
UNIVERSITY OF CALIFORNIA SAN DIEGO

Automatic Optimization of System Design for 3D Mapping of Archaeological Sites

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Computer Science

by

Quentin K. Gautier

Committee in charge:

Professor Ryan Kastner, Chair
Professor Manmohan Chandraker
Professor Kamalika Chaudhuri
Professor Truong Nguyen
Professor Laurel Riek

2019

Copyright

Quentin K. Gautier, 2019

All rights reserved.

The Dissertation of Quentin K. Gautier is approved and is acceptable in quality

and form for publication on microfilm and electronically:

Chair

University of California San Diego

2019

iii

DEDICATION

This work is dedicated to my parents who have always pushed me on a path to education, and
supported me during my Ph.D. despite being so far from home.

To all of my family and my friends.

iv

EPIGRAPH

When you have eliminated the impossible, whatever remains,
however improbable, must be the truth.

Sir Arthur Conan Doyle

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xiv

Acknowledgements . xv

Vita . xvii

Abstract of the Dissertation . xviii

Introduction . 1

Chapter 1 Low-Cost 3D Scanning Systems for Cultural Heritage Documentation 6
1.1 Introduction . 6
1.2 Background . 8

1.2.1 LiDAR . 8
1.2.2 Photogrammetry . 9
1.2.3 Simultaneous Localization And Mapping . 9

1.3 Methodology Overview . 11
1.3.1 Data Collection Sites . 11

1.4 Data Acquisition . 12
1.4.1 Hardware Setup . 12
1.4.2 Software Setup . 14
1.4.3 Acquisition Methodology . 15

1.5 Data Processing . 16
1.5.1 Measuring point cloud difference . 17

1.6 Results . 19
1.6.1 Arroyo Tapiado Mud Caves . 19
1.6.2 El Zotz Archaeological Site . 24

1.7 Analysis and Discussion . 27
1.7.1 Sensors . 27
1.7.2 Algorithms . 27
1.7.3 Scanning Procedure . 28

1.8 Conclusion . 29

Chapter 2 FPGA Architectures for Real-Time Dense SLAM . 31

vi

2.1 Introduction . 31
2.2 Related Work . 34
2.3 FPGA Architectures for Kinect Fusion . 35

2.3.1 Dense SLAM Overview . 36
2.3.2 Iterative Closest Point (ICP) on FPGA . 38
2.3.3 Depth Fusion and Ray Casting . 41
2.3.4 Kinect Fusion Running Time . 42

2.4 FPGA Architectures for InfiniTAM . 44
2.4.1 Overview . 44
2.4.2 Depth Fusion . 45
2.4.3 Ray Casting . 46
2.4.4 Combining Depth Fusion and Ray Casting . 47
2.4.5 Iterative Closest Point (ICP) . 48

2.5 Experimental Results And Analysis . 49
2.5.1 Experimental Setup . 51
2.5.2 FPGA SoC Design . 51
2.5.3 PCIe FPGA Design . 55
2.5.4 Real-Time Experiments . 58

2.6 Conclusion . 58

Chapter 3 Spector: An OpenCL FPGA Benchmark Suite . 60
3.1 Introduction . 60
3.2 Motivation . 62
3.3 Methodology . 64
3.4 Benchmarks Description . 65

3.4.1 Breadth-First Search (BFS) . 67
3.4.2 Discrete Cosine Transform (DCT) . 68
3.4.3 Finite Impulse Response (FIR) Filter . 69
3.4.4 Histogram . 70
3.4.5 Matrix Multiplication . 72
3.4.6 Merge Sort . 73
3.4.7 3D Normal Estimation . 75
3.4.8 Sobel Filter . 76
3.4.9 Sparse Matrix-Vector Multiplication (SPMV) . 77

3.5 Design Space Analysis . 78
3.5.1 The Least Absolute Shrinkage and Selection Operator (LASSO) 78
3.5.2 Gini Coefficient . 79
3.5.3 Example observations . 80

3.6 Conclusion . 82

Chapter 4 FPGA Design Space Exploration With Hint Data . 84
4.1 Introduction . 84
4.2 Design Space Exploration (DSE) for FPGAs . 86

4.2.1 Definitions . 86

vii

4.2.2 Methods . 88
4.3 ATNE Sampling . 89

4.3.1 Initial Sampling . 90
4.3.2 Regression Model . 91
4.3.3 Design Elimination . 91
4.3.4 Active Sampling . 92

4.4 Hint Data Overview . 92
4.5 Exploiting Hint Data . 94

4.5.1 Directly Using Hint Data . 94
4.5.2 Improving initialization . 97
4.5.3 Improving Elimination With Hint Data . 99

4.6 Experimental Setup . 105
4.6.1 Algorithms . 105
4.6.2 Hyperparameters . 106
4.6.3 Benchmarks . 107
4.6.4 Hint data . 107
4.6.5 Metrics . 107

4.7 Results . 109
4.7.1 Directly using hint data . 109
4.7.2 TED Only . 111
4.7.3 ATNE . 111
4.7.4 ATNE with low alpha . 115

4.8 Conclusion . 115

Chapter 5 Sherlock: A Multi-Objective Design Space Exploration Framework 117
5.1 Introduction . 117
5.2 Related Work . 119
5.3 The Sherlock Algorithm . 122

5.3.1 Scope and Definitions . 122
5.3.2 Active Learning . 123
5.3.3 Surrogate Model . 126

5.4 Model Selection . 128
5.4.1 Algorithm . 128

5.5 Results . 130
5.5.1 Experimental Setup . 130
5.5.2 Dataset . 131
5.5.3 Active Learning Results . 132
5.5.4 Model Selection Results . 134
5.5.5 Software Dataset . 135

5.6 Conclusion . 138

Chapter 6 Conclusion . 139

Bibliography . 141

viii

LIST OF FIGURES

Figure 1.1. Scanning backpack prototype. On top is the handheld device, containing a
light panel, a sensor mount, and a tablet for visualization. On the bottom left
is the backpack containing a laptop and a metal frame for better cooling.
The bottom right picture illustrate the use of the backpack inside the
excavation. 13

Figure 1.2. From top to bottom: The LiDAR scan of the mud cave, the SLAM scan
using RTAB-MAP and Kinect v2, and the same SLAM scan with point-to-
point error with the LiDAR scan highlighted (darker shade of red = larger
error). 20

Figure 1.3. RMSE of the cloud-to-cloud difference between SLAM algorithm results
and the LiDAR cloud, for the mud caves site. 20

Figure 1.4. Trajectory comparison between RTAB-MAP with Kinect v1 and the recov-
ered ground truth. The position error is plotted on the SLAM trajectory in
meters. 22

Figure 1.5. Comparison of trajectories with and without loop closure using RTAB-
MAP with Kinect v1. 23

Figure 1.6. Point-to-point difference between the point cloud from ORB-SLAM with
Kinect v1 and the LiDAR point cloud. We show the SLAM cloud with the
difference colored on each point. Darker red corresponds to a larger error,
which happens in areas with concentrated sensor noise, and areas where
the two models differ in geometry. 25

Figure 1.7. RMSE of the cloud-to-cloud difference between SLAM algorithm results
and the LiDAR cloud, for the M7-1 excavation site. 25

Figure 1.8. Top view of the trajectory comparison between SLAM results and the re-
covered ground truth. The position error is plotted on the SLAM trajectory
in meters. 26

Figure 2.1. 3D model reconstructed in real-time on a DE1 FPGA SoC with the data
transmitted from a Google Tango tablet. 34

Figure 2.2. 3D Reconstruction workflow. Each iteration of the algorithm takes the
depth map from the RGB-D camera as input, then goes through three steps:
ICP, Depth Fusion, and Ray Casting. The overall process is the same
on Kinect Fusion and InfiniTAM. The pre-processing steps only exist in
InfiniTAM. 37

ix

Figure 2.3. Running time of 1 iteration of ICP at full resolution for the major modifi-
cations made to the baseline GPU implementation. The modifications are
cumulative. The search kernel is the part of the algorithm that compares
every vertex to find corresponding points. The reduction kernel sums the
equation matrices for all the points. 42

Figure 2.4. Design spaces of InfiniTAM running on the DE1 board with the Room
benchmark. (a) plots the throughput of the entire application when running
the selected algorithm on FPGA; (b) plots the throughput of individual
algorithms. The y axis shows the logic utilization of individual algorithms. 52

Figure 2.5. Comparison of the average total frame rate between different versions of
the application running on the DE1: running on ARM only, or the best
versions accelerated on the FPGA. We present the results for different
benchmarks. 53

Figure 2.6. Design spaces of InfiniTAM running on the DE5 board with the Room
benchmark. 56

Figure 2.7. Comparison of the best frame rate for individual algorithms and the entire
application. We compare the best results on both DE1 and DE5 hard-
ware setups, including the processor and FPGA results. On the DE5, we
use bitstreams implementing either multiple algorithms (ICP+DF+RC /
ICP+Combined) or only one (indiv.). 56

Figure 3.1. Our workflow to generate each benchmark and the design space results. . . 63

Figure 3.2. Normalized design space for each benchmark. We plot the inverse logic
utilization against the throughput such that higher values are better. The
Pareto designs are shown in red triangles. 66

