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Abstract. Augmented Reality (AR) surgical image guidance overlays
preoperative data into the surgeon’s view in real time during the proce-
dure. Non-rigid 3D registration is a critical and often challenging step
for AR surgical image guidance. Since surgical environments vary greatly
and registration must by done quickly and accurately, it is unlikely that
one registration technique will work well over different surgical scenarios.
Unfortunately, it is currently challenging to evaluate the accuracy and ef-
fectiveness of 3D registration techniques on surgical scenes. In this work,
we provide a novel method to benchmark quality of non-rigid 3D surface
registration. Our method provides a triangular mesh overlay represent-
ing the quality of registration and can highlight areas of unacceptably
poor registration performance given some specified tolerance. We use
the method to evaluate the quality of two existing non-rigid registration
approaches on surgical video.

Keywords: Benchmarking, Registration, Augmented Reality, Image Guid-
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1 Introduction

Augmented Reality (AR) has significant potential for enhancing surgical pro-
cedures. For example, the ability to superimpose landmarks like major internal
vessels onto the surface of an organ provides immense value for surgical im-
age guidance. There are many therapeutic uses for AR guidance in laparoscopic
surgery [1–5] and other closely related intervention types such as telerobotic
surgery where AR enhances the pre-existing feedback from robotic tools [6, 7].

A key challenge for AR surgery is registration, which provides the relationship
between a preoperative model (e.g., CT or MRI scan) and the surgical video feed.
Fig. 1 illustrates the registration process. The three images/frames on the left
are collected in real-time during the procedure from a camera. Each frame must
be registered onto the preoperative 3D model on the right. After that, features
from the preoperative 3D model are overlaid onto the surgeons view.
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Fig. 1: Registration maps video frames (left) onto a 3D model (right). The video
frames should be mapped in real-time onto the 3D model allowing any features
from the model to be projected into the surgeons view.

Surgical augmented reality is particularly challenging since it must be done
in real time with high accuracy. A surgical scene can be extremely complex: tis-
sues deform, lighting varies dramatically, and features quickly come in and out
of the field of view. Every laparoscope, every lighting solution, and every type
of surgery have unique idiosyncrasies. Consequently, custom registration algo-
rithms are needed for the unique challenges arising from a given combination of
factors in a particular surgery. It can be difficult to tune the performance of a
registration algorithm to the surgeon’s needs since benchmarks that account for
specific idiosyncrasies of that surgery do not exist. Because of these challenges,
surgery-specific heuristics are needed to perform high quality dense surface reg-
istration in real-time. However, it is impossible to measure the effectiveness of
these heuristics without a baseline quality measure. A useful quality measure
must be dense, granular, and convenient.

Many quality metrics have been applied to clinical registration. The canoni-
cal approach is Target Registration Error (TRE) which involves computing L2 or
some other distance between corresponding feature points after registration [8–
12]. Feature separation distances can be highly representative of registration
error if the features are appropriately chosen, but such metrics have no concept
of a global coordinate system to track drift in a stream of registrations. Be-
sides distance measures, global similarity metrics based on intensity have broad
clinical applications [13–16]. These qualitative measures combine intensities of



The Surgical Image Registration Generator (SIRGn) 3

the registered images into one image. A clinician can then judge the quality of
registration through experienced observation of the resulting overlay of images.
Because of this reliance on clinical experience, intensity metrics are not used in
applications where registration accuracy is critical as they cannot represent the
warp function in a physically meaningful way.

Landmark registration metrics judge registration quality by an objective
function weighted by pre-defined feature points. These consider rigid registra-
tion [17] and/or fiducial markers [18] rather than tissue only landmarks and can
be used to focus the metric on registration regions of clinical interest. Hoffmann
et al. [19] develop such a quality metric. Unfortunately, they do not attempt large
surface area coverage, they rely on a small number of landmarks, and their tech-
nique is applied to CT scans rather than video. Recently Thompson et al. [20]
proposed an AR specific registration evaluation focused on accurately position-
ing sub-surface landmarks. Unfortunately shifting focus from surface registration
to sub-surface features requires that assumptions are made on the biomechanics
of the organ when estimating landmark positions. Because such assumptions of-
ten break down [21], quantitative surface registration quality metrics are more
robust.

