
Property Specific Information Flow Analysis for Hardware
Security Verification

Wei Hu
Northwestern Polytechnical Univ.

Xi’an 710072, China
weihu@nwpu.edu.cn

Armaiti Ardeshiricham
University of California, San Diego

La Jolla, CA 92093, USA
aardeshi@eng.ucsd.edu

Mustafa S Gobulukoglu
University of California, San Diego

La Jolla, CA 92093, USA
mgobuluk@ucsd.edu

Xinmu Wang
Northwestern Polytechnical Univ.

Xi’an 710072, China
wangxinmu@nwpu.edu.cn

Ryan Kastner
University of California, San Diego

La Jolla, CA 92093, USA
kastner@ucsd.edu

ABSTRACT
Hardware information flow analysis detects security vulnerabili-
ties resulting from unintended design flaws, timing channels, and
hardware Trojans. These information flow models are typically
generated in a general way, which includes a significant amount of
redundancy that is irrelevant to the specified security properties. In
this work, we propose a property specific approach for information
flow security. We create information flow models tailored to the
properties to be verified by performing a property specific search
to identify security critical paths. This helps find suspicious signals
that require closer inspection and quickly eliminates portions of
the design that are free of security violations. Our property specific
trimming technique reduces the complexity of the security model;
this accelerates security verification and restricts potential secu-
rity violations to a smaller region which helps quickly pinpoint
hardware security vulnerabilities.

CCS CONCEPTS
• Security and privacy→Logic and verification; Information
flow control; Formal security models;

KEYWORDS
Hardware security, security verification, information flow analysis,
security property, design methodology

1 INTRODUCTION
Hardware security vulnerabilities stemming from performance de-
sign optimizations [12, 15], timing channels [1], and hardware
Trojans [22] create attractive new attack surfaces to hackers and
can render strong software security protection techniques useless.
There are a large number of mitigations for these vulnerabilities
including ARM TrustZone, Apple Secure Enclave, and Intel SGX.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICCAD ’18, November 5–8, 2018, San Diego, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5950-4/18/11. . . $15.00
https://doi.org/10.1145/3240765.3240839

However, the security of these techniques and their implementa-
tions are notoriously hard to verify. Even the smallest change or
incorrect implementation of the mitigation technique can lead to a
severe security flaws [17].

Hardware information flow tracking (IFT) [3, 4, 24, 27] provides
a general technique for secure hardware design and verification,
which can help identify and eliminate potential security vulnerabil-
ities related to timing channels [2], hardware Trojans [9, 11], and
access control [19]. However, most existing information flow analy-
sis methods tend to take a general approach where the information
flow models (referred to as IFT models for simplicity hereafter) are
created to track every flow through the hardware. This is powerful
as it allows us to prove any IFT-related security property using
this model. But we typically only look at a small number of flows
related to the properties that we aim to verify. We leverage this
idea and take the security properties into account when generating
customized IFT models – an approach that we call property specific
information flow analysis.

We take advantage of the fact that a specific security property
typically only needs to consider a small portion of the design. A
general IFT model good for verifying different properties contains
a significant amount of redundancy when considering a specific set
of properties. As an example, a common property aims to detect
if a cryptographic key leaks to an unintended location. As a first
pass, we could see if a smaller subset of the key bits leaks; this
would be done in a much faster way than checking if any of the
bits of the key leak information since the resulting IFT model will
be drastically simplified. We show that leveraging the security
properties improves verification performance.

In this work, we propose a property specific solution to infor-
mation flow security. We take into account the security properties
during IFTmodel generation and thus can create IFTmodels tailored
(and optimized) for different properties. Our method has benefits
in simplifying the IFT model, improving security verification per-
formance, and pinpointing security vulnerabilities. Specifically, we
make the following contributions.

• Proposing a property specific approach to enforcing infor-
mation flow security;

• Providing techniques for performing property specific IFT
model optimization;

• Presenting experimental results to demonstrate the verifica-
tion performance benefits of the proposed method.

https://doi.org/10.1145/3240765.3240839

The reminder of this paper is organized as follows. We briefly
review related work in Section 2 and provide our threat model in
Section 3. Section 4 covers information flow and precision tradeoff
security properties. In Section 5, we describe our property specific
information flow analysis method in detail. We present experimen-
tal results in Section 6 and conclude the paper in Section 7.

2 RELATEDWORK
We categorize the related work into hardware security vulnerability
detection, information flow analysis for secure hardware design,
and property driven security and safety verification.

We divide hardware security vulnerability detection methods
into three categories: functional verification, side channel analysis,
and security verification. Functional verification methods primarily
focus on activating paths of low controllability [21], detecting sus-
picious signals [26], or identifying (nearly) unused circuit [7, 28]
to uncover malicious functionality. Side channel analysis employs
statistical and information theoretical metrics to analyze side chan-
nel measurements such as path delay and power consumption to
extract fingerprints of hardware Trojans [18] or to quantify the
amount of leakage [16]. Security verification methods formally
prove adherence to security properties and indicate a security issue
when the property is violated [5, 9, 11].

Information flow analysis is a frequently used technique for
hardware security verification. Tiwari et al proposed the gate level
information flow tracking (GLIFT) technique to precisely measure
all logical information flows at the level of Boolean gates [24].
Successive research work has demonstrated the effectiveness of
GLIFT for crafting secure architectures [23], identifying timing
channels [19, 20] and detecting hardware Trojans [9]. To overcome
the high design overheads of the original GLIFT method, various
approaches have been proposed to enforce information flow se-
curity at higher levels of abstraction [3, 11]. Other researchers
incorporate type systems into hardware description languages for
verifying hardware security from the perspective of information
flow [4, 13, 14, 27]. However, these methods tend to create a unified
IFT model suitable for verifying multiple security properties, which
can incur significant irrelevant redundancy when only specific
properties are being verified.