Figure 3.3. Estimating 3D normals from 3D vertices organized on a 2D map. The top
of the figure shows how the sliding window works in the algorithm. The
bottom illustrates how the sliding window can be tuned. 74

Figure 3.4. In the above figure we have sorted the ground truth designs and plotted
them alongside the LASSO model predictions. The worst designs begin on
the left and progress toward the best designs on the right. The Histogram
model predicts performance very poorly, and while the logic utilization
model appears to follow rather closely for mediocre designs, the most
efficient designs are poorly modeled. The opposite is true for Normal
estimation: Near-Pareto designs are modeled more accurately than the
remainder of the space. 82

x

Figure 4.1. Illustration of the concepts of input space and output space that both form
a design space. 87

Figure 4.2. Overview of the original ATNE sampling framework. ATNE is composed
of an initial sampling step performed by the TED algorithm, followed by
an iterative active learning process. 90

Figure 4.3. Overview of our proposed methods to improve the sampling results. We
propose to improve the initial sampling with information from the hint data,
and we design a hint elimination algorithm to further help the elimination
step of ATNE. 93

Figure 4.4. Example of directly using the hint data to find the Pareto-optimal points. On
the left is the hint space from pre-PnR resource data and GPU performance
data. On the right is the ground truth FPGA design space. Strict optimal
designs (crosses) and optimal design with a 1% margin (squares) from the
hint space are plotted in the FPGA space. They are very different from the
true optimal set (triangles). 95

Figure 4.5. Directly using the hint Pareto-optimal designs on a different benchmark,
using the pre-PnR throughput estimations. Selecting optimal designs from
the hint space with a margin of 1% leads to sampling 90 designs. 95

Figure 4.6. Our hint elimination method. 1) Calculate matrix of design order (pairwise
differences between designs on one objective) for known FPGA designs
and hint designs. 2) Calculate a simplified correlation between the two.
3) Cluster the hint design order. 4) Apply these clusters to the correlation
data. 5) Find clusters containing only the same values and propagate that
value to the unknown FPGA data. 100

Figure 4.7. Prediction errors (ADRS) for different approaches: using ATNE without
hint data, directly using Pareto hint data with GPU performance / pre-PnR
estimations / CPU performance. 109

Figure 4.8. Comparison of the sampling/ADRS tradeoff between the baseline algo-
rithm and the method selecting Pareto designs from hint data with various
margins. All the results are averaged across all benchmarks. 110

Figure 4.9. Improvement of modified versions of TED over the original TED in terms
of ADRS for 15 and 40 samples. The results are averaged over all the
benchmarks. TEDhpar uses normal TED plus the Pareto hint data, TEDout
uses TED on the output hint space, and TEDall uses TED on all the output
hint spaces. 110

xi

Figure 4.10. Improvement of various methods over the baseline ATNE algorithm in
terms of ADRS, sampling complexity, and the combined difficulty metric.
Here we use α = 0.999. (a) uses 40 initial samples and (b) uses 15 initial
samples. The results are averaged over all the benchmarks. We test the
three modified version of TED and the original, combined or not with the
hint elimination algorithm (Elim.). Each method is tested with the hint
design spaces from GPU, Estimation Throughput, and CPU. 112

Figure 4.11. Curves showing the change in ADRS in function of the number of sampled
designs, in average over all benchmarks. Each curve is a different algorithm,
with α = 0.999 and 40 initial samples. The curves are grouped by hint
data type, with the addition of TEDall which uses all hint types. Note
that because each curve is an average, and not all runs of the algorithm
converge to the same value, the curve can sometimes go up. 113

Figure 4.12. Curves showing the change in ADRS in function of the number of sampled
designs, in average over all benchmarks, with α = 0.999 and 15 initial
samples. 114

Figure 4.13. Improvement of hint data methods over the baseline ATNE algorithm for
α = 0.2, with (a) 40 initial samples and (b) 15 initial samples. 115

Figure 5.1. Sherlock workflow. 122

Figure 5.2. Illustration of the difference of performance using Sherlock with two
regression models on two benchmarks. 127

Figure 5.3. Average performance of several algorithms on all the FPGA benchmarks.
We plot the error (ADRS - lower is better) against the percentage of design
space sampled. We test Sherlock with multiple regression models. 132

Figure 5.4. Performance of several algorithms on individual benchmarks. We compute
the area under the ADRS curve as a measure of convergence, over the first
30% of design space sampled. A lower value means that the algorithm
reaches a better solution faster. We compare Sherlock with different regres-
sion models to other state-of-the-art algorithms. We also compare with our
proposed model selection algorithm. 133

Figure 5.5. Average area under the curve for the benchmarks presented in Figure 5.4.
We present the arithmetic mean, and the geometric mean to take into
account the variability of the results. The values are scaled by 1000 for
readability. 133

Figure 5.6. Performance of the model selection algorithm on two simulated datasets. . 134

xii

Figure 5.7. Calculated mean of the Beta distributions of the two models for the two
simulated datasets. 134

Figure 5.8. Comparison of the ADRS curves for multiple algorithms on all the FPGA
benchmarks. 136

Figure 5.9. Comparison of the ADRS curves for multiple algorithms on the SLAM
benchmarks. 137

Figure 5.10. Area under the ADRS curve for the first 30% of the design space sampled. 137

xiii

LIST OF TABLES

Table 1.1. RGB-D cameras used in our experiments . 14

Table 1.2. Absolute Trajectory Error (APE) and Relative Position Error (RPE) on
different combinations of sensors and algorithms. ATE compares the trajec-
tories aligned on the first pose only. ATE (aligned) compares trajectories
globally aligned. RPE measures the relative error per 1 meter segments. All
values are expressed in meters and averaged over the entire trajectory. 21

Table 1.3. ATE and RPE in meters, on the M7-1 excavation. 26

Table 2.1. Summary of the knobs for all four algorithms, along with their names used
in Section 2.5 . 50

Table 2.2. Comparison of the lowest running times of different kernels running on the
DE1 SoC board. Each row compares the algorithm running on the ARM
processor of the DE1 (top, in ms) and on the FPGA (bottom, in ms). 53

Table 2.3. LASSO analysis of throughput on the DE1 SoC board for the Room bench-
mark. We take the models with the minimum mean squared error (MSE),
and show the 5 knob features with the largest contribution to that model.
The knob names are summarized in Table 2.1. 55

Table 2.4. LASSO analysis of throughput on the DE5. 57

Table 3.1. Number of successfully compiled designs. 64

Table 3.2. FIR filter Pareto optimal designs. 69

Table 3.3. LASSO r2 and G(β) values for logic (`) and timing (t) across benchmarks
for complete and near-Pareto spaces . 80

Table 4.1. ATNE and hint elimination parameters . 106

xiv

ACKNOWLEDGEMENTS

I would like to acknowledge Professor Ryan Kastner as my advisor and the chair of my

committee. He provided me with the support, funding, guidance, and opportunities that made

this work possible. I would also like to thank my committee: Professor Manmohan Chandraker,

Professor Kamalika Chaudhuri, Professor Truong Nguyen, Professor Laurel Riek.

All of my co-authors, collaborators, colleagues, and friends have been a great help in

all of my projects. A special thanks goes to Alric Althoff who has helped me so many times

and taught me so much, as well as Pingfan Meng who has provided me with the foundations of

much of my work, Janarbek Matai who gave me my first project, and Alireza Khodamoradi for

his help as a T.A. and a friend. Finally, I would like to thank all members of Kastner Research

Group and Engineers for Exploration, who all have been amazing.

Chapter 1, in part, has been submitted for publication of the material as it may appear in

the Journal of Cultural Heritage Management and Sustainable Development. Gautier, Quentin;

Garrison, Thomas; Rushton, Ferrill; Bouck, Nicholas; Lo, Eric; Tueller, Peter; Schurgers, Curt;

and Kastner, Ryan. The dissertation author was the primary investigator and author of this

material.

Section 2.3, in part, is a reprint of the material as it appears in the International Conference

on Field-Programmable Technology (FPT) 2014. Gautier, Quentin; Shearer, Alexandria; Matai,

Janarbek; Richmond, Dustin; Meng, Pingfan; and Kastner, Ryan. The dissertation author was

the primary investigator and author of this paper.

Chapter 2, in part, is a reprint of the material as it appears in the International Conference

on Application-specific Systems, Architectures and Processors (ASAP) 2019. Gautier, Quentin;

Althoff, Alric; and Kastner, Ryan. The dissertation author was the primary investigator and

author of this paper.

Chapter 3, in part, is a reprint of the material as it appears in the International Conference

on Field-Programmable Technology (FPT) 2016. Gautier, Quentin; Althoff, Alric; Meng,

Pingfan; and Kastner, Ryan. The dissertation author was the primary investigator and author of

xv

this paper.

Chapter 4, is coauthored with Althoff, Alric; Meng, Pingfan; and Kastner, Ryan. The

dissertation author was the primary author of this chapter.

