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Fig. 16. Vertical axis is true positive rate (TPR) and the horizontal axis is false positives per square kilometer (FP per ). Shows the receiver operating char-
acteristic (ROC) curves of the BCI experiments with the Haar-like feature classifier at threshold four and various subjects using the RSVP setup. The Haar-like
feature classifier ROC curve, HAAR, is also included for comparison. The one threshold point of interest is highlighted on the curve.

marginally outperform the HAAR classifier for a range of FP
per values.
This scenario with Haar-like feature classifier at threshold

four provides the best performance of the three, showing that
certain subjects can be used to create a BCI classifier with
substantial improvements over the computer vision technique
alone, but that the system is very dependent on subject capa-
bilities at recognizing MLOs and interacting with the RSVP
system.

D. Discussion
We see in this section that the two stage BCI is able to im-

prove drastically on the FULL experiment and some subjects
are able to improve over the Haar-like feature classifier. In this
subsection we briefly discuss some potential reasons for these
improvements.
First the improvement over the FULL experiment is relatively

easy to identify. The FULL experiment divides the full images
into sixteen image chips, which are large compared to the size of
the targets. This makes it very difficult for the subjects to search
the image and identify targets with confidence in the short time
frame. All of the experiments in this section use the Haar-like
feature classifier as a first stage and this produces much smaller
image chips for use in the RSVP stage. These smaller image
chips are much easier for the subjects to search in RSVP. It is
also important to note that the experiments in this stage aremuch
faster than the FULL experiment because of the data reduction
provided by the computer vision classifier in stage one.
The increases in the threshold choice for the Haar-like

feature classifier slightly reduces the TPs passed through and
greatly reduces the FPs passed through to the RSVP stage.
These image chips that make it through with a higher threshold
are more difficult for the Haar-like feature classifier but not
necessarily difficult for the human subjects. Additionally, the
reduced total image chips presented to the RSVP stage causes
the need for known negatives to keep a 4% target prevalence.

These known negatives are average difficulty compared to the
more challenging negative image chips in the real data. This
allows the subjects to better separate the positives from the
negatives.
In practice, when processing data from a real mission there

will be no guarantee of the 4% target prevalence used in this
research. To achieve close to this goal, we would need to start
with an estimate based on the history of target prevalence in real
missions and the history of correctness by the Haar-like feature
classifier. These combined would provide a reasonable starting
point for known negative injection to achieve an estimated 4%
target prevalence. When an operator processes the data, if there
is an above threshold number of very strong responses, then
there could be a feedback loop to rerun with a larger injection
of known negative image chips. There is clearly opportunity
to research this application in real scenarios in addition to the
development of the algorithms themselves.

VI. BRAIN–COMPUTER INTERFACE WITH SUPPORT VECTOR
MACHINE CLASSIFIER

The previous section presents a BCI that uses the Haar-like
feature classifier as a first stage, cascading the output in to the
RSVP process as image chips and outputting a final label for
locations in the full sonar image. This has mixed success with
some subjects improving the capability and some subjects per-
forming worse than the Haar-like feature classifier alone. This
section proposes training a classifier that uses the Haar-like fea-
ture from the computer vision domain with the EEG interest
score feature from the human vision domain. These two feature
types are combined in a feature vector to train a support vector
machine (SVM) classifier, which becomes a third stage in the
BCI pipeline.
Fig. 18 shows a diagram visualizing the difference between

the system chain for the two stage BCI introduced in the pre-
vious section and the three stage BCI introduced in this section.
The two stage BCI system uses the EEG scores to choose labels
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Fig. 17. Vertical axis is true positive rate (TPR) and the horizontal axis is false positives per square kilometer (FP per ). This is zoomed in to a smaller range
to show the results near the labeled threshold point of four. Shows the receiver operating characteristic (ROC) curves of the BCI experiments with the Haar-like
feature classifier at threshold four and various subjects using the RSVP setup. The Haar-like feature classifier ROC curve, HAAR, is also included for comparison.