There is a recent move towards property driven security verifica-
tion inspired by the success of assertion languages (e.g., Verilog SVA
and VHDL PSL) in functional verification. Hu et al proposed a simi-
lar property driven approach for verifying hardware security [8].
In addition to the traditional functional specification and synthesis
flow, security properties are specified, refined, and verified as the
design is translated to lower levels of abstraction. Urdahl et al [25]
proposed a top-down design methodology, where abstract proper-
ties are automatically generated from a system-level description
and later refined along with the design process for formal verifica-
tion of safety properties such as susceptibility of faults. Existing
work focuses on how to refine security and safety properties across
different levels of abstraction, while this paper investigates how to
create property specific IFT models in order to accelerate hardware
security verification.

3 THREAT MODEL
We target hardware security vulnerabilities that can be modeled
using information flow, e.g., leaking sensitive information (e.g., the
secret key), memory and resource isolation, cycle-based timing
channels, and hardware Trojans. We focus on logical and timing
information flows and do not consider flows of information flows
through power and electromagnetic side channels. We assume ac-
cess to the hardware design, e.g., register transfer or gate level
netlist, which is necessary to create an IFT model to perform secu-
rity verification.We consider the case when the security verification
is performed during the hardware design process and is aimed at
identifying and eliminating security vulnerabilities before the hard-
ware is fabricated.

4 SECURITY PROPERTIES
4.1 Information Flow Security Properties
Information flow security properties are derived from the notion
of non-interference [6], which states that high (e.g., confidential or
untrusted) information should never flow to a low (e.g., unclassi-
fied or trusted) security domain. Frequently used information flow
security properties include confidentiality, integrity, and isolation.

Confidentiality properties insure that sensitive (high) data
never flow to a (low) variable. As an example, the secret key should
not flow to the ciphertext ready signal otherwise there would be a
timing side channel which is stated as:

1: set key := high
2: assert ready == low

Integrity is the dual of confidentiality. Here, we mark untrusted
hardware resources with a high label and verify that they do not
affect critical memory locations (labeled as low). For example, the
program counter (pc) should not be overwritten by data from un-
protected network packet:

1: set ethernet_data := high
2: assert pc == low

Isolation can also be enforced as an information flow security
property. This states that there should never be information ex-
change between two hardware components of differing trust. For
example, trusted (low) IP cores sitting in the secure world should
be separated from those untrusted (high) in the insecure world in
SoC designs:

1: set crypto_core := high
2: assert lcd_ctrl == low

The above security properties are effective in preventing unin-
tended flows of information. However, in realistic systems, high
information may be allowed to flow to a low portion under certain
circumstances, e.g., during debug mode or when they have proper
security protection (perhaps using an encryption protocol). Figure 1
shows some examples of mode specific information flows.

2

KeyExpansion
Sh
ift
R
ow
s

M
ix
C
ol
m
ns

key

message
cipher

M
U
X
-2

Su
bB
yt
es

Sh
ift
R
ow
s

Su
bB
yt
es

CMP

M
U
X
-2

out

rk
rk

debug

ro
un
d_
re
s

Figure 1: Examples for flow mode security properties

In this AES implementation, the intermediate encryption results,
i.e., round_res, are allowed to flow to out when the core is work-
ing in debug mode, but this is prohibited under normal operation.
The when keyword provides a way to specific a conditional secu-
rity property that only allows information to flow under specific
working modes.

1: set round_res := high
2: assert out == low when !debug

Consider another scenario where the key is safe to flow to the
ciphertext (since this is mathematically known as a secure one-way
function) while it should not flow to another location. Since there
is always a flow from the key to the ciphertext in cryptographic
functions, we need a way for declassification (i.e., saying that flows
through the cipher are okay) The allow keyword provides a way
to manually declassify a signal and check if there is another flow.

1: set key := high
2: assert out == low allow cipher

The mode specific information flow security properties allow
some relaxation on safe information flows. Thewhen property seam-
lessly translates to the disable if statement of assertion languages.
The allow property can be mapped by declassifying the security
label of the specified path. In the AES example, we can declassify
the label of cipher assuming that it is properly protected by the
AES algorithm, which will expose the harmful flows of information
through the hardware Trojan.

4.2 Precision and Complexity Modeling
Tradeoffs

IFT models should never allow false negatives, which means that
they fail to identify a security property violation. On the other
hand, it is safe (though not ideal) to have false positives, which
indicates non-existent flows of information. Such false positives can
be employed to reduce the complexity of IFT models and accelerate
security verification.

Take the two-input AND gate (AND-2) as an example. We can
create various IFT models for AND-2 with different levels of preci-
sion by adding different amounts of false positives. Use A, B and O
to denote the inputs and output of AND-2; At , Bt and Ot are their
security labels respectively. Let the labels be logical 1 (or 0) when
the variables carry high (or low) information. Equation (1) gives
the precise IFT model for AND-2. It outputs logical 1 if and only if

high information flows to O .

Ot = ABt + BAt +AtBt (1)

Such precise IFT model accurately measures all actual flows of
information. However, sometimes it is desirable to relax the preci-
sion a bit by adding false positives (i.e., non-existent information
flows) to allow a quick profile of potential security flaws. Consider
a hardware Trojan that leaks secret information when activated.
Under a precise IFT model, a high information flow can be captured
only when the Trojan is triggered. By comparison, an imprecise
IFT model can bypass the trigger condition and always allow high
information to flow, enabling faster detection of the harmful flow.