Chapter 5, in part, has been submitted for publication of the material as it may appear in

the 28th ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA),

2020. Gautier, Quentin; Althoff, Alric; and Kastner, Ryan. The dissertation author was the

primary investigator and author of this paper.

xvi

VITA

2010 M.S. in Computer Science, Institut National des Sciences Appliquees de Rennes,
France

2013-2019 Research Assistant, Department of Computer Science And Engineering
University of California San Diego

2014-2019 Teaching Assistant, Department of Computer Science And Engineering
University of California San Diego

2019 Ph.D. in Computer Science, University of California San Diego

PUBLICATIONS

Quentin Gautier, Alric Althoff and Ryan Kastner. “FPGA Architectures for Real-Time Dense
SLAM.” In 2019 IEEE 30th International Conference on Application-specific Systems, Architec-
tures and Processors (ASAP), IEEE, 2019.

Quentin Gautier, Alric Althoff, Pingfan Meng, and Ryan Kastner. “Spector: An opencl fpga
benchmark suite.” In 2016 International Conference on Field-Programmable Technology (FPT),
pp. 141-148. IEEE, 2016.

Pingfan Meng, Alric Althoff, Quentin Gautier, and Ryan Kastner. “Adaptive threshold non-pareto
elimination: Re-thinking machine learning for system level design space exploration on FPGAs.”
In Proceedings of the 2016 Conference on Design, Automation & Test in Europe, pp. 918-923.
EDA Consortium, 2016.

Quentin Gautier, Alexandria Shearer, Janarbek Matai, Dustin Richmond, Pingfan Meng, and
Ryan Kastner. “Real-time 3d reconstruction for fpgas: A case study for evaluating the perfor-
mance, area, and programmability trade-offs of the altera opencl sdk.” In 2014 International
Conference on Field-Programmable Technology (FPT), pp. 326-329. IEEE, 2014.

xvii

ABSTRACT OF THE DISSERTATION

Automatic Optimization of System Design for 3D Mapping of Archaeological Sites

by

Quentin K. Gautier

Doctor of Philosophy in Computer Science

University of California San Diego, 2019

Professor Ryan Kastner, Chair

Deeply buried within the jungle of Central America lie the remains of the ancient Maya

civilization. In order to reach these old ruins, archaeologists dig tunneling excavations spanning

tens of meters underground. Unfortunately, most of these excavations must be closed for

conservation purposes, and it is therefore crucial to document these findings as precisely as

possible. Many solutions exist to create a 3D scan of these environments, but most of them are

too costly, difficult to deploy, or do not provide real-time feedback.

A possible solution to create a 3D mapping system overcoming these problems is to use

Simultaneous Localization And Mapping (SLAM) algorithms, combined with low-cost sensors

and low-power hardware. However, the combined complexity of software design and hardware

xviii

design represents an immense challenge to implement a system optimized for all requirements.

The vast pool of possible designs and the multiple, often conflicting objectives contribute to

produce design spaces too complex to be explored manually.

In this thesis, we explore the complexity of designing SLAM applications using various

types of hardware. First, we manually evaluate SLAM algorithms for 3D mapping, and specifi-

cally optimize one SLAM algorithm on an FPGA hardware. Then we expand our exploration to

a larger space of designs, and generalize this problem to the design of all complex applications

that require a lengthy evaluation time.

We develop several learning-based methods to help designers finding the best combina-

tions of optimizations that maximize multiple objectives. By using a smart sampling algorithm,

and removing the need of selecting a specific regression model, we can help users largely

decrease the number of designs to evaluate before reaching an optimal architecture.

xix

Introduction

A Scanning System for Archaeology

When searching for the remains of the ancient Maya civilization in Mesoamerica, archae-

ologists dig narrow tunnels to excavate old structures that have been outgrown by the jungle over

the centuries. These excavations can reveal important information about the Maya culture, their

traditions and their rituals. Unfortunately, most excavations are temporary, as they expose fragile

structures to the outside, and need to be closed eventually. As a result, documenting these sites as

precisely as possible – and sometimes as fast as possible – is a crucial task. In order to document

these tunnels, we can design a system to collect three-dimensional data to save these environ-

ments as 3D models. However, the design of such a system is not trivial. It needs to be portable,

simple to use, low-power, accurate, fast, and it must fit within the budget of the excavation site.

An attractive solution to this problem is to leverage Simultaneous Localization And Mapping

(SLAM) algorithms [35]. This class of algorithms can be combined with inexpensive sensors to

build a digital model of a scene in real-time. But the large number of existing algorithms and sen-

sors leaves designers with a myriad of options (e.g., [61, 78, 65, 66, 67, 72, 58, 59, 39, 54, 82]...)

for which the influence on each optimization goal can be difficult to anticipate. Sometimes,

the relationship between design options and the objective result is fairly straightforward. For

example, when utilizing a lower-cost sensor, one can expect a lower overall accuracy compared

to more expensive hardware. That relationship can become more complicated very quickly.

Typically, a designer could choose a stereo camera as a scanning equipment to improve ease of

use and scanning speed when switching from outdoor environments to indoor. However, the loss

1

of accuracy might actually slow down the user to avoid loss of tracking. This problem can be

solved by using an algorithm supporting fast recovery, but that algorithm might provide you with

a sparser 3D map, and increase the overall complexity of the system.

In this situation, a designer must carefully think about the impact of each design choice,

and eventually implement a small subset of all possible solutions. Testing these designs, evaluat-

ing the results, and refining the system is a very slow process, especially when creating a full

end-to-end solution targeting a very specific environment that cannot easily be reproduced in a

lab. We are now left with a question: how do we design such a complex system without having

to test all possible solutions, but still quickly converging toward an optimal system with respect

to multiple conflicting objectives?

System Design Optimization

The design of complex hardware and software systems is generally a long, iterative

process, in which one or multiple domain experts build and optimize different subsystems based

on their knowledge, and design methodologies. The field of software engineering has refined

design methodologies over the last few decades [69] with good results, but at the same time, the

software complexity has increased dramatically [70]. In 1983, Lampson [68] distinguishes the

design of computer systems from the design of algorithms, citing more complex requirements,

more internal structure, and a less clear measure of success for physical systems. However,

algorithms have become more complex over the years, and as a result, can be considered in

some cases as difficult to build as a hardware system. The field of computer vision is a good

example of how complex algorithms can become. Computer vision are often composed of

multiple submodules [49], and the methods of evaluation of such systems have not always been

clearly defined [49, 125, 124, 105], have continuously evolved, and continue to change regularly.

New benchmarks and metrics are still being developed, based on the ever-changing requirements

of the field [17].

2

In parallel to the evolution of software algorithms, hardware design has also become

more complex. With Moore’s law approaching to an end [112], the hardware architecture of

processors needs to be revised to keep improving performance. At the same time, Graphics

Processing Units (GPU) have become increasingly popular, first driven by the video games

market, then by scientific computing and machine learning training. More recently, there has

been a trend toward custom hardware design [7], either through Application-Specific Integrated

Circuits (ASIC) or Field-Programmable Gate Arrays (FPGA), in order to push the performance

of algorithms without compromising power consumption. Hardware design has also become

more approachable by a larger set of programmers, thanks to the High-Level Synthesis (HLS)

tools [8]. With this growing diversity of available hardware and software tools, more designers

conceive systems simultaneously on hardware and software [32].

The ever growing complexity of hardware and software design has led to an optimization

problem. Each component of a system can potentially be tuned and adjusted, which leads the

entire system to produce a different result. Depending on the size and complexity of the design,

the behavior of these parameters is not always easy to predict, and multiple parameters can

interact in very unpredictable ways. Additionally, the requirements of a system can be conflicting,

such that improving one objective tends to deteriorate a second objective (e.g., accuracy vs.

performance). A large system can comprise of hundreds of parameters with thousands or millions

of possible combinations. The problem of finding the most optimal designs among all possible

combinations is called the design space exploration problem. Design space exploration has been

studied, and several solutions have been proposed over the years [10, 96, 60, 114, 20, 50, 101, 77].

Certain solutions are based on systems that can be evaluated quickly (i.e., sub-second evaluation),

however most hardware design problems can take hours or days to evaluate, and certain software

algorithm suffer from similar issues. Other solutions either require specific knowledge of the

system, or require fine-tuning of hyperparameters.

3

Dissertation Outline

In this dissertation, we study the problems and tradeoffs involved in the design of com-

plex SLAM applications, then expand these problems to the design of hardware-accelerated

applications. We provide solutions to accelerate and automate this process through design space

exploration techniques. Specifically, we show that learning-based design space exploration

tools can automatically find the most optimized software and hardware designs on multi-

ple objectives, with minimal inputs from designers, no training, and only a small amount

of design evaluations.

First, we manually implement several solutions to build a tunnel mapping system for

archaeology, and evaluate them one by one. Then, we focus on solutions that can potentially

reduce the power footprint of the system, by implementing a 3D scanning algorithm on FPGA.

When creating an architecture for FPGA, the implementation can take multiple hours to obtain a

final design. Yet the number of optimization parameters is still very large, and a domain expert

must carefully analyze all the possible options to pick the most optimal ones. We analyze these

design spaces to better understand the impact of various design parameters. Following this

application-specific analysis, we generalize the problem to other types of applications by creating

benchmarks to explore various FPGA design spaces. We then focus on improving design space

exploration tools targeted at FPGA hardware, and finally conceive a general-purpose design

space exploration framework for optimizing multi-objective applications.