Surgical Image Registration Generator (SIRGn) is a novel dense, granular
baseline quality metric for video registration algorithms. Fig. 2 shows how SIRGn
works. It evaluates the registration of a set of images/frame (Fig 2a) by creating
a heat map that shows regions of poor registration quality (Fig. 2b) that can be
subsequently overlaid onto the scene (Fig. 2c) for visual inspection of the quality
of result of the registration algorithm.

Fig. 2: Illustration of the SIRGn concept. Assume a 3D registration algorithm
is run on the video frame shown in Fig. 2a. SIRGn evaluates the quality of the
registration by creating a covariance mesh (Fig. 2b) and overlaying that as a
“heat map” (Fig. 2c) where high heat indicates poor registration quality, e.g.,
as seen in the upper left corner.

The novelty of SIRGn lies in the fact that it combines the physically mean-
ingful metric of TRE with the clinically useful dense image coverage of an inten-
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sity type measure. Additionally, unlike the aforementioned approaches, SIRGn
is well suited for image guidance benchmarking since real time registration al-
gorithms are evaluated using a global coordinate system, which allows it to
compare across multiple frames. Our method can be applied in situations where
no suitable database of videos exists or where synthetic simulation is intractable.
Also, it can be applied to many types of surgery and it does not rely on physical
simulation or biomechanical tissue information.

In this manuscript we describe the SIRGn method and an experiment that
uses SIRGn to compare performance of two non-rigid 3D registration algorithms
on laparoscopic video from a database [22]. Our experiment models the ex-
ploratory phase of AR image guidance where several approaches are tried to
accurately track the clinically significant portion of a surgical scene over time.
Specifically we show that SIRGn is advantageous in evaluating the accuracy of
different registration methods by comparing a SIRGn work flow with the con-
ventional TRE and RMSE error metrics. Registration performance is evaluated
using landmark correspondences [23]. Although it is desirable in clinical image
registration to use expert landmark correspondences, our goal is convenience4

and so we provide tools for automated global reference feature extraction from
2D and 3D laparoscopic video.

The remainder of this paper is organized as follows. Section 2 gives an
overview of the baseline generation method and evaluation of 3D registration
quality using SIRGn as a baseline. Section 3 gives an appraisal of SIRGn as a
simple and flexible baseline generation method. We conclude in section 4.

2 Method

SIRGn provides a way to evaluate a given registration algorithm on a surgical
3D video data set. For this, we must create a metric that describes the quality
of the registration. An ideal metric would work for any registration algorithm
and data set. It would allow us to compare the quality of different registration
algorithms on that data set. And it would provide a location specific quality
measure. We describe our metric in the context of stereo laparoscopic cameras
since we anticipate SIRGn’s greatest applicability to be in image guided surgery.
However our methodology can be applied to conventional 2D surgical video data.

The insight motivating SIRGn is that surfaces in surgical scenes are smooth
with very few exceptions. Therefore given a smooth surface, a point that is
heavily warped by registration with respect to surrounding “known-good” points
is less likely to be accurate. In order to formalize this intuition, we rely on two
sets of points. The first, G, is a set of expert landmarks that we assume as correct
a priori; these could be human labeled by a surgeon or provided by a reliable
feature detection algorithm. The second, C, contains points that require heavy
warping to align well on a global model M . Points in C are chosen by searching
points enclosed within the triangulation of G. Specifically, a set of candidate

4 Example code and data available at: “https://github.com/KastnerRG/SIRGn.git
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points to be registered is masked using a triangle from G to project onto M
space. After registration the point that required the largest registration warping
transform to M space is added to C. Any point that requires substantial warping
is likely due to an incorrect registration, and similarly any points that require
a small amount of warping are likely correctly registered. Thus, the key is to
determine how to evaluate these warp functions for any registration algorithm
and to derive a method to efficiently locate points C that must be heavily warped.
We describe this in more detail in the following.