Introducing false positives to the precise IFT model is equivalent
to adding minterms to the Boolean function of the IFT model. If
done in an intelligent manner, this can make the model less complex
and accelerate security verification. Don’t care based optimization
achieves both goals. When setting A and B to don’t care, the re-
sulting simplified IFT model is shown in Equation (2). This is the
most conservative yet reasonable IFT model for AND-2. It states
that when either of the inputs contains high information, the out-
put will be high. A conservative IFT model does not consider the
effect of input values on label propagation and always allows high
information to propagate.

Ot = At + Bt (2)

Similarly, we can use this method to construct IFT models of
different precision and complexity for other standard cells. In this
way, we can create an IFT library with primitive IFT models for
precision and complexity tradeoffs. Based upon such an IFT library,
we define theuse keyword to specify precise or imprecise IFTmodel
will be instantiated. Figure 2 illustrates the idea of instantiating IFT
models of different precision for security verification.

A
B
CIn

pu
ts

Precise IFT model

(A)
C

Conservative IFT model

(B)

A
B

In
pu

ts

Figure 2: Instantiating IFT models of different precision for
security verification. The precise IFT model exactly models
the flows (no false positives or false negatives). A conserva-
tive model would state that there are additional flows (false
positives and still no false negatives).

Here, both the precise and conservative IFT models detect a flow
from the high inputs (in red) to output A while no high informa-
tion flow to B. These two security properties are easy to verify.
The subtler case is when the precise IFT model indicates no high
information flow to C under affordable verification cost but the
conservative IFT model quickly captures one. This can be either
a false positive, e.g., a disabled debug port that had access to the
secret key or a security vulnerability that only occurs under a rare
condition, e.g., a hardware Trojan triggered under a rare event to
leak information. However, there is no easy solution to distinguish
a false positive from a security violation if the property cannot
be verified at acceptable verification cost. We will provide some

3

methods for eliminating false positives and pinpointing security
vulnerabilities in Section 5.3.

We can strike a balance between precision and complexity by
instantiating conservative but simpler IFT models during the ini-
tial verification stages to allow fast detection of potential security
violations. This will also help exclude design portions free of se-
curity violations and restrict our analysis to design regions that
may contain a security flaw. Afterwards, we can instantiate more
precise but more complex IFT models for that region to check if the
detected security violations were false positives or actual security
property violations.

5 PROPERTY SPECIFIC INFORMATION FLOW
ANALYSIS

5.1 Design Methodology
Figure 3 shows the design flow for property specific information
flow analysis. Our method creates IFT models tailored and opti-
mized towards the given properties. The security properties are
compiled to security constraints and assertions. These are com-
bined with the trimmed IFT model to run security analysis using
formal verification, simulation, and/or emulation.

Hardware
design

Security
properties

Trimmed
design

IFT
model

IFT
library

Design
trimming

IFT model
instantiation

Software
simulation

Hardware
emulation

Formal
verificationSecurity constraints and assertions

Property
compilation

Figure 3: Design flow of property specific information flow
analysis.

It is important to understand the difference between existing
information flow analysis methods and the proposed approach.
Existing methods first create an IFT model with 2n inputs (i.e., n
original inputs and their security labels) [3, 24]. It then reduces the
IFT model under a given property for security verification. Such
a reduction problem has O(22n) complexity. The property specific
approach first solves an O(2n) reduction problem on the original
design and then creates an IFT model tailored for the given security
property through linear time IFT library mapping.

5.2 Property Specific IFT Model Optimization
We create IFT models tailored to given security properties through
fanout and fanin trimmings as shown in Fig. 4.

We start with fanout trimming. In this step, we perform a graph
search from the source of high information until reaching the
primary outputs. All of the nodes (logic primitives and signals)
visited in the forward search are added to the fanout set (between
the blue dashed lines) of the high input. The nodes that are never
visited during fanout analysis will be labeled as low since they
will never be influenced by the high input. We use a depth first
search strategy in fanout search and terminate when we reach the
checkpoint so that only a minimum number of property specific
paths will be added to the resulting IFT model.

source

checkpoint

Fanout trimming Fanin trimming

Figure 4: Property specific trimmings for simplifying the
IFT model.

The fanin trimming stage performs a backward graph search
from the security checkpoint specified in the security property until
it reaches the primary inputs. All the nodes visited in backward
search are added to the fanin set (between the green dashed lines)
of the checkpoint. The nodes that are never reached can be trimmed
away for the given property. When a suspicious signal identified
during fanout trimming is trimmed away in fanin search, we can
specify a new property for that signal and re-run both trimmings
in case we need to keep the suspicious signal for further security
verification.

After performing both trimmings, we can partition the circuit
nodes for IFT model generation. Nodes out of the fanin set will be
removed directly. If a node is in the fanin set but outside the fanout
set, only the original design functionality needs to be imported. If
a node is in the intersection of the fanin and fanout sets, both the
original functionality and additional IFT model for label propaga-
tion are necessary. The property specific trimming steps eliminates
nodes irrelevant to the given property from the IFT model.

Intuitively, the fanout trimming allows a quick and safe profiling
of where high information can possibly flow. It helps identify suspi-
cious signals for further analysis, e.g., using these signals to specify
more pertinent security properties and also exclude design portions
where high information never propagates, which restricts our anal-
ysis to a smaller region of the design. If the security checkpoint is
out of the fanout set, the security property automatically holds (as
no flow is possible). The fanin trimming enables an understanding
of which source nodes can affect the security checkpoint. The nodes
out of the fanin set are trimmed to simplify the IFT model.