This thesis is organized as follows:

Chapter 1 presents our system design and evaluation to map tunneling excavations

in archaeological sites. We manually choose a set of sensors and algorithms that fit low-cost

requirements, and measure the accuracy of different solutions to better understand the tradeoffs

of each design choice.

Chapter 2 focuses on reducing the power utilization of mapping algorithms by imple-

menting multiple FPGA architectures. In this chapter, we manually tune the algorithms, but

4

also provide very parameterized designs that we analyze to better understand the influence of

parameters over optimization goals.

Chapter 3 generalizes the FPGA design problem by creating a large set of applications,

each heavily parameterized. We construct several design spaces that contains thousands of

unique architectures. We provide an analysis of certain spaces to show that intelligent algorithms

are necessary to efficiently find the optimal sets of parameters.

Chapter 4 improves existing machine learning frameworks that perform design space

exploration. This chapter focuses on FPGA designs, and devises a technique that can leverage

data from GPU designs to help prune the search of optimal points within the design spaces.

Chapter 5 presents the design of an active learning framework that focuses on quickly

finding Pareto optimal designs for any system design. The framework is capable of converging

rapidly toward optimal solutions without making any assumptions on the type of system, and can

choose the best prior to build a good regression model. It does not need expert input, or training

over similar applications. We demonstrate the use of this framework on FPGA design problems,

but also on a computer vision software application.

5

Chapter 1

Low-Cost 3D Scanning Systems for
Cultural Heritage Documentation

1.1 Introduction

Most of the remains of the ancient Maya civilization are currently buried under the dense

jungle of Central America. A myriad of temples, platforms, burial chambers, and other structures

lie underground. Their excavation can provide invaluable information about the ancient Maya

culture and lifestyle. In this region, a common excavation strategy is to dig tunnels leading

to major parts of these structures for observation and analysis. Unfortunately, not all of these

tunnels can be kept open to avoid the degradation of the exposed structures. Moreover, even the

open portions of the excavations are located in a remote area – and sometimes on arduous terrain

–, making it difficult to access for most people. This leads to the crucial work of documenting the

excavation for historical records, off-site analysis, and public outreach.

Digital documentation of cultural heritage is becoming commonplace at archaeological

sites where high-resolution, remotely-sensed data provide a more accurate record than traditional

analog recording of excavation contexts, architecture, and ancient monuments (e.g. [41]). The

collection of this data can come at great financial cost, as with terrestrial LiDAR (light detection

and ranging) systems, or be time consuming during post-processing, as with photogrammetry. In

some archaeological contexts these are not effective solutions for documenting cultural heritage.

Landscapes with extensive damage from looting and other destructive activities require too much

6

field time for sensitive, expensive instruments and a lack of real-time results can leave doubt

about whether the sensors effectively documented the targets.

Large-scale aerial LiDAR acquisitions in Belize [23] and Guatemala [19] reveal thou-

sands of previously undetected structures created by the ancient Maya civilization (1000 BCE–

1519 CE), but also illuminates the extent to which unchecked, illicit looting has damaged this

landscape. Ground-truthing of aerial LiDAR data would benefit from the ability to simulta-

neously acquire 3D documentation of looted contexts to more accurately quantify damage in

cultural heritage management assessments. The recent wanton destruction of archaeological

sites, like Palmyra, by the Islamic State of Iraq and Syria (ISIS) presents an extreme case of a

high-risk zone where recovery efforts could have benefited from a real-time, rapid documentation

system to provide damage assessment estimates. Unfortunately, such incidents are not unique,

and archaeology would benefit from a rapid 3D scanning sensor to record damage and plan

recovery.

The recent growth of low-cost, consumer-grade depth sensors such as Microsoft Kinect

or Intel Realsense, has led to an increase of algorithms capable of using these sensors to create a

geometrical representation of the surrounding space. These methods have the benefit of being

easy to deploy, fast to operate, and produce real-time results that can be visualized directly on

the field. The right combination of low-cost sensors and open-source algorithms can provide an

accessible scanning solution to untrained users, while being fast to deploy in situations where the

site must be closed shortly after being excavated, and inexpensive to replace in case of damages

due to difficult field conditions.

However, in order to build such a system, one must carefully choose between all available

options in terms of software and hardware, in order to maximize the accuracy of the result, and

maximize the usability of the entire system.

In this chapter, we evaluate multiple sensor options by selecting popular depth cameras

that can be used out-of-the-box without technical knowledge of the hardware. We have selected

several open-source Simultaneous Localization And Mapping (SLAM) algorithms, and config-

7

ured them to work with our selected sensors without any major modification. We have built a

prototype backpack system to test the various hardware/software combinations in the field.

While this new system is not as spatially accurate as more expensive or time-consuming

methods, we believe that there are sufficient examples of extensively looted archaeological

landscapes and zones with high risk for cultural heritage destruction that a rapid, cost-effective

3D documentation system such as the one presented here would be an asset in cultural heritage

management. The system was tested in ancient Maya archaeological contexts and refined in mud

caves near the University of California, San Diego, where we developed the prototype.

1.2 Background

Our prototype is designed to efficiently document underground or other restricted spaces

such as those presented by damaged ancient architecture. There exist multiple ways of collecting

three-dimensional data to reconstruct an underground or indoor environment, that we can group

into three main categories: 1) scans using terrestrial LiDAR, 2) scans using photogrammetry, and

3) scans based on Simultaneous Localization And Mapping (SLAM) algorithms with lower-cost

sensors.

1.2.1 LiDAR

Terrestrial LiDAR scanners are high precision devices that can capture the geometry of

a space by sending lasers in a wide area around the scanner. These devices are often used for

cultural heritage documentation due to their very high accuracy. This type of documentation is

popular in Maya archaeology [41, 27], which means that there is good, high-resolution baseline

3D data to compare against other sensors and methods. While the 3D scans generally get

millimeter accuracy, the process of collecting the data over extensive excavation sections is very

long. Furthermore, the final result is obtained after a lengthy post-processing step that cannot be

performed directly in the field, preventing a quick visualization of the current scan. Finally, the

cost of high-quality laser scanners is often a barrier to large-scale deployment, or deployment

8

in difficult environments (e.g., narrow, dusty tunnels) where the equipment is at risk of being

damaged.

1.2.2 Photogrammetry

“Structure-from-motion” photogrammetry is a general technique that uses computer

vision algorithms to reconstruct a 3D shape from a set of 2D pictures. It is a very accessible

solution to scan different types of environments; the user only needs a digital camera, and

potentially a good light source. This technique also provides good results for cultural heritage

documentation [120, 37]. The largest drawback is the computational time required to process the

data. Due to this limitation, it can be difficult to evaluate the results in the field. Additionally, the

computation time grows very rapidly with the number of photos, and that number grows quickly

with the size of the area to scan, which renders the scan of an entire excavation very difficult.

The sometimes-cramped conditions of archaeological contexts with fragile cultural heritage

monuments can also be a deterrent to photogrammetric methods that require the photographer to

be in close proximity to sensitive features for extended periods of time.

1.2.3 Simultaneous Localization And Mapping

Simultaneous Localization And Mapping (SLAM) algorithms are a class of algorithms

– first defined in 1986 [104] – focused on localizing an agent within an unknown environment

while simultaneously building a map of this environment [35]. The goal of SLAM is to provide

an update of the position and/or a map in real-time. The definition of real-time varies with the

application, but in our case, we target an update around the same speed as camera sensors, i.e.,

30 Hz. We are particularly interested in the use of visual SLAM algorithms, utilizing visual

sensors, but SLAM works with any number and combinations of sensors ([61, 78, 72, 39, 54, 82]).

In parallel with the development of SLAM algorithms, many low-cost visual and depth

sensors have been commercialized in the past few years. The Microsoft Kinect and the Intel

Realsense are two examples of such sensors, which combine an RGB camera with a depth sensor

9

that provides geometrical information about the scene.

The combination of SLAM algorithms and low-cost sensors yields a good solution to the

problem of obtaining quick 3D scans of a scene. However, the quality of results is unknown and

can be difficult to assess for multiple reasons. First, there is a wide variety of SLAM algorithms

available, all using different methods to achieve the best quality of results. Second, each sensor

has its own specificity, and specifically all sensors present a certain degree of noise that needs

to be mitigated by the algorithms. Finally, many algorithms are developed in a similar, well-lit

environment, but few are tested in the field where the condition are often less than ideal to

maintain a good quality of tracking. We tested our prototype in Guatemala where archaeological

excavations at a Classic Maya (250–1000 CE) site present a challenging environment due to the

lack of good lighting, and narrow tunnels without connecting loops.

Several studies actually compare and evaluate SLAM algorithms. Zennaro and col-

leagues [122] compared two low-cost depth cameras in terms of noise, and Krafts team [62]

evaluated these cameras on trajectory estimation. Huletski and colleagues [53] compared multi-

ple SLAM algorithms on a standard dataset. The common point of these studies is the use of

an indoor, office-like environment. Though there has also been extensive evaluation of SLAM

in outdoor environments for autonomous driving [16]. Most of the evaluations are driven by

the availability of data, typically through standard benchmarks with provided ground truth (e.g.,

[105, 45]).

