measures
with a minimum number of samples.

VII. CONCLUSION

In this work, we propose to formalize the ideas of security
path and security critical path for understanding the security
of hardware designs and uncovering circuit vulnerabilities. We
provide qualitative metrics for calculating security paths and
quantitative metrics for evaluating the criticality of these paths.
This is an important first step towards an automated hardware
security evaluation framework that can help hardware design-
ers pinpoint security vulnerabilities.

ACKNOWLEDGMENT

This work was supported in part by the NSF under grant
CNS-1527631 and by the Fundamental Research Funds for
the Central Universities under grant 3102017OQD094.

REFERENCES

[1] Bits, Please, “Extracting qualcomm’s keymaster keys -
breaking android full disk encryption,” in http://bits-
please.blogspot.com/2016/06/extracting-qualcomms-keymaster-
keys.html, June 2016.

[2] P. C. Kocher, “Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems,” in International Cryptology Conference on
Advances in Cryptology, London, UK, 1996, pp. 104–113.

[3] D. J. Bernstein, “Cache-timing attacks on aes,” Vlsi Design IEEE
Computer Society, vol. 51, no. 2, pp. 218 – 221, 2005.

[4] S. Skorobogatov and C. Woods, Breakthrough Silicon Scanning Discov-
ers Backdoor in Military Chip. Springer, 2012, pp. 23–40.

[5] S. Adee, “The hunt for the kill switch,” Spectrum, IEEE, vol. 45, no. 5,
pp. 34–39, May 2008.

[6] J. Zhang, F. Yuan, and Q. Xu, “Detrust: Defeating hardware trust
verification with stealthy implicitly-triggered hardware trojans,” in ACM
SIGSAC Conference on Computer and Communications Security. New
York, NY, USA: ACM, 2014, pp. 153–166.

[7] W. Hu, L. Zhang, A. Ardeshiricham, J. Blackstone, B. Hou, Y. Tai, and
R. Kastner, “Why you should care about dont cares: Exploiting internal
dont care conditions for hardware trojans,” in International Conference
on Computer-aided Design. New York, NY, USA: IEEE, 2017.

[8] E. Brier, C. Clavier, and F. Olivier, Correlation Power Analysis with a
Leakage Model. Springer Berlin Heidelberg, 2004, pp. 16–29.

[9] J. Mazzawi and Z. Hanna, “Formal analysis of security data paths in
rtl design,” in International Conference on Hardware and Software:
Verification and Testing. Springer-Verlag, 2013, pp. 7–7.

[10] G. Cabodi, P. Camurati, S. F. Finocchiaro, C. Loiacono, F. Savarese,
and D. Vendraminetto, “Secure path verification,” in IEEE International
Verification and Security Workshop (IVSW), July 2016, pp. 1–6.

[11] Mentor Graphics, “Questa secure check - exhaustive verification
of secure paths to critical hardware storage.” [Online]. Available:
https://www.mentor.com/products/fv/questa-secure-check

[12] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong,
and T. Sherwood, “Complete information flow tracking from the gates
up,” in the 14th International Conference on Architectural Support for
Programming Languages and Operating Systems, 2009, pp. 109–120.

[13] A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner, “Register transfer
level information flow tracking for provably secure hardware design,”
in Design, Automation & Test in Europe, 2017, pp. 1695–1700.

[14] W. Hu, D. Mu, J. Oberg, B. Mao, M. Tiwari, T. Sherwood, and R. Kast-
ner, “Gate-level information flow tracking for security lattices,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 20, no. 1, 2014.

[15] A. Ardeshiricham, W. Hu, and R. Kastner, “Clepsydra: Modeling timing
flows in hardware designs,” in IEEE/ACM International Conference on
Computer-Aided Design, 2017.

[16] J. Oberg, S. Meiklejohn, T. Sherwood, and R. Kastner, “Leveraging
gate-level properties to identify hardware timing channels,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 33, no. 9, pp. 1288–1301, 2014.

[17] B. Mao, W. Hu, A. Althoff, J. Matai, J. Oberg, D. Mu, T. Sherwood, and
R. Kastner, “Quantifying timing-based information flow in cryptographic
hardware,” in the International Conference on Computer Aided Design,
2015, pp. 552–559.