5.3 Property Specific Precision and Complexity
Tradeoffs

A first way to tradeoff between precision and complexity is at the
level of logic primitives (i.e., Boolean gates). As shown in Section 4.2,
we can create multiple IFT models of different precision and com-
plexity for each logic primitive and then use our precision security
property to specify which IFT model will be instantiated for a given
logic primitive.

Additionally, we can perform precision and complexity tradeoffs
at a coarser granularity of modules. The precision security property
can globally specify the precision level of IFTmodels for all the logic
primitives within a module while allowing different precision levels
across different modules. Such tradeoff is desirable for functions
with good amount of diffusion such as cryptographic cores where
each high input essentially flows to all outputs. Instantiating a

4

less precise IFT model for the function will significantly reduce its
security verification complexity.

With various precision and complexity tradeoff methods, a bi-
nary search strategy can be adopted for pinpointing security vulner-
abilities. Consider a hardware design with a Trojan that is triggered
under a rare condition to leak information. There will be no high
information flow until the Trojan is activated under the precise IFT
model. By comparison, the leakage can be captured in no time when
the imprecise IFT model is instantiated. The binary search method
creates two IFT models for the design with 50% (of modules or logic
primitives) instantiating the precise model and 50% the imprecise.
One will indicate flows of high information while the other will
not. This restricts the security vulnerability (i.e., the Trojan) to
the 50% portion of the design, which when made imprecise will
indicate a security violation. We then continue our search from that
portion by further dividing it to halves. This progressively restricts
the security vulnerability to smaller regions of the design.

6 EXPERIMENTAL RESULTS
In this section, we present experimental results. We first show
how our property specific information flow analysis method can
improve security verification performance through formal proof,
simulation, and emulation. We then demonstrate how precision
tradeoff properties can accelerate security verification and help
pinpoint security vulnerabilities.

6.1 Formal Verification Analysis
We use several benchmarks from Trust-HUB.org and prove differ-
ent security properties using Mentor Graphics Questa Formal for
formal verification analysis. We generate IFT models trimmed for
specific properties for formal proof and also create the (untrimmed)
original IFT model for comparison. The original IFT model will
import the constraints derived from the same properties for sim-
plification. Table 1 shows the benchmarks, security properties and
proof results. Here, the run-time results include the time for formal
model compilation and proof; IFT model trimming adds negligible
performance overheads over the original IFT model generation. In
our proof, we use four cores to run verification in parallel and set
the timeout limit to 10 minutes.

For the AES-T100 benchmark, we verify the security property
that the lowest key bit (i.e., key[0]) should flow to the ciphertext
when an encryption is completed. We mark key[0] as high and
assert the lowest ciphertext bit (i.e., cipher[0]) should be high after
22 clock cycles, which is the time needed to encrypt a message. The
property is proven to hold under both the original and trimmed IFT
models with proof times of 461 and 341 seconds respectively.

The AES-T400 benchmark contains a hardware Trojan triggered
when the 128 plaintext bits are all logical 1. When activated, the
Trojan leaks the key bits to an unused pin named Antena (sic). We
label the lowest key bit (i.e., key[0]) as high and use our fanout
trimming technique to profile where this key bit could possibly
flow. Trimming analysis shows that key[0] could flow to both the
ciphertext and Antena outputs. Then, we focus the verification pro-
cess on Antena. We assert Antena as always low and attempt to
formally prove this property using precise IFTmodels. The property
could not be verified using either the original or trimmed IFT model

within the proof time limit (set at 10 min). We then replace the pre-
cise IFT models with conservative ones as discussed in Section 4.2
and re-run the proof. The property fails to hold after 208 and 5 sec
respectively for the original and trimmed IFT models, indicating
that key[0] could flow to Antena. We also take an internal signal,
namely TSC_SHIFTReg[0] identified in fanout trimming and check
if key[0] could flow there under precise IFT models. Proof results
show that the property is violated after 278 and 5 sec respectively
for the original and trimmed IFT models. The formal tool also re-
turned a counter example showing that when all the plaintext bits
are logical 1, key[0] will flow to the TSC_SHIFTReg[0] register. We
can use TSC_SHIFTReg[0], which is much closer to Antena, instead
of key[0] as a starting point to check if the security violation under
the conservative IFT model is a false positive.

The AES-T1100 benchmark contains a Trojan that XOR mod-
ulates the secret key using a random sequence. The modulated
sequence is then leaked through the signal Capacitance. We first
label the lowest key bit (i.e., key[0]) as high and use our fanout
trimming technique to profile the fanout region of key[0]. Analysis
results show that it flows to Capacitance[7:0]. We assert Capaci-
tance[0] is low under both the original and trimmed precise IFT
models. The proof fails after 273 and 4 sec respectively. It is very
likely that key[0] will leak to Capacitance[0] since we instantiated
precise IFT models in the proof. We further mark key[1] as high
and assert Capacitance[0] is low using precise IFT models. The prop-
erty is proven after 282 and 0 sec for the original and trimmed IFT
models respectively. The trimmed IFT model has a zero proof time
because Capacitance[0] is reduced during fanout trimming. From
the AES-T1100 example, our method will automatically exclude the
safe design regions under given properties so that we can focus on
the remaining portions that need further security analysis.