Other work studies the usage of various handheld or robot-mounted sensors for 3D

scanning of cultural heritage sites. Various studies present the evaluation of a handheld LiDAR

scanning system in different field environments ([129, 36, 33, 89]). This system constitutes an

improvement over larger terrestrial LiDARs in terms of usability, but remains a costly piece of

equipment along with closed-source, commercial software. Erica Nocerino [89] and Masiero

and colleagues [76] both evaluated a commercial backpack mapping system, providing a good

mobile sensing solution, but also containing costly sensors. We present a study of multiple

SLAM algorithms with multiple consumer-grade depth cameras, (see [71] for a similar study),

10

in a more constrained environment, and comparing more recent and complex SLAM algorithms.

1.3 Methodology Overview

In order to evaluate the digital reconstruction accuracy of SLAM algorithms, we collected

data by using multiple combinations of sensor hardware and application software. We performed

the data collection at different underground locations, each with its own unique conditions. In

addition to the SLAM data collection, we also gathered data from multiple LiDAR scans at

the same locations to provide a reference for the various 3D models. All the LiDAR scans

were taken with ample overlap to allow for a very precise manual alignment, thus providing

us with ground-truthed 3D models which can be compared against the results of the real-time

SLAM-based 3D scanning.

1.3.1 Data Collection Sites

We evaluated our prototype inside active excavation tunnels at the Maya archaeological

site of El Zotz, Guatemala. Most of our experiments were performed in the Pyramid of the

Wooden Lintel (Structure M7-1), an approximately 20-meter-tall structure that was extensively

looted in the 1970s before archaeologists began extending the existing tunnels in 2012 to salvage

information from the structure [40, 52]. This excavation is large enough to create a good test

environment, and has been thoroughly scanned by LiDAR. Furthermore, the looted section of

the tunnel can be considered representative of the types of contexts where our prototype scanner

would be most useful.

We performed a second set of experiments in the Arroyo Tapiado Mud Caves system [51]

located within the Anza-Borrego State Park near San Diego, California. These mud caves

provided a controlled environment in a local context where we could run multiple similar scans

without the constraints of an active excavation or the expense of working through developmental

trial and error in an international field context where some resources are limited. While these

natural caves are generally larger than a typical archaeological tunnel, they still present a similar

11

setup in terms of scanning challenges. We particularly chose to operate our system in locations

with sharp turns to emulate the shape of excavations.

1.4 Data Acquisition

Our goal was to measure the performance of SLAM-based scanning techniques in a

realistic scenario. We made hardware and software decisions based on a set of requirements

aimed at providing archaeologists with a usable system in the field. These requirements consist

of designing a system that is lightweight, simple, usable by a single non-technical user, and is

easily manipulated inside a tight and dark tunnel environment. In addition, the system must

provide its own power, be self-contained (no external connection), and can be transported to and

operated in a difficult environment (hot, humid, dusty, etc.). We also wanted to build a device

based on readily available and low-cost components and materials, and design software tools

that are open-source.

Our prototype consists of a backpack containing a laptop, and an external tablet with a

light panel and 3D sensors. The backpack system is presented in Figure 1.1 and described in

detail below. The laptop is the most expensive component, in order to run the real-time software

needed for the scanning.

1.4.1 Hardware Setup

The first part of our scanning device consists of a backpack modified with a solid frame

that can handle a large laptop while keeping a good airflow to prevent overheating. In the same

backpack, we keep several lithium polymer (LiPo) batteries to let the computer run for several

hours, and provide power to the sensors and lights. The second part of the device is a custom

frame supporting a tablet facing the user, a light panel facing forward, and a mount for a 3D

sensor facing forward. The frame possesses handles for better manipulation in difficult areas,

and to give the user flexibility to scan at different angles. The tablet provides feedback from

the laptop, and can display the status of the scanning operation. The light panel is designed

12

Figure 1.1. Scanning backpack prototype. On top is the handheld device, containing a light panel,
a sensor mount, and a tablet for visualization. On the bottom left is the backpack containing a
laptop and a metal frame for better cooling. The bottom right picture illustrate the use of the
backpack inside the excavation.

to provide enough brightness in a completely dark tunnel area, while limiting the creation of

hard shadows that can cause issues with the SLAM algorithms. It consists of several strip of

small LEDs that emit a bright white and diffuse light, sufficient to cover the field of view of

our cameras. The sensor mount is designed to easily swap the sensor in use. Both parts of our

hardware design are described in more details in our repository 1.

SLAM algorithms are optimized for a certain set of sensors. A very popular solution is

to use RBG cameras as they are generally low-cost, light, and small. However, while simple

RGB cameras are good for tracking the position of a device, e.g., a drone or robot, for 3D

reconstruction purpose, we chose to use RBG-D cameras. RGB-D cameras are active or passive

cameras that also generate 3D depth information alongside the regular RGB feed. To this purpose,

they employ different technologies: structured light, time-of- flight, or stereo vision. In our case,

we tested RGB-D cameras covering these three types of technologies, all based on a near-infrared

1https://github.com/UCSD-E4E/maya-archaeology

13

Table 1.1. RGB-D cameras used in our experiments

Technology Notes

Microsoft Kinect v1 Structured light
Microsoft Kinect v2 Time-of-flight Global shutter
Intel Realsense ZR300 Active stereo Works outdoors
Intel Realsense D435 Active stereo Works outdoors

spectrum of light. The cameras that we use are summarized in Table 1.1. Two of these cameras

can potentially operate in daylight, while the others only work in an indoor or underground

environment only.

1.4.2 Software Setup

For the 3D reconstruction in real-time, we need software that can process the data from

the RGB-D camera to create a three-dimensional map of the environment, while providing

visual feedback to the user. The visual feedback is important to track the status of the algorithms

running, e.g., whether the algorithm has lost track of its previous trajectory, in which case the user

needs to come back to a previous position to restart the scanning. It is also useful to determine

how much area has been scanned, and make a decision on the next area to process.

The research literature is abundant on the topic of camera-based SLAM algorithms, but

not all provide an end-to-end application that meets our requirements. We chose a few popular

open-source systems that can easily be setup and used with the hardware described earlier. We

chose the following algorithms:

• RTAB-Map [65, 66, 67]. RTAB-Map is a SLAM framework that provides a dense 3D

reconstruction of the environment from different possible types of sensors. The framework

presents many features and parameters to adjust the speed and accuracy of the scan. The

total number of parameters is very high, and testing all the possible options is extremely

time-consuming and not feasible on the field with limited time and resources. The software

comes with a good default set of parameters that we use in our experiments.

14

• ORB-SLAM [82]. ORB-SLAM is another popular open-source SLAM algorithm. The

open-source version of ORB-SLAM 2 provides a real-time tracking based on a camera

input with optional depth sensing. The application has very little parameters and focuses on

delivering an out-of-the-box functional tracking solution. The drawback of this algorithm

is that it only saves a sparse map of the environment. In order to create a full 3D

reconstruction, we need to apply some post-processing to the output data.

• InfiniTAM v2 and InfiniTAM v3 [58, 59]. InfiniTAM is an application that focuses on

RGB-D-based 3D reconstruction. It creates a dense map of the environment in real-time

by leveraging the GPU compute capabilities of the computer to accelerate the scanning.

The difference between the two versions is mainly a loop closure feature introduced in v3

that provides a global consistency to the map, but sometimes at the cost of stability in our

experiments.

All SLAM algorithms are subject to drift. Drift is introduced by the accumulation of

small errors during the reconstruction process, and is usually the main reason of low accuracy in

the resulting 3D models. For this reason, tracking is an important step for SLAM algorithms,

along with loop closure. Loop closure enables a global optimization of the map when the user

creates a loop in the scanning trajectory and re-visits a place previously scanned. RTAB-Map and

ORB-SLAM both implement tracking based on visual features, i.e., points of interest within the

RBG images, and have loop closure sub-modules. InfiniTAM implements a tracking algorithm

based on 3D depth data, and only introduces loop closure in v3.

1.4.3 Acquisition Methodology

In all of our experiments, we used the backpack system described in Section 1.4.1,

and collected data with all the cameras available at the time of the experiment. For each of

the experiments, we ran one of the SLAM algorithms described in Section 1.4.2, but we also

recorded all the sensor data on the computer drive. This setup allowed us to replay the collected

15

data through other algorithms in a very similar condition as the field experiment.

The first data collection at the El Zotz archaeological site happened in 2014, when

we extensively scanned multiple excavations using a FARO LiDAR scanner [41]. We use

these LiDAR scans as ground truth reference models. In 2016, we started to run our SLAM

experiments with various combinations of sensors and algorithms. The main results that we

analyze in Section 1.6 were generated from large-scale scans covering about 45 m of the

excavation tunnel in the Pyramid of the Wooden Lintel (Str. M7-1). We used the Kinect v1,

Kinect v2, and ZR300 cameras, and ran the ORB-SLAM algorithm. Most of these results start

from the entrance of the tunnel, proceed to the end of the active excavation, turn around to reach

the entrance again, and turn around one last time to force the algorithm to perform a loop closure.

This path goes through a series of steep architectural tiers from one of the earlier pyramidal

substructures, including small ladders to transverse them. This renders the scans difficult in

that area, but it is representative of the difficult field conditions that may be encountered during

cultural heritage documentation.