Fig. 3: Steps to compute the SIRGn quality metric are, in order: (a) Construct
a 3D model M and warp S using points gk ∈ G and all 3D scans vt ∈ V .
(b) Project expert-labeled landmarks gi ∈ G onto M . (c) Find heavily-warped
registered points ci ∈ C. (d) Label a mesh with vertices G showing registration
quality. The labels/coloring are a function of G, C and ε tolerance and can be
visualized, e.g., as done in figs. 5d to 5f.

The four major components to SIRGn are shown graphically in Fig. 3. Fig. 3a
computes a non-rigid warping function S that projects G from the video frames
V to the 3D model M . That is, the warp function S describes the relationship
between the landmarks G in the stereo video frames V and those same land-
marks on the 3D model M . One can view M as containing the average location
of all the landmarks within G over time. Fig. 3b computes a Delaunay trian-
gulation between each landmark gi on the 3D model M . Fig. 3c finds the most
heavily warped points for each surface triangle. Fig. 3d assigns a value to each
triangle computed from these sets to faces of a Delaunay triangulation to form
a “correlation mesh”. This is the output that indicates how well the worst case
points correlate with the landmarks. If there is high correlation, then the worst
case points correspond well to the assumed high quality landmarks, and thus are
more likely to indicate that the registration was accurate. This correlation mesh
is very useful for comparing the performance of different registrations with one
another since it highlights regions of relatively poor performance.

Once a candidate algorithm has been selected using the correlation mesh,
SIRGn can be re-run and set to report mean registration error of the G triangu-
lation for a candidate registration in another mesh. We set an acceptable error
threshold based on the registration accuracy desired. This is typically defined
by the needs of a clinical AR application, i.e., 5mm is typical abdominal surg-
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eries [24]. Unacceptable regions of the candidate registration are highlighted in
a second mesh. This work flow is demonstrated in Section 3.

2.1 SIRGn Registration Quality Measure

In order to use SIRGn, an evaluator must first run a global registration algo-
rithm, which we call ALG. ALG is chosen to be highly accurate, i.e., real time
constraints do not apply in order to maximize the registration quality. Because
AR registration is performed in R3, SIRGn should be run after a stereo recon-
struction algorithm on stereoscopic laparoscopes although it can be run directly
on 3D scopes. ALG returns a dense global registration model M by performing
a global registration optimization that minimizes the transform distance of the
set of G points for all 3D video frames vt ∈ V , such that

M = ALG(V,G) (1)

Global Warping Function: Once we have computed M , we obtain a dense
benchmark registration over M . To do this, we compute a function S mapping
from scans V to the space of M to allow every point in 3D depth scans vt ∈ V
to be mapped to the dense surface. We choose the method used by Global Non-
Rigid Alignment (GNRA) [25] using thin plate spline (TPS) interpolation that
is regularized to produce a smooth function.We prefer this method as a warp
baseline both for its stability and the guarantee that S is a smooth bijective
transform. The resulting S is the global warping function, such that S (p; t) =
p̄ ∈M for any point p in a 3D scan vt. S is therefore useful when building the
C set as detailed later.

Landmark distance vectors: SIRGn builds a set DG of landmark distance
vectors consisting of one vector `k for each expert landmark in the set of all
landmarks G. Note that landmark points gk in some 3D scan vt correspond to
each other throughout scans vt ∈ V , and to one ḡk in the space of the global
model M . We compute index t of these vectors `k as the distance between gk ∈ vt
and ḡk ∈M . That is,

`k[t] = ‖gk − ḡk‖2, s.t. gk ∈ vt (2)

for each global landmark ḡk ∈ M . Then DG = {`k : 1 ≤ k ≤ |G|} is the set of
landmark distance vectors.