For RSA-T100, we first mark the lowest key bit inExp[0] as high
and check if the ciphertext ready (i.e., ready) signal is always low
under a conservative IFT model. The property is proven within 162
and 0 sec for the original and trimmed IFT models respectively. The
trimmed IFT model has a proof time of zero since the ready signal
is eliminated by our trimming technique and thus no proof needs
to be run (i.e., there is no connection between inExp[0] and ready).
This well agrees with the RSA implementation in that the lowest
key bit assumed to constant 1 (the RSA cipher requires the key to
be an odd number) in the design and thus never has an influence
on the encryption time. We then label the second bit of the key
(inExp[1]) as high and check a similar security property using a
precise IFT model. The security property fails after 68 and 41 sec for
the original and trimmed IFT models respectively. The verification
results show that inExp[1] can affect the encryption time and reveal
a timing channel in the RSA implementation.

RSA-T200 has a hardware Trojan that overwrites the key register
with plaintext after a certain number of encyptions. We mark the
second bit of the plaintext (i.e., indata[1]) as high and perform
fanout trimming. Results show that this plaintext bit could flow
to both the ciphertext and second bit of the key register, namely
count[1]. While a flow from the plaintext to the ciphertext is desir-
able for RSA, a flow from the plaintext to the key register when a
separate key input port is present can be suspicious. Thus, we spec-
ify a property to assert if the flow to the key register could actually
happen using a precise IFT model. Formal proof results reinforced

5

Table 1: Formal proof results for the original and trimmed IFT models.

Benchmarks Security Properties Proof status Proof time
Original Trimmed

AES-T100 set key[0] := high; use IFT_model := precise; assert ##22 cipher[0] == high Proven 461 341
AES-T400 set key[0] := high; use IFT_model := precise; assert Antena == low Incomplete timeout timeout
AES-T400 set key[0] := high; use IFT_model := conservative; assert Antena == low Failed 208 5
AES-T400 set key[0] := high; use IFT_model := precise; assert TSC_SHIFTReg[0] == low Failed 278 5
AES-T1100 set key[0] := high; use IFT_model := precise; assert Capacitance[0] == low Failed 273 4
AES-T1100 set key[1] := high; use IFT_model := precise; assert Capacitance[1] == low Proven 282 0
RSA-T100 set inExp[0] := high; use IFT_model := conservative; assert ready == low Proven 162 0
RSA-T100 set inExp[1] := high; use IFT_model := precise; assert ready == low Failed 68 41
RSA-T200 set indata[1] := high; use IFT_model := precise; assert count[1] == low Failed 23 21
RSA-T400 set inExp[1] := high; use IFT_model := precise; assert cipher[1] == high when ready == 1 Failed 825 194

that the key register bit can be overwritten by the corresponding
plaintext bit.

RSA-T400 contains a hardware Trojan that replaces the key with
a constant value to cause deny of service. We set the second key
bit (i.e., inExp[1]) to high and assert that cypher[1] should be high
when the ciphertext is ready. The security property fails after 825
and 194 sec for the original and trimmed precise IFT models respec-
tively. This is because the only high information source is replaced
by the Trojan with a low constant value.

The results show that property specific IFT analysis can have
significant benefits in proof performance. This is because the IFT
model is trimmed for the property to be verified and new security
property is incorporated for IFT model precision and complexity
tradeoff. However, formal verification can be expensive when a se-
curity flaw hides behind a hard-to-cover corner case. Some security
properties cannot be proved within an acceptable amount of time
and memory resource. Take AES-T400 for example, proving that
the lowest key bit flows to the Antena pin cannot be completed with
10 min. Figure 5 shows the memory consumption vs. proof radius
for both the original and trimmed IFT models. From the results,
formal verification can consume a huge amount of memory when
the property is hard to prove, e.g., about 50 GB as the proof radius
increases to 1, 000, 000 for both models.

500 1000 5000 10000 50000 100000 500000 1000000
Original 3 3 3 3 6 8 27 50
Trimmed 1 1 1 1 3 6 24 48

0
10
20
30
40
50
60

500 1000 5000 10000 50000 100000 500000 1000000

Original

Trimmed

Proof radius (clock cycles)

M
em

or
y

(G
B

)

Figure 5:Memory consumption vs. proof radius for different
IFT models.

In the following, we show how our property specific approach
can significantly accelerate software and hardware emulation.

6.2 Simulation Analysis
We use Mentor Graphics QuestaSim to simulate the original and
trimmed IFT models for several Trust-HUB benchmarks. Similarly,
the trimmed IFT models are tailored for specific properties; the
original IFT model are simplified using the constraints derived
from the same properties. We use linear feedback shift registers
(LFSRs) to generate random test vectors. Simulation terminates
either when the security property is violated or after 216 random
tests. Table 2 shows the simulation times in seconds.

For theAES-T100 benchmark, the simulation times for the trimmed
IFT models vary with the number of ciphertext bits analyzed while
the simulation times for the original IFT model do not see large
variations. When asserting the existence of flow from key[0] to
Antena, the AES-T400 benchmark has simulation times of 1776 and
34 sec for the original and trimmed IFT models respectively. We
then check if key[0] always flows to cipher[0] in AES-T400, the
simulation times are 1796 and 1319 sec for the original and trimmed
IFT models. Our trimming method also see significant simulation
performance improvements in the AES-T1100 benchmark.