Outside of the field seasons, from 2016 to 2018, we chose the Arroyo Tapiado Mud

Caves site as a control site to refine our prototype. We selected a section of the Carrey cave,

presenting several sharp turns. We scanned this whole section with multiple hardware/software

setups, by using a very similar scanning walking pattern each time. We experimented with

both Kinect cameras, the ZR300 and D435 cameras, and used ORB-SLAM and RTAB-Map.

We also provided an experimental setup with two Kinect cameras simultaneously scanning the

environment with the RTAB-Map framework. On each experiment, we also recorded the sensor

data to possibly be replayed later through other algorithms.

1.5 Data Processing

Our goal was to measure the quality of results of various combinations of sensors and

algorithms. In this context, the quality of the result corresponds to the difference between each

16

sensor and algorithm combination as compared against a reference ground-truth model, which

is considered highly accurate. In this case, we consider the LiDAR models to be extremely

accurate, as they consist of dozens of 360 degrees scans carefully registered together [41].

However, quantifying the difference between our experiment models and the ground truth

reference can be challenging due to multiple factors affecting the output: sensor noise/accuracy,

algorithm noise/accuracy, resolution of the output, etc. We chose to measure model quality with

two different methods: one comparing the models directly, and one comparing the trajectory.

1.5.1 Measuring point cloud difference

The most obvious method to evaluate 3D scanning output against an available reference

model is to overlay them together and observe the difference. However, a manual over- lay can

be difficult and introduce further error that is not related to the scanning method. We solve this

problem by aligning the point clouds through rigid registration. We use the Iterative Closest

Point (ICP) [9] method from the CloudCompare [47] software to find the best alignment between

each SLAM result and the ground truth LiDAR scan. From these aligned models, we can

compute a point-to-point difference [25] and use it to colorize the points. This colored model

highlights the area with high difference compared to the reference. While the colored model

can provide valuable information, it requires a visual inspection. We also summarize all the

point-to-point differences by calculating the Root Mean Squared Error (RMSE) which provides

the average Euclidean distance error between points. The RMSE can be used as a metric for a

quick comparison between results.

This method suffers from one major issue: all the types of error are averaged. First,

the registration provides the best alignment that minimized the average error over all points.

This means that the location of areas with high error is not always accurate (larger error tends

to appear on edges of the model). The statistics (min, max, RMSE, etc.) are still meaningful,

however they include multiple types of error, including sensor errors and software errors. This is

why a visual inspection and a second quality metric are needed.

17

Measuring trajectory difference

When evaluating and comparing SLAM algorithms, most of the literature focuses on

comparing the trajectories [105, 34, 45, 18]. A trajectory is defined as the position and rotation of

the camera center at each scan (or at each key scan, depending on the algorithm) in the 3D space.

The trajectory is generally considered as the most important output of the SLAM algorithm. If

this output is accurate, then sensor 3D data can be joined together into a coherent model. Sensor

noise can be reduced or averaged by using techniques that rely on an accurate estimate of the

camera positioning. Several metrics exist to evaluate the quality of the trajectory with respect to

a ground truth.

In our experiments however, we do not possess a ground-truth trajectory. Instead, we

recover it by incrementally registering each camera scan to the ground truth LiDAR model.

The process starts by a manual alignment of the first scan, which is followed by a fine-tuned

alignment from an ICP algorithm. Each following scan is then aligned using ICP as well. We

reduce the amount of sensor error by removing data past 3 m of the camera (as the error generally

increases with the distance). We monitor most of the process visually and by reporting the RMSE

of the registration at each step. The average RMSE of all the registered scans is generally on the

order of 1 cm. We also reconstruct a 3D model from the recovered ground-truth trajectory and

the camera scans to verify that the output is similar to the LiDAR model.

From each pair of SLAM trajectory and recovered ground-truth trajectory, we provide

statistics on the Absolute Trajectory Error (ATE), which measures the difference between each

SLAM pose and its corresponding reference pose, and the Relative Pose Error (RPE) that

quantifies the error on pose deltas (the error over a certain distance; in this case, per one meter).

18

1.6 Results

1.6.1 Arroyo Tapiado Mud Caves

We performed a controlled set of experiments at the Arroyo Tapiado Mud Caves site near

the University of California San Diego. This location was the best option for replicating the

archaeological conditions in Guatemala in a local setting where all of the laboratory resources

would be available during prototype development. First, we defined an area of approximately

50 meters in length and scanned this area with the same FARO LiDAR system that was used to

scan the El Zotz excavations. Then, we ran a series of scans using our SLAM scanning solution

with three different sensors: Kinect v1, Kinect v2, Realsense D435, and two different algorithms:

ORB-SLAM, RTAB-MAP. All the scans were performed by the same operator, and followed a

similar trajectory and scanning pattern. Additionally, we recorded all sensor data, and replayed

them through the InfiniTAM v2 algorithm afterward.

Here we present the results of comparing the output data from the SLAM algorithms to

the LiDAR 3D model.

Cloud-to-cloud difference

Figure 1.2 shows an example of the cloud-to-cloud difference between a SLAM scan

and a LiDAR scan. On top is the LiDAR scan of the mud caves site where we have focused

our experiments. In the middle is the point cloud obtained from scanning the cave with the

Kinect v2 and the RTAB-MAP algorithm. First, we aligned these models globally using ICP.

Then, for each point in the SLAM point cloud, we computed the distance to the nearest neighbor

in the reference LiDAR scan. The bottom model shows these point-to- point distances colored

on a color scale from white (small distance) to red (large distance). In general, we notice more

errors accumulated where the cave presents a turn. This is mainly due to two reasons. First,

more drift is accumulated in areas with less visibility because the sensor has a more limited view

of environment features. The other reason is that turns are places where sensor noise tends to

19

Figure 1.2. From top to bottom: The LiDAR scan of the mud cave, the SLAM scan using
RTAB-MAP and Kinect v2, and the same SLAM scan with point-to-point error with the LiDAR
scan highlighted (darker shade of red = larger error).

0.2 0.28

0.78

0.2 0.17 0.19 0.16
0.31 0.34

1.06

0

0.5

1

Kinect v1 Kinect v2 Realsense
(D435)

Two Kinect v1

R
M

SE
 (

m
)

Point Cloud RMSE - Mud Caves

ORB-SLAM RTAB-MAP InfiniTAM

Figure 1.3. RMSE of the cloud-to-cloud difference between SLAM algorithm results and the
LiDAR cloud, for the mud caves site.

20

Table 1.2. Absolute Trajectory Error (APE) and Relative Position Error (RPE) on different
combinations of sensors and algorithms. ATE compares the trajectories aligned on the first pose
only. ATE (aligned) compares trajectories globally aligned. RPE measures the relative error per
1 meter segments. All values are expressed in meters and averaged over the entire trajectory.

ORB-SLAM RTAB-MAP InfiniTAM v2

ATE
(aligned) RPE

ATE
(aligned) RPE

ATE
(aligned) RPE

Kinect v1
0.64

(0.26) 0.04
0.98

(0.33) 0.05
2.10

(0.59) 0.05

Kinect v2
1.08

(0.36) 0.08
0.70

(0.31) 0.06
1.21

(0.56) 0.10

Realsense
(D435)

5.24
(2.20) 0.25

1.49
(0.32) 0.11 - -

Two Kinect v1 - -
0.87

(0.25) 0.07 - -

accumulate. The depth quality of RGB-D cameras decreases with the distance, therefore distant

obstacles can accumulate the noise from multiple scans.

We summarize the cloud-to-cloud differences for each combination of algorithm and

sensor by computing the RMSE over the entire point cloud. The results are presented in

Figure 1.3. We can observe a similar error in multiple models using Kinect v1 and v2 on

ORB-SLAM and RTAB-MAP. InfiniTAM v2 tends to give a larger error, as expected from an

algorithm without loop closure detection. The Realsense camera tends to show a less consistent,

larger error. This is due to the technology employed to generate depth data. Stereo matching can

be noisier, especially as distance from the sensor increases. Intel provides a number of software

filtering options for this camera, and we can expect better results when fine-tuning the process

for this specific application. We also compare the results to a setup using two Kinect v1 cameras

with RTAB-MAP. The model in this case presents a better RMSE as the software can utilize

more sensor data to refine its trajectory calculation.

21

15 20 25 30 35 40
x (m)

65

70

75

80

85

y
(m

)

Error mapped onto trajectory
reference

0.000

1.488

2.977

Figure 1.4. Trajectory comparison between RTAB-MAP with Kinect v1 and the recovered
ground truth. The position error is plotted on the SLAM trajectory in meters.

Trajectory difference

For each trajectory output from the SLAM algorithms, we recovered the corresponding

ground-truth trajectory using the LiDAR data. We measured the Absolute Trajectory Error (ATE)

between the two outputs in two different ways: 1) by aligning the first pose of each trajectorythis

gives an idea of how much error the algorithm accumulates with respect to the starting position,

and 2) by aligning the whole trajectory to minimize the average errorthis informs about the

average error over the entire scan.