Warping distance vectors: SIRGn computes a mesh of M via Delaunay
triangulation using G as mesh vertices. Then, for each triangular face ∆ck of
the mesh we define points ck,t in frames vt as the most heavily warped in ∆ck at
time t. Formally,

ck,t = argmaxp∈∆ck
S −1(p; t) (3)

Note that since S is bijective and everywhere differentiable, S −1 is well-defined
for each t, and Eqn. (3) can be solved using standard optimization techniques.
We choose these points ck,t because a point on the model surrounded by expert
landmarks on the surface of an organ that undergoes a different warp than these
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Fig. 4: (a) Indices i and j of the landmark distance vector `k corresponding to
ḡk are computed as the Euclidean (L2) distance from the corresponding points
gk ∈ vi and gk ∈ vj . (b) The most heavily warped point ck,t are computed for a
single time point t as the maximum warp S required to send the point p ∈ ∆ck

to the model M . (c) Warping distance vectors ωk are computed similarly to
landmark distance vectors, except ck,t is used instead.

landmarks is unlikely to track the tissue surface well. We form a set Ct of these
“worst points” ck,t, one for each triangle in the mesh, by projecting ck’s enclosing
triangle to form a planar region of interest (ROI) and then performing gradient
ascent on S −1 within these ROIs. Once Ct is determined, the set DCt

of warping
distances is computed identically to DG with ck,t and c̄k,t replacing gk and ḡk in
Eqn. (2).

Correlation mesh: In order to make our metric dense over the registration
surface, we define Delaunay mesh face-values as the linear correlation between
vectors ωk,t ∈ DCt

, and averages of those vectors corresponding to the vertices
of ∆ck from DG. That is,

SIRGn(∆ck) =
1

n

∑
t

corr(ωk,t, ˆ̀
k) (4)

where corr(u, v) is the linear correlation (normalized covariance) between vectors

u and v, and ˆ̀
k = (`a + `b + `c)/3 where `a, `b, `c ∈ DG are the three vectors

corresponding to those gk that are the vertices of ∆ck , and n is the number of
frames containing ck. Good registration in the local region ∆ck is indicated by
a large correlation between the vectors for that particular ∆ck . In this way we
obtain a quality score that is both dense, because the whole model surface is
covered, and granular, so that each region can be specifically highlighted for easy
localization of unacceptable registration errors.

Labeling: This correlation mesh can be transformed into a binary accept/reject
by taking a tolerance parameter ε to define what level of error is acceptable. We
can also display the linear correlation on the mesh faces directly via coloring for
final visualization. Labeling the Delaunay triangle set of G is the final step in
generating the SIRGn quality metric.
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3 Experiments and Results

We track respiration motion in a laparoscopic surgery scene accurately in order
to best place image guidance landmarks on a live patient. We use SIRGn and the
conventional metrics of RMSE and TRE to compare two 3D surface registration
algorithms on laparoscopic video from the Hamlyn data set [22]. Our goal is to
use each of the comparison metrics to understand which registration algorithm
was best suited to tracking the non-rigid respiration motion in the scene. Our
findings detailed in this section showed that SIRGn meshes offered a simple way
to compare registration in specific regions of interest in a case where traditional
metrics were more difficult to interpret.

We ran all metrics on two algorithms under test. The first, ”ICP (V )”, is
a non-rigid ICP variant based on Amberg’s work [26].The second, ”GEO(V )”,
uses Chen’s geodesic approach [27]. Geodesic registration is suited to non-rigid
problems but is typically computed offline due to its complexity. However, a real
time implementation was recently described, making it interesting to compare
with ICP [28].

SIRGn was run on the algorithms under test using the following steps. First
the ALG(V,G) inputs were generated from a laparoscopic video data base [22]
using a stereo reconstruction specialized to laparoscopic video (V ) [29] and a
robust global SIFT tracker (G). Although mixed manual methods for extracting
ground truth are more desirable, these must be applied during video acquisition
which was not possible in our case [30, 31]. Next, C and M were generated by
running ALG(V,G).

Correlation: We applied Eqn. 4 to the output from ICP (V ) and GEO(V )
to generate relative quality meshes as shown in Figs. 5b and 5c. Yellow is weak
correlation with the benchmark and deep blue is strong correlation with the
benchmark. The color map of the figures was normalized to the algorithms under
test for ease of visual comparison.

Labeling: After using SIRGn to compare ICP (V ) and GEO(V ) quality
meshes, we ran SIRGn with a labeling threshold ε. The ε was set to reject error
≥ 10,5 and 3mm as shown in figs. 5d and 5e and fig. 5f respectively. Mesh triangle
registration errors of ε and above were greyed out.