When the RSA-T100 benchmark is trimmed to understand the
flow of key[0] to cipher[0], the simulations indicate a security prop-
erty violation after 6 and 5 sec, respectively. The violation is caused
by the hardware Trojan in the benchmark since key[0] should not
have an influence on cipher[0]. This is because the lowest key bit
is assumed to be always logical 1 and hard-coded in these RSA
implementations. Thus, key[0] does not have any effect on ready
either in the second property. Specifically, ready is out of the fanout
set of the key[0] for our trimming method, resulting a proof time of
zero for the trimmed IFT model while the original IFT model has a
simulation time of 2936 sec without a security property violation
after 216 encryptions. We then check a third security property for
RSA-T100, requiring that key[1] should not flow to ready; the prop-
erty is violated only after 7 sec under both IFT models, indicating
a timing channel in the benchmark. For RSA-T200, the property
asserting that indata[1] should not flow to count[1] has simulation
times of 7 and 6 sec for the original and trimmed IFT models respec-
tively. When checking if key[1] flows to cipher[1] in the RSA-T400
benchmark, the original and trimmed IFT models have identical
simulation times. This is because these two IFT models have very
close optimization results when compiled by QuestaSim.

Table 2 indicates that the trimmed IFT models significantly im-
prove simulation performance especially for the relatively larger

6

Table 2: Simulation times for the original and trimmed IFT models (sec).

Benchmarks Security Properties Original Trimmed
AES-T100 set key[0] := high; use IFT_model := precise; assert ##22 cipher[0] == high 1830 1238
AES-T100 set key[1] := high; use IFT_model := precise; assert ##22 cipher[7:0] == high 1776 1310
AES-T100 set key[1] := high; use IFT_model := precise; assert ##22 cipher[31:0] == high 1775 1426
AES-T100 set key[1] := high; use IFT_model := precise; assert ##22 cipher[63:0] == high 1860 1501
AES-T400 set key[0] := high; use IFT_model := precise; assert Antena == low 1776 34
AES-T400 set key[0] := high; use IFT_model := precise; assert ##22 cipher[0] == high 1796 1319
AES-T1100 set key[1] := high; use IFT_model := precise; assert Capacitance[0] == high 1417 1
RSA-T100 set inExp[0] := high; use IFT_model := precise; assert cipher[0] == low 6 5
RSA-T100 set inExp[0] := high; use IFT_model := precise; assert ready == low 2963 0
RSA-T100 set inExp[1] := high; use IFT_model := precise; assert ready == low 7 7
RSA-T200 set inExp[1] := high; use IFT_model := precise; assert count[1] == low 7 6
RSA-T400 set inExp[1] := high; use IFT_model := precise; assert cipher[1] == high when ready == 1 2440 2437

AES benchmarks. This is due to the positive correlation between
the complexity of the IFT model and simulation time.

6.3 Hardware Emulation Analysis
While simulation consumes significantly less memory and time
than a formal analysis, it cannot achieve a high coverage during
a reasonable amount of time on large designs. As an alternative
approach, we can use emulation platforms (e.g., large FPGAs) to
evaluate the IFT models under realistic inputs.

The original IFT model is typically ∼3X of the hardware design
under test in terms of area overhead [10]. It is usually infeasible to
implement the entire original IFT model for hardware emulation
even for a moderate design. For example, the original IFT model for
the AES-T400 benchmark cannot fit even on the largest Virtex-7
FPGA (resource utilization not reported due to synthesis failure).
Instead, we generated a trimmed IFT model for this benchmark
under the security property asserting that the key[0] should not
flow to Antena. For comparison, we apply the constraints derived
from the security property to reduce the original model. Specifically,
we set some security labels as constants (based upon the specified
property) and allow the synthesis tools to optimize the model. Ta-
ble 3 shows the implementation results of both the reduced original
and trimmed IFT models synthesized by Xilinx ISE to target the
XC7VX485T FPFA.

Table 3: Implementation results of both the reduced original
and trimmed IFT models for the AES-T400 benchmarks on
the XC7VX485T FPGA. The synthesis time is in hh:mm:ss.

Parameters (Reduced) Original Trimmed
Slice registers 415 415
Slice LUTs 338 346

Slices 484 507
LUT-FF pairs 573 587
Synthesis time 02:23:47 00:02:41

From Table 3, the reduced original and trimmed IFT models have
close implementation results under the same security property.
However, it takes only two minutes for the trimmed IFT model

to synthesize and implement while it requires over two hours to
reduce the original, which reinforces our analysis in Section 5.1.

6.4 Property Specific Design Tradeoff Analysis
We also use the AES-T400 benchmark for property specific precision
and complexity tradeoff analysis. The synthesized design netlist
consists of 345 modules. Our goal is to use precision related security
properties to accelerate the security verification process and help
pinpoint the hardware Trojan.

Our method allows both module and logic primitive level preci-
sion and complexity tradeoffs. We focus on the module level and
use security properties to globally specify the type of IFT models
(i.e., precise or imprecise models as described in Section 4.2) to be
instantiated for all logic primitives within a module while allowing
precision variations across different modules. Table 4 shows the
results. Similarly, we set the timeout limit to 10 minutes.

Table 4: Verification times for property specific precision
and complexity tradeoff analysis (sec).

Proof group 1 Proof group 2 Proof group 3
Setup 1-345 None 1-174 175-345 1-88 89-345
Time timeout 211 timeout 246 timeout 259

Proof group 4 Proof group 5 Proof group 6
Setup 1-45 46-345 1-24 25-345 1-13 14-345
Time timeout 269 timeout 274 timeout 275

Proof group 7 Proof group 8 Proof group 9
Setup 1-8 9-345 1-5 6-345 1-4 5-345
Time timeout 280 timeout 280 timeout 281

Proof group 10 Proof group 11 Proof group 12
Setup 1-3 4-345 1-2 3-345 1 2-345
Time timeout 297 timeout 297 timeout 302

For a better understanding, each proof group in Table 4 contains
two different proof setups. The numbers in the proof setups indicate
the number of modules that instantiate precise IFT models. As an
example, proof setup 1-174 means that the first 174 modules use
precise IFT models while the remaining ones imprecise.