Figure 1.4 shows an example of the ATE between a trajectory from RTAB-MAP with

Kinect v1 and the reference output, with respect to the starting position. We summarize the

results in Table 1.2. The InfiniTAM results with the Realsense camera are not included, as they

are too noisy to provide a good ground truth reconstruction. Generally, the results from the

Kinect cameras are similar. Despite possessing a global shutter camera, the Kinect v2 does not

show a consistent improvement, however it is possible to increase the resolution to improve the

results. The Realsense camera creates more noise, and this translates to a less accurate trajectory.

22

20

30

40

x
(m

)

Ground Truth
SLAM with loop (half)
SLAM without loop

70

80
y

(m
)

0 50 100 150 200 250 300
index

5
0
5

10
15

z (
m

)

Figure 1.5. Comparison of trajectories with and without loop closure using RTAB-MAP with
Kinect v1.

The InfiniTAM algorithm accumulates a lot of error over time as its tracking is based on depth

data only. This is clearly reflected by a much worse ATE (large global error), but still keeping a

similar RPE as other algorithms (good local consistency).

Loop Closure Analysis

While loop closure is a crucial step of most SLAM algorithms in order to increase the

accuracy and reduce the drift, loops are very rare in tunnels and excavations. In this type of

environment, one possible way to trigger a loop closure is to turn around, travel back to a previous

point in the trajectory, and turn around again. This last turn around allows the algorithm to

recognize a visited place by matching similar visual features. We analyze the difference between

closing the loop and not closing it. We run the sensor data through the ORB-SLAM algorithm,

once keeping the loop closure, and once stopping before backtracking. Figure 1.5 shows the

profiles of the trajectories with and without loop closure, and the recovered ground truth. Both

SLAM trajectories present a small drift over time with respect to the ground truth, but the drift is

clearly higher without loop closure.

23

1.6.2 El Zotz Archaeological Site

We tested our scanning setup in a cultural heritage context at the archaeological site of El

Zotz, Guatemala, and report our results here. Due to various constraints of the field, not all of

our experiments were executed in the exact same conditions. For this reason, we replayed the

saved camera data through the different algorithms to increase the consistency. We collected data

with the Kinect v1 and v2 cameras. Due to algorithm failure, the Kinect v2 data do not perform

any loop closure. We also collected data with a Realsense ZR300 camera, however the results

are too noisy to be properly analyzed here.

We also compared the SLAM models to a LiDAR scan taken at a previous time, and

therefore the models can differ at certain specific areas since excavation conditions changed

as archaeologists expanded new tunnels and backfilled other branches. The cloud-to-cloud

difference is higher for this reason, and can only be used as a comparison metric between SLAM

algorithms and sensors. The trajectory reconstruction has been manually adjusted to ignore the

areas with differences.

Cloud-to-cloud difference

Figure 1.6 shows an error plot of a SLAM model against the LiDAR model. The areas

of high errors mostly correspond to the differences between the scans. Otherwise we notice a

similar trend with the mud caves models, where certain walls accumulate noise from sensor. This

is more noticeable with ORB-SLAM as the sensor data are simply merged together without any

kind of filtering.

Figure 1.7 shows the summary of RMSE for the two cameras. ORB-SLAM with

Kinect v2 fails to reconstruct, but otherwise presents better results for Kinect v1. In this

case, the Kinect v2 gives better results even though there is no loop closure. This environment

is more difficult and scans are very shaky, which can be handled better by the global shutter

camera.

24

Sensor noise

Sensor noise

Sensor noise

Excavation differences
between scans

Trajectory errors

Figure 1.6. Point-to-point difference between the point cloud from ORB-SLAM with Kinect v1
and the LiDAR point cloud. We show the SLAM cloud with the difference colored on each point.
Darker red corresponds to a larger error, which happens in areas with concentrated sensor noise,
and areas where the two models differ in geometry.

0.129
0.152

0.131

0.200
0.178

RM
SE

 (m
)

0.000

0.050

0.100

0.150

0.200

Kinect v1 Kinect v2
ORB-SLAM RTABMAP InfiniTAM

Point Cloud RMSE

Figure 1.7. RMSE of the cloud-to-cloud difference between SLAM algorithm results and the
LiDAR cloud, for the M7-1 excavation site.

25

44 46 48 50 52 54 56
x (m)

66

68

70

72

74

76
y

(m
)

M7-1 -- ORB-SLAM with Kinect v1

reference

0.000

0.511

1.023

(a) Trajectory error using ORB-SLAM with
Kinect v1.

44 46 48 50 52 54 56
x (m)

66

68

70

72

74

76

y
(m

)

M7-1 -- RTAB-MAP with Kinect v1

reference

0.000

0.512

1.023

(b) Trajectory error using RTAB-MAP with
Kinect v1.

Figure 1.8. Top view of the trajectory comparison between SLAM results and the recovered
ground truth. The position error is plotted on the SLAM trajectory in meters.

Table 1.3. ATE and RPE in meters, on the M7-1 excavation.

ORB-SLAM RTAB-MAP InfiniTAM v2

ATE
(aligned) RPE

ATE
(aligned) RPE

ATE
(aligned) RPE

Kinect v1
0.21

(0.19) 3.32*
0.47

(0.29) 0.06
2.27

(2.49) 0.08

Kinect v2 - -
0.93

(0.17) 0.08
1.10

(0.47) 0.10

* The trajectory has a large discontinuity causing a very
large value for RPE.

Trajectory difference

We recovered a ground-truth trajectory for our camera scans based on the LiDAR data.

Figure 1.8 shows the trajectory errors from ORB-SLAM and RTAB-MAP with Kinect v1. In this

case, the RTAB-MAP algorithm has accumulated more drift than ORB-SLAM. We summarize

the trajectory metrics in Table 1.3. The results are similar to what we measured in the mud

caves environment, with InfiniTAM results being worse in global consistency compared to the

image-based tracking algorithms.

26

1.7 Analysis and Discussion

In this Section, we discuss high-level trends and directions to take to maximize the

ac- curacy of SLAM-based scanning, based on the results presented in Section 1.6 and our

observations in the field.

1.7.1 Sensors

The RBG-D cameras that we used are broadly divided into two categories: active depth

sensing (Kinect v1 and v2), and passive depth sensing (Realsense). Both our results and our

observations confirm that active sensing produce the best results in terms of 3D scans. The

difference in technology for active sensing (structured light with Kinect v1 and time-of-flight

with Kinect v2) has a less significant impact on the result, although there tends to be a slight

global improvement with the time-of-flight sensor. Stereo-based sensors produce depth maps

that tend to be spatially and temporally noisy, which increases the drift in SLAM algorithms,

and also increases the frequency of tracking loss during data collection. The ZR300 camera

produced results too noisy to be analyzed in Section 1.6.2. However, it is important to note that

the active sensors can only operate indoors, and would not be suitable to scan the exteriors of

sites. Additionally, the stereo sensors can be improved in software through the fine-tuning of

filters, although this increases the complexity of the scanning system.

1.7.2 Algorithms

The algorithms can also be divided in two categories: feature-based tracking (ORB-

SLAM and RTAB-MAP), and registration-based tracking (InfiniTAM). Feature-based algorithms

mostly rely on image features, and therefore can more easily recover from tracking failure.

However, these algorithms cannot recognize the same tunnel viewed from a different point-of-

view (e.g., after turning around), and must rely on loop closure to create a consistent model in

that case. Registration-based algorithms rely on depth data only, and as such can recognize an

27

environment based on its geometry only. These algorithms tend to be less stable in terms of

tracking as they rely primarily on frame-to-frame alignment. InfiniTAM v3 is a good compromise,

but our experiments failed to properly scan on long distances. While InfiniTAM v2 can be used

for scanning without much tweaking, InfiniTAM v3 would require more tuning to be useable

in these conditions. Feature-based algorithms worked better in our experiments, but they did

require particular attention to the lighting of the scene. Our scanning system is equipped with a

light panel emitting diffuse light, which minimizes the negative effects on the SLAM algorithm,

however a strong, static light is recommended whenever possible.

1.7.3 Scanning Procedure

In Section 1.6, we highlight the importance of creating a loop closure, even when the

environment presents no obvious such loop. This procedure applies to feature-based algorithms,

or algorithms capable of handling loop closure, but is still useful in all cases simply to add

new points-of-view of the scene and increase the number of details. There are also several

good practices that we have noted during our experiments. First, each depth sensor has its own

specifications in terms of sensing range and field of view. These limitations are very important for

the user to keep in mind, as they generally make the difference between a failed scan and a good

scan. Typically, there should always be a recognizably distinctive portion of the scene (containing

visual features and geometric features) within the nominal range of the sensor (especially above

the minimum range). Second, the scanning speed is important. While generally faster than

other techniques, SLAM-based scanning is sensitive to fast motion which introduces errors from:

motion blur, lens distortion from rolling shutter cameras (minimized by using a global shutter

camera such as Kinect v2), more distance between frames (minimized by using higher frequency

cameras such as the Realsense D435), or simply breaking the small motion assumption made by

registration-based algorithms.