Fig. 18. Visualization of the different BCI chains introduced in this paper. The two stage BCI, introduced in Section V, has the Haar-like classifier as stage one
and the RSVP system as stage three. The three stage BCI, introduced in this section, adds the third stage of an SVM classifier.

for the image chips, while the three stage BCI system passes the
EEG interest scores and the image chips to the SVM classifier,
which then produces the label.
To run this experiment, we divide our 450 image set in to

training and testing sets of 225 images each. This way we can
use the training set to create our SVM and use the testing set to
compare this BCI classifier including the SVM to the Haar-like
feature classifier presented in Section III and the best two stage
BCI classifier presented in Section V.
We use an SVM for this part of the experiment because of its

ability to handle small amounts of data for training compared
to the more data hungry boosting methods. There are many
training techniques that could be used for the additional clas-
sifier in the third stage of this experiment, but we leave those
for future work.
An SVM is a supervised learning algorithm that, given la-

beled examples, outputs an optimal hyperplane to divide the ex-
amples in to positive and negative [24]. The optimal hyperplane
is the one that best splits the training examples with the largest
distance from the nearest example point.

Fig. 19 shows two similar visualizations of example data in
multidimensional space and the optimal hyperplane selected
by the SVM training. The points are shown in two dimensional
space for ease of explanation. The left image shows a scenario
where the data is fully separable with a hyperplane. The optimal
hyperplane shown is the one that creates the largest margin,
which is two times the distance from the hyperplane to the
nearest examples. The right image has two additional points
that create a scenario where the data cannot be fully separated.
In this case the algorithm must still try to maximize the margin
while at the same time minimizing the total error. The errors
for the misclassified data points are labeled by for the dark
point and for the light point.
The SVM training algorithmwe utilize automatically chooses

the best parameters using cross-validation, where the training
data is split in to ten subsets with one for training and the re-
maining for testing. The training repeats for each combination
of one subset for training and nine for testing to select the best
parameters while finding the optimal hyperplane. We use a ra-
dial basis function (RBF) as the kernel for the SVM training
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Fig. 19. Example graphs visualize the result of the SVM training in the form of an optimal hyperplane. The left image shows a fully separable data set, where the
hyperplane function only maximizes the margin. The right image shows a data set that cannot be separated, where the hyperplane function maximizes the margin
and minimizes the total error.

TABLE III
TESTING DATA SET METRICS FOR THE TWO BCI WITH SVM EXPERIMENTS. THE SKIPPED COLUMNS SHOW THE TRUE POSITIVE (TP), FALSE POSITIVE (FP), AND
FALSE NEGATIVE (FN) IMAGES THAT ARE SKIPPED AFTER THE FIRST STAGE HAAR-LIKE FEATURE CLASSIFIER. THE OUTPUT COLUMNS SHOW THE NUMBER OF

IMAGE CHIPS OF EACH TYPE THAT CASCADE TO RSVP TO PRODUCE INTEREST SCORES FOR FINAL CLASSIFICATION BY THE SVM CLASSIFIER

TABLE II
TRAINING DATA SET METRICS FOR THE TWO SVM CLASSIFIERS. SHOWS THE
NUMBER OF POSITIVE AND NEGATIVE IMAGE CHIPS, AS WELL AS THE TOTAL

algorithm, which is a function that only depends on the distance
from a single point such as the origin.
For this research we train SVMs on two training data sets,

one composed of image chips created by the Haar-like feature
classifier threshold set to two, called SVM-TRAIN-2. The other
training set is composed of image chips created by the classifier
with the threshold set to four, called SVM-TRAIN-4. The number
of training image chips for the SVMs are shown in Table II.
When training the SVMs on the SVM-TRAIN-2 data we use

a feature vector including both computer vision and human vi-
sion features. The computer vision features are the 34 Haar-
like features from the Haar-like feature classifier presented in
Section III and the human vision features are the six EEG in-
terest score features corresponding to six subjects as presented
in Section V. Similarly when training the SVMs on the SVM-
TRAIN-4 data, the feature vector contains the same 34Haar-like
features plus the five EEG interest score features corresponding
to the five subjects shown these image chips.
Once the SVMs are trained on each data set, we can test