Consider proof group 1, in the 1-345 proof setup, all of the 345
modules use precise IFT models while none in the other proof setup.

7

When all the modules use precise IFT models, the proof cannot be
completed within the timeout limit. When all modules use impre-
cise IFT models, the proof indicated a security property violation
after 165 sec. This is significant speedup in formal verification per-
formance. However, such violation can also be resulted from the
false positives introduced by the imprecise IFT models.

To check if the security violation is a false positive, we set about
half (e.g., 1 to 174) of the modules to use precise IFT models while
the other half imprecise in the second proof group. The 1-174 proof
setup also times out; the 175-345 proof setup can be completed in 246
sec. By gradually reducing the number of module that instantiate
imprecise IFT models, we can restrict the potential false positive
to a smaller portion of the design. If the security violation still
exists even when only a few modules use imprecise IFT models,
we have higher confidence that the violation is more likely a real
security issue. After further analysis, we restricted the potential
false positive to the first module, which is exactly where the Trojan
design resides.

When we restrict the potential security vulnerability to a mini-
mum number of modules, we can perform similar property specific
tradeoffs at the level of logic primitives, allowing us to pinpoint the
security vulnerability to a small number of gates.

7 CONCLUSION
We propose a property specific information flow analysis approach
for hardware security verification. We identify several important
information flow security properties and introduce new properties
for IFT model precision and complexity tradeoffs. We take the secu-
rity properties into account in order to create IFT models tailored
for given properties. By performing property specific IFT model
optimization and quality tradeoffs, our method provides significant
verification performance benefits and can help quickly pinpoint
security vulnerabilities.

ACKNOWLEDGMENTS
This work was supported in part by the Fundamental Research
Funds for the Central Universities under grant 3102017OQD094,
the NSF under grant 1718586 and the Semiconductor Research
Corporation (SRC).

REFERENCES
[1] Alexandres Andreou, Andrey Bogdanov, and Elmar Tischhauser. 2017. Cache

timing attacks on recentmicroarchitectures. In 2017 IEEE International Symposium
on Hardware Oriented Security and Trust. 155–155. https://doi.org/10.1109/HST.
2017.7951819

[2] Armaiti Ardeshiricham, Wei Hu, and Ryan Kastner. 2017. Clepsydra: Modeling
timing flows in hardware designs. In International Conference on Computer-Aided
Design. 147–154. https://doi.org/10.1109/ICCAD.2017.8203772

[3] Armaiti Ardeshiricham,Wei Hu, JoshuaMarxen, and Ryan Kastner. 2017. Register
transfer level information flow tracking for provably secure hardware design.
In Design, Automation & Test in Europe Conference & Exhibition. 1695–1700.
https://doi.org/10.23919/DATE.2017.7927266

[4] Shuwen Deng, Doğuhan Gümüşoğlu,Wenjie Xiong, Y. Serhan Gener, Onur Demir,
and Jakub Szefer. 2017. SecChisel: Language and Tool for Practical and Scalable
Security Verification of Security-Aware Hardware Architectures. Cryptology
ePrint Archive, Report 2017/193. (2017).

[5] Nicole Fern, Ismail San, and Kwang Ting Tim Cheng. 2017. Detecting hardware
Trojans in unspecified functionality through solving satisfiability problems. In
Asia and South Pacific Design Automation Conference. 598–504.

[6] Joseph A. Goguen and Jose Meseguer. 1982. Security Policies and Security Models.
In IEEE Symposium on Security & Privacy. 11–20.

[7] Matthew Hicks, Murph Finnicum, Samuel T. King, Milo M. K. Martin, and
Jonathan M. Smith. 2010. Overcoming an Untrusted Computing Base: Detecting
and Removing Malicious Hardware Automatically. In IEEE Symposium on Security
and Privacy. 159–172. https://doi.org/10.1109/SP.2010.18

[8] Wei Hu, Alric Althoff, Armaiti Ardeshiricham, and Ryan Kastner. 2016. To-
wards Property Driven Hardware Security. In 17th International Workshop on
Microprocessor and SOC Test and Verification (MTV). 51–56.

[9] Wei Hu, Baolei Mao, Jason Oberg, and Ryan Kastner. 2016. Detecting Hardware
Trojans with Gate-Level Information-Flow Tracking. Computer 49, 8 (Aug 2016),
44–52. https://doi.org/10.1109/MC.2016.225

[10] Wei Hu, Jason Oberg, Dejun Mu, and Ryan Kastner. 2012. Simultaneous infor-
mation flow security and circuit redundancy in Boolean gates. In International
Conference on Computer-Aided Design. 585–590.

[11] Yier Jin and Yiorgos Makris. 2012. Proof carrying-based information flow track-
ing for data secrecy protection and hardware trust. In the 30th IEEE VLSI Test
Symposium (VTS). 252–257. https://doi.org/10.1109/VTS.2012.6231062

[12] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
2018. Spectre Attacks: Exploiting Speculative Execution. ArXiv e-prints (Jan.
2018). arXiv:1801.01203

[13] Xun Li, Vineeth Kashyap, Jason K. Oberg, Mohit Tiwari, Vasanth Ram Rajarathi-
nam, Ryan Kastner, Timothy Sherwood, Ben Hardekopf, and Frederic T. Chong.
2014. Sapper: A Language for Hardware-level Security Policy Enforcement. In
Architectural Support for Programming Languages and Operating Systems. 97–112.