SIRGn runtime varied from 5 to 12 minutes depending on ALG(V,G) input
size. An example implementation is available under the BSD license at Omitted
for blind review. Figure 4 summarizes the results of all metrics where |G| = 1155
and |V | = 180 which were the largest input we used for 6 seconds of video.

Traditional Metrics: Traditional metrics were computed frame to frame
as they are not designed for global registration. Completely global RMSE and
TRE metrics (fig. 5i) cannot represent time and it was not possible to use them
in assessing how stable either ICP (V ) or GEO(V ) might have been. In addition
registration drift could not be accounted for which led to misleadingly low error
reports. Even when a time dimension is added to RMSE as in fig. 5g it was not
possible to isolate the respiratory ROI.

Although we could use our G and C points to define mean TRE per frame as
shown in fig. 5h, it was still not trivial to isolate the ROI. In contrast, the SIRGn
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(a) (a) Example 3d V
video frame with G points

(b) (b) Normalized ICP
registration error mesh

(c) (c) Normalized GEO
registration error mesh

(d) (d) 10mm Thresh-
old GEO registration er-
ror mesh

(e) (e) 5mm Threshold
GEO registration error
mesh

(f) (f) 3mm Threshold
GEO registration error
mesh

(g) (g) Per frame RMSE (h) (h) Per frame TRE

Algorithm RMSE TRE

GEO(V) 1.4mm 19.82mm
NRICP(V) 1.2mm 19.45mm

(i) (i) Conventional global
registration error

Fig. 4: Example use of SIRGn to compare two non-rigid 3D registration ap-
proaches( figs. 5a to 5c), alongside traditional error metrics ( figs. 5g to 5i). Fig-
ure 5a shows a priori known good points (G) rendered on one video frame
in green. Figure 5b and fig. 5c are the quality meshes for the ICP (V ) and
GEO(V ) video registrations respectively. According to SIRGn, ICP (V ) showed
a far greater variation than GEO(V ) from the baseline in the region of video
with most movement. Figure 5d, fig. 5e and fig. 5d show the results of SIRGn set
to color the GEO(V ) error mesh white. based on different triangle registration
error thresholds. Important parts of the scene can be inspected at the desired
threshold setting to see if registration is acceptable. Comparatively, traditional
metrics shown in fig. 5i, fig. 5g and fig. 5h do not show the variation of
registration performance with area which was less informative than SIRGn for
evaluating quality of registration around the region of interest in the video clip.
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overlays in figs. 5b and 5c clearly show regional variations of registration quality
between ICP (V ) and GEO(V ) on the respiratory region, which was colored
yellow for ICP (V ). SIRGn was most reflective of the more rigid registration
ICP (V ) implemented with respect to GEO(V ) of all the evaluated metrics. In
addition the ε threshold of SIRGn allowed us to see that the GEO algorithm
was likely unsuitable for an abdominal AR guidance application requiring sub
5mm accuracy. This is in contrast to our evaluations with traditional metrics of
RMSE and TRE where it is difficult to know if sub 5mm accuracy is possible in
regions of interest.

4 Conclusion

We describe SIRGn – a novel metric for evaluating the quality of nonrigid reg-
istration algorithms on surgical 3D video. SIRGn indicates the quality of the
registration for different parts of the 3D model by generating an overlay mesh
that highlights areas where the registration approach succeeds and fails. This can
serve as a way to evaluate different registration algorithms (both new and old)
in various surgical scenarios. The ultimate goal is to provide a metric by which
different registration algorithms crucial to enabling surgical augmented reality
can be compared and evaluated. Our experiments demonstrate how SIRGn can
be used to compare different registration methods. SIRGn evaluates a given reg-
istration algorithm by creating a mesh of registration quality over a 3D surgical
video sequence using known good landmarks and our novel warp variance in-
terpolation. We demonstrate how a SIRGn mesh can show relative registration
quality between algorithms under evaluation, and also how an error tolerance
can be specified when generating a registration quality mesh to highlight regions
of unacceptable registration accuracy for a given application.
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