the BCI experiment with an SVM classifier as the third stage.
Table III shows the testing data for the two versions with Haar-
like feature classifier thresholds of two and four, called SVM-
TEST-2 and SVM-TEST-4 respectively. In the first section we
show the skipped targets that will be included in our totals after

the final classification. We see that no TPs were skipped, but a
few FPs and FNs are skipped for each. The image chips that are
cascaded in to the RSVP setup have similar distribution to the
training data. The RSVP stage calculates interest scores, which
are then used as part of the SVM classifier input to give the final
label.
Fig. 20 shows the results of the BCI with SVM experiment on

the SVM-TEST-2 data set created when the Haar-like feature
classifier has a threshold of two. The vertical axis is the true
positive rate (TPR), which is the number of MLO targets found
by the entire BCI classifier out of the 74 possible targets. The
horizontal axis is false positives per square kilometer (FP per

), which is calculated based on the known range in the sonar
images.
The curves in this figure are all created by testing classi-

fiers on the SVM-TEST-2 data set. The HAAR curve uses the
Haar-like feature classifier from Section III and the Subject_8
curve uses the best BCI classifier corresponding to CV-2 from
Section V. Notice that the SVM-2 BCI curve created by the three
stage BCI outperforms both previous classifiers.
Fig. 21 shows similar results for the three stage BCI, but

with Haar-like feature classifier at a threshold of four. The ROC
curves are created by testing on the SVM-TEST-4 test set. Again
the vertical axis is the true positive rate (TPR), which is the
number of MLO targets found by they entire BCI classifier out
of the possible 75 that exist. The horizontal axis is false posi-
tives per square kilometer (FP per ), as in previous figures.
Notice the same general results where the three stage BCI

using the SVM classifier outperforms the other classifiers. The
HAAR curve uses the Haar-like feature classifier presented in
Section III with a threshold of four and the Subject_16 curve
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Fig. 20. Vertical axis is true positive rate (TPR) and the horizontal axis is false positives per square kilometer (FP per ). This compares the receiver operating
characteristic (ROC) curves of the three stage BCI experiment concluding with the SVM classifier, the Haar-like feature classifier, HAAR, and the two stage BCI
using Subject 8, Subject_8. For all curves, the Haar-like feature classifier portion uses a threshold of two.

Fig. 21. Vertical axis is true positive rate (TPR) and the horizontal axis is false positives per square kilometer (FP per ). This compares the receiver operating
characteristic (ROC) curves of the three stage BCI experiment concluding with the SVM classifier, the Haar-like feature classifier, HAAR, and the two stage BCI
using Subject 16, Subject_16. For all curves, the Haar-like feature classifier portion uses a threshold of four.

uses corresponding two stage BCI with the best performing sub-
ject. Another important element to take notice of is that the
amount of data used to train these SVM classifiers is about a
quarter of the data used to train the HAAR classifier, as de-
scribed in Section III.
This experiment is an initial attempt at a novel concept of

training a classifier using the computer vision feature and the
human vision feature in the same feature vector. It shows great
promise, but with limited data and breadth of experimentation,
it allows space for further investigation.

VII. CONCLUSION
This paper introduces a BCI approach to the detection of

mine-like objects (MLOs) in sidescan sonar imagery. The BCI
system combines the complementary benefits of computer vi-
sion and human vision. We explain in depth the Haar-like fea-
ture classifier, which represents the computer vision component,
and present its performance receiver operating characteristic
(ROC) curve. We then provide detailed background on the rapid
serial visual presentation (RSVP) process, which uses electroen-
cephalography (EEG) based interest scores to classify images,
and we present its performance ROC curve for six subjects.
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The first BCI concept that we introduce uses the Haar-like
feature classifier cascaded in to the RSVP process. We run ex-
periments on this BCI system with three variations of the Haar-
like feature classifier and multiple subjects per experiment. The
results show that the subject processing the images and the con-
servativeness of the Haar-like feature classifier greatly affect the
performance. In the end, we see improvement over the Haar-like
feature classifier alone for some subjects and consistent im-
provement over RSVP classification without any preprocessing.
The second BCI concept is set up the same as the first, with an

additional stage that further combines the computer vision and
human vision capabilities. This third stage is a support vector
machine (SVM) classifier trained on the Haar-like features and
EEG interest score features. We show that this BCI system is
able to provide performance improvements over the Haar-like
feature classifier alone and the best two stage BCI subject per-
formance.
This is the first use of BCI systems using EEG interest classi-

fiers and RSVP on the problem of mine-like object detection in
sidescan sonar. The combination of computer vision and human
vision is a logical collaboration and we show that there is great
potential for this approach to improve performance for this task.