[14] Xun Li, Mohit Tiwari, Jason K. Oberg, Vineeth Kashyap, Frederic T. Chong,
Timothy Sherwood, and Ben Hardekopf. 2011. Caisson:a hardware description
language for secure information flow. In Acm Sigplan Conference on Programming
Language Design & Implementation. 109–120.

[15] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
2018. Meltdown. ArXiv e-prints (Jan. 2018). arXiv:1801.01207

[16] Baolei Mao, Wei Hu, Alric Althoff, Janarbek Matai, Jason Oberg, Dejun Mu, Tim-
othy Sherwood, and Ryan Kastner. 2015. Quantifying Timing-Based Information
Flow in Cryptographic Hardware. In International Conference on Computer Aided
Design. 552–559. https://doi.org/10.1109/ICCAD.2015.7372618

[17] Bits, Please. 2016. Extracting Qualcomm’s KeyMaster Keys - Breaking An-
droid Full Disk Encryption. In http://bits-please.blogspot.com/2016/06/extracting-
qualcomms-keymaster-keys.html.

[18] Seetharam Narasimhan, Dongdong Du, Rajat Subhra Chakraborty, Somnath Paul,
Francis G. Wolff, Christos A. Papachristou, Kaushik Roy, and Swarup Bhunia.
2013. Hardware Trojan Detection by Multiple-Parameter Side-Channel Analysis.
IEEE Transactions on Computers 62, 11 (Nov 2013), 2183–2195. https://doi.org/10.
1109/TC.2012.200

[19] Jason Oberg, Wei Hu, Ali Irturk, Mohit Tiwari, Timothy Sherwood, and Ryan
Kastner. 2011. Information flow isolation in I2C and USB. In Proceedings of the
48th Design Automation Conference. ACM, 254–259.

[20] Jason Oberg, Sarah Meiklejohn, Timothy Sherwood, and Ryan Kastner. 2014.
Leveraging gate-level properties to identify hardware timing channels. IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst. 33, 9 (2014), 1288–1301.

[21] Hassan Salmani, Mohammad Tehranipoor, and Jim Plusquellic. 2012. A Novel
Technique for Improving Hardware Trojan Detection and Reducing Trojan Acti-
vation Time. IEEE Transactions on Very Large Scale Integration Systems 20, 1 (Jan
2012), 112–125. https://doi.org/10.1109/TVLSI.2010.2093547

[22] Sergei Skorobogatov and ChristopherWoods. 2012. Breakthrough Silicon Scanning
Discovers Backdoor in Military Chip. Springer-Heidelberg, 23–40.

[23] Mohit Tiwari, Jason K Oberg, Xun Li, Jonathan Valamehr, Timothy Levin, Ben
Hardekopf, Ryan Kastner, Frederic T Chong, and Timothy Sherwood. 2011. Craft-
ing a usable microkernel, processor, and I/O system with strict and provable
information flow security. In International Symposium on Computer Architecture
(ISCA). 189–199. https://doi.org/10.1145/2000064.2000087

[24] Mohit Tiwari, Hassan M.G. Wassel, Bita Mazloom, Shashidhar Mysore, Frederic T.
Chong, and Timothy Sherwood. 2009. Complete Information Flow Tracking from
the Gates Up. In the 14th International Conference on Architectural Support for
Programming Languages and Operating Systems. 109–120.

[25] Joakim Urdahl, Shrinidhi Udupi, Tobias Ludwig, Dominik Stoffel, and Wolfgang
Kunz. 2016. Properties First? A New Design Methodology for Hardware, and Its
Perspectives in Safety Analysis. In the 35th International Conference on Computer-
Aided Design. Article 84, 8 pages. https://doi.org/10.1145/2966986.2980086

[26] Adam Waksman, Matthew Suozzo, and Simha Sethumadhavan. 2013. FANCI:
Identification of Stealthy Malicious Logic Using Boolean Functional Analysis. In
Conference on Computer; Communications Security. 697–708.

[27] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. 2015. A
Hardware Design Language for Timing-Sensitive Information-Flow Security. In
International Conference on Architectural Support for Programming Languages and
Operating Systems. 503–516. https://doi.org/10.1145/2694344.2694372

[28] Jie Zhang, Feng Yuan, Lingxiao Wei, Zelong Sun, and Qiang Xu. 2015. VeriTrust:
Verification for Hardware Trust. IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst. 34, 7 (July 2015), 1148–1161. https://doi.org/10.1109/TCAD.2015.2422836

8

https://doi.org/10.1109/HST.2017.7951819
https://doi.org/10.1109/HST.2017.7951819
https://doi.org/10.1109/ICCAD.2017.8203772
https://doi.org/10.23919/DATE.2017.7927266
https://doi.org/10.1109/SP.2010.18
https://doi.org/10.1109/MC.2016.225
https://doi.org/10.1109/VTS.2012.6231062
http://arxiv.org/abs/1801.01203
http://arxiv.org/abs/1801.01207
https://doi.org/10.1109/ICCAD.2015.7372618
https://doi.org/10.1109/TC.2012.200
https://doi.org/10.1109/TC.2012.200
https://doi.org/10.1109/TVLSI.2010.2093547
https://doi.org/10.1145/2000064.2000087
https://doi.org/10.1145/2966986.2980086
https://doi.org/10.1145/2694344.2694372
https://doi.org/10.1109/TCAD.2015.2422836