ACKNOWLEDGMENT

The authors would like to thank P. Sajda of Columbia Uni-
versity and D. Rosenthal of Neuromatters, LLC for their support
in the use of the C3Vision system for this research.

REFERENCES

[1] M. Mignotte, C. Collet, P. Perez, and P. Bouthemy, “Sonar image seg-
mentation using an unsupervised hierarchical mrf model,” IEEE Trans.
Image Process., vol. 9, no. 7, pp. 1216–1231, Jul. 1998.

[2] S. Reed, Y. Petillot, and J. Bell, “An automatic approach to the detec-
tion and extraction of mine features in sidescan sonar,” IEEE J. Ocean.
Eng., vol. 28, no. 1, pp. 90–105, Jan. 2003.

[3] F. Langner, C. Knauer, W. Jans, and A. Ebert, “sidescan sonar image
resolution and automatic object detection, classification and identifica-
tion,” presented at the Proceddings. OCEANS, May 2009.

[4] G. J. Dobeck and J. C. Hyland et al., “Automated detection and clas-
sification of sea mines in sonar imagery,” in Proc. AeroSense'97. Int.
Soc. Opt. Photon., 1997, pp. 90–110.

[5] V. Myers and D. Williams, “Adaptive multiview target classification
in synthetic aperture sonar images using a partially observable markov
decision process,” IEEE J. Ocean. Eng. , vol. 37, no. 1, pp. 45–55, Jan.
2012.

[6] D. Williams, V. Myers, and M. Silvious, “Mine classification with im-
balanced data,” IEEE Geosci. Remote Sens. Lett., vol. 6, no. 3, pp.
528–532, Jul. 2009.

[7] J. Isaacs and J. Tucker, “Diffusion features for target specific recogni-
tion with synthetic aperture sonar raw signals and acoustic color,” in
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work-
shops (CVPRW), Jun. 2011, pp. 27–32.

[8] P. Viola and M. Jones, “Robust real-time object detection,” Int. J.
Comput. Vis., 2001.

[9] S. Munder and D. M. Gavrila, “An experimental study on pedestrian
classification,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no.
11, pp. 1863–1868, Nov. 2006.

[10] R. Lienhart and J. Maydt, “An extended set of haar-like features for
rapid object detection,” in Proc. Int. Conf. Image Process., 2002, vol.
1, p. I-900, IEEE.

[11] M. J. Jones and D. Snow, “Pedestrian detection using boosted features
over many frames,” in Proc. 19th Int. Conf. IEEE Pattern Recognit.
(ICPR 2008), 2008, pp. 1–4.

[12] J. Sawas and Y. Petillot, “Cascade of boosted classifiers for automatic
target recognition in synthetic aperture sonar imagery,” in Proc. Meet-
ings Acoust., 2013, vol. 17, p. 070074.

[13] C. Barngrover, R. Kastner, and S. Belongie, “Semisynthetic versus
real-world sonar training data for the classification of mine-like ob-
jects,” IEEE J. Ocean. Eng., vol. 40, no. 1, pp. 48–56, Jan. 2014.

[14] A. Oliva, “Gist of the scene,” Neurobiol. Attention, vol. 696, p. 64,
2005.

[15] A. D. Gerson, L. C. Parra, and P. Sajda, “Cortically coupled computer
vision for rapid image search,” IEEE Trans. Neural Sys. Rehab. Eng.,
vol. 14, no. 2, pp. 174–179, Jun. 2006.

[16] P. Sajda, E. Pohlmeyer, J. Wang, B. Hanna, L. C. Parra, and S.-F.
Chang, “Cortically-coupled computer vision,” Brain-Comput. Inter-
faces, pp. 133–148, 2010.

[17] P. Sajda, E. Pohlmeyer, J. Wang, L. C. Parra, C. Christoforou, J. Dmo-
chowski, B. Hanna, C. Bahlmann, M. K. Singh, and S.-F. Chang, “In
a blink of an eye and a switch of a transistor: Cortically coupled com-
puter vision,” Proc. IEEE, vol. 98, no. 3, pp. 462–478, Mar. 2010.

[18] N. Bigdely-Shamlo, A. Vankov, R. R. Ramirez, and S. Makeig,
“Brain activity-based image classification from rapid serial visual
presentation,” IEEE Trans. Neural Syst. Rehab. Eng., vol. 16, no. 5,
pp. 432–441, Oct. 2008.

[19] A. Kapoor, P. Shenoy, and D. Tan, “Combining brain computer in-
terfaces with vision for object categorization,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR 2008), 2008, pp. 1–8.

[20] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regres-
sion: A statistical view of boosting,” Annal. Statist., vol. 28, no. 2, pp.
337–407, 2000.

[21] L. C. Parra, C. D. Spence, A. D. Gerson, and P. Sajda, “Recipes for the
linear analysis of eeg,” Neuroimage, vol. 28, no. 2, pp. 326–341, 2005.

[22] L. C. Parra, C. Christoforou, A. D. Gerson, M. Dyrholm, A. Luo, M.
Wagner, M. G. Philiastides, and P. Sajda, “Spatiotemporal linear de-
coding of brain state,” IEEE Signal Process. Mag., vol. 25, no. 1, pp.
107–115, Feb. 2008.

[23] H. H. Jasper, “The ten twenty electrode system of the international fed-
eration,” Electroencephalography Clinical Neurophysiol., vol. 10, pp.
371–375, 1958.

[24] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273–297, 1995.

Christopher Barngrover received the B.S. degree
in computer science and mathematics from Purdue
University, West Lafayette, IN, USA, in 2005. He re-
ceived the M.S. degree in computer science and the
Ph.D. degree in computer science from the Univer-
sity of California San Diego, La Jolla, CA, USA, in
2010 and 2014, respectively.
He is currently a Computer Science researcher at

the Space and Naval Warfare Systems Center Pacific
(SSC PAC) located in Point Loma, CA, USA, where
he works in the Unmanned Systems Group focusing

on computer vision related aspects of robotics. He is also a Lecturer in the De-
partment of Computer Science and Engineering at the University of California
San Diego, where he teaches courses related to the software development of
robotics.

Alric Althoff received the B.S. degree in cognitive
science and mathematics—computer science from
the University of California, San Diego (UCSD), La
Jolla, CA, USA, in 2013. He is currently working
toward the Ph.D. degree in computer science at
UCSD.
His current research interests include hardware de-

sign for statistical signal processing, data modeling,
compressed sensing, and optimization.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE JOURNAL OF OCEANIC ENGINEERING

Paul DeGuzman received the B.S. degree in
biomedical engineering from Boston University,
Boston, MA, USA, in 2006, and the M.S. degree in
biomedical engineering from The City College of
New York, New York, NY, USA, in 2012.
He is currently a Program Manager at Neuromat-

ters, LLC. Prior to joining Neuromatters, he was
a Research Associate for the Neural Engineering
Laboratory at the City College of New York, were
he researched neural correlates of phantom auditory
percepts. He specializes in neural signal processing,

brain–computer interfaces, and psychoacoustics. He also has previous expe-
rience in medical image standardization, processing, and analysis for clinical
trials.

Ryan Kastner received the B.S. degree in electrical
engineering and computer engineering, and the M.S.
degree in engineering from Northwestern University,
Evanston, IL, USA. He received the Ph.D. degree
in computer science from UCLA, Los Angeles, CA,
USA.
He is currently a Professor in the Department of

Computer Science and Engineering at the University
of California, San Diego. He is the Codirector of the
Wireless Embedded Systems Master of Advanced
Studies Program. He also codirects the Engineers

for Exploration Program. His current research interests reside in three areas:
hardware acceleration, hardware security, and remote sensing.