28

1.8 Conclusion

In this chapter, we have analyzed multiple hardware and software solutions to help with

the documentation of cultural heritage within restricted spaces. Through multiple experiments

in the field, we have established an accuracy value for different combinations of sensors and

algorithms in these low-light conditions. In terms of software, image-based tracking algorithms

tend to perform better for large-scale area scanning, but may offer a sparser 3D model without

post-processing. Dense SLAM algorithms relying on depth tracking offer a good solution for

small areas but do not scale well, unless implemented with loop-closure solutions. In terms of

sensors, it is clear that active depth sensing solutions targeted at indoor use perform better than

stereo-based cameras in an underground environment. We have found that in average, the best

performing combination of sensor and algorithm for our prototype scanning system is a Kinect

v2 with RTAB-MAP. More generally, a global shutter camera with a time-of-flight depth sensor,

running a feature-based SLAM algorithm, is likely to perform better.

SLAM algorithms provide a low-cost alternative to LiDAR, and a fast alternative to

photogrammetry methods. They are generally limited in the quality of results, and we have

quantified these limitations for the use-case of documenting archaeological underground excava-

tions. The proposed system is ideal for the rapid documentation of areas with extensive damage

from looting where having an expensive instrument in difficult field conditions is impractical.

Likewise, such a system has cultural heritage documentation applications in high-risk areas

where archaeological sites are damaged or threatened in order to make rapid assessments of

impacts and resource requirements.

Acknowledgments

The authors would like to thank the following persons for their help and contribution

to this work: Proud Heng, Nathan Hui, Tim Jiang, Waseem Khan, Etsu Nakahara, Giovanni

Vindiola, Danbing Zhu.

29

Chapter 1, in part, has been submitted for publication of the material as it may appear

in the Journal of Cultural Heritage Management and Sustainable Development. “Low-Cost 3D

Scanning Systems for Cultural Heritage Documentation”. Gautier, Quentin; Garrison, Thomas;

Rushton, Ferrill; Bouck, Nicholas; Lo, Eric; Tueller, Peter; Schurgers, Curt; and Kastner, Ryan.

The dissertation author was the primary investigator and author of this material.

30

Chapter 2

FPGA Architectures for Real-Time Dense
SLAM

2.1 Introduction

Simultaneous localization and mapping (SLAM) algorithms provide a compelling so-

lution to create a three-dimensional representation of an environment, as well as tracking the

position of an agent within this environment. SLAM is a general technique with many funda-

mental applications beyond 3D scanning; it is useful in the fields of robotics, computer vision,

virtual/augmented reality, and many others. Ideally, a SLAM system works in real-time, provides

a detailed 3D map, uses minimal power, has a small physical footprint, and is low-cost. But

these are often conflicting constraints that create a complex design space.

Early SLAM algorithms dialed back the algorithmic complexity to achieve suitable

performance. For example, sparse SLAM algorithms consider a subset of sensor data and only

model the environmental information needed for navigation [31]. This was largely in response to

available resources, e.g., low-power compute platforms were not available, and sensors provided

relatively low bandwidth information. As the efficiency of compute platforms increased, SLAM

algorithms added the ability to model more complex environments. It is now possible to produce

a real-time detailed 3D model of the world using dense SLAM aka 3D reconstruction algorithms.

To work in real-time, these algorithms must process a high volume of information from large

amount of sensor data (cameras, depth sensors, IMU, LIDAR, etc.). These systems often carefully

31

leverage hardware acceleration techniques, e.g., by operating on GPUs and FPGAs [43, 118, 58].

In many applications, including robotics and cultural heritage documentation, the power

consumption of a SLAM system is critical. In the case of robotics, it is common for an agent

to provide its own power source (e.g., quadcopter drone). In the case of cultural heritage

documentation, many archaeological sites are located in remote areas with limited access to

power sources. In these cases, a SLAM system designer must implement a system that minimizes

power consumption. One solution is to run the algorithms on an FPGA hardware instead of a

general-purpose CPU or GPU. However, FPGAs are notoriously difficult to program, and one

must carefully design the hardware to reach the best tradeoffs between throughput and on-chip

area utilization.

Our ultimate goal is to determine the best way to implement dense SLAM using an

FPGA-accelerated system. This requires us to perform architectural optimizations to carefully

balance between resource usage, performance, and accuracy.

First, we propose a straightforward optimization of a dense SLAM application (Kinect Fu-

sion) on a large FPGA board by iteratively improving the architecture to reduce the running time,

and reach a single final architecture for one main component of the algorithm. Then, we analyze

a second application (InfiniTAM) that implements a different internal data structure, leading to an

increased flexibility in the possible optimizations on all the components. In this case, the space

of possible optimizations becomes very large, and very slow to explore. Compiling and testing a

single design can take multiple hours. As a result, we want to increase our understanding of the

effects of each optimization in an effort to improve the design space exploration of similar types

of applications.

In the context of the InfiniTAM algorithm, we develop a set of highly parameterized

architectures for each of the dense SLAM components (tracking, depth fusion, and ray casting).

Each component is outfitted with multiple optimizations that can be tuned to offer tradeoffs

between FPGA resource utilization, throughput, and quality of result. We compile thousands

of unique designs based on these optimizations, and run each of them on two representative

32

FPGA platforms. The first is the Terasic DE1 FPGA System-on-Chip (SoC), which is a low-cost,

low-power integrated system with an ARM processor and a small FPGA. The second is the

Terasic DE5 PCIe board, which has an FPGA that is approximately 7× larger than the FPGA

on the DE1. We provide an analysis of the resulting spaces to better understand the complex

relationship between the tuning parameters and the output architectures.

We develop the FPGA architectures using the Intel OpenCL SDK for FPGA, which

provides the flexibility to perform high-level design tradeoffs and eases the integration into

the existing dense SLAM frameworks. We develop a complete system capable of performing

real-time dense SLAM (Fig. 2.1) which is guided by our design space analysis. Our designs,

design space data, and analysis are made open-source [2] to facilitate follow-on work related to

SLAM, FPGA design, and hardware design space exploration.

The main contributions in this work are to provide:

• Highly optimized OpenCL FPGA code for the major components of dense SLAM.

• A new algorithm combining two major components of dense SLAM.

• A comprehensive parameterization of these implementations to easily target different

FPGA resources constraints and applications demands.

• A statistical analysis of the design space considering more than 2500 possible implementa-

tions with different resource utilization and performance.

In Section 2.2 we discuss related work on FPGA-accelerated SLAM. In Section 2.3, we

introduce the 3D Reconstruction framework and propose an architecture for the Kinect Fusion

algorithm on FPGA. In Section 2.4, we detail our multiple architectures of the InfiniTAM

algorithm. Section 2.5 shows the results of our design space exploration of InfiniTAM, and we

conclude in Section 2.6.

33

Figure 2.1. 3D model reconstructed in real-time on a DE1 FPGA SoC with the data transmitted
from a Google Tango tablet.

2.2 Related Work

SLAM is commonly deployed in applications that utilize high bandwidth sensors, require

real-time results, and have a limited power budget [57]. This has naturally pushed SLAM

designers towards hardware accelerated platforms.

FPGAs are a particularly attractive platform due to their power efficiency. For example,

the bottleneck in visual SLAM algorithms (i.e., using cameras as sensors) is feature detection

(detecting points of interest in an image) and feature extraction (encoding the visual features

for distance calculation). Ulusel et al. [111] analyze one feature detection algorithm (FAST)

and two feature extraction algorithms (BRIEF, BRISK) on embedded CPU, GPU, and FPGA.

Feature detection and extraction are common tasks in SLAM. Their results show that the FPGA

implementation outperforms the CPU and GPU in both power and performance.

The complexity of SLAM algorithms makes it difficult to implement an entire end-to-end

system utilizing solely an FPGA. FPGA SoCs are an appealing option as the algorithm can be

split across hardware and software. For example, Tertei and Devy [107] implement a version

of SLAM based upon an Extended Kalman Filter. They perform matrix multiplication on the

FPGA and the remainder of the algorithm in software. Nikolic et al. [88] build a visual-inertial

motion estimation system. They offload the feature detection (Harris corners / FAST corners)

34

onto the FPGA. Similarly, Aguilar-Gozalez et al. [6] describe an FPGA implementation of the

detection/extraction process to increase the number of features detected by standard feature

detection algorithms.

Other works utilize the FPGA for a larger portion of the application. The authors in [103]

implement a particle filter SLAM on the FPGA. The input comes from a sparse laser scanner

and the map is created as a simple occupancy grid. Another work implements a large portion of

the Scan-Matching Genetic SLAM (SMG-SLAM) algorithm [79] on an FPGA. SMG-SLAM

is similar to our algorithm, but takes its input from a sparse laser range finder. The result is

stored in an occupancy grid map with a resolution between 2 cm and 12 cm and a fairly low

number of grid cells (up to 724). While occupancy grids are an efficient map representation

for navigation purposes, other representations such as Signed Distance Function [29] are more

adapted to dense 3D reconstruction. More recently, Boikos and Bougnais [13, 14] accelerate

the semi-dense LSD-SLAM algorithm on an FPGA SoC achieving 22 frames per second on

a 320x240 input visual frame. We are able to handle denser environmental maps than these

projects.

2.3 FPGA Architectures for Kinect Fusion

Dense SLAM algorithms which focus on creating detailed 3D models are often classified

as real-time 3D reconstruction algorithms. We call 3D reconstruction any algorithm whose main

purpose is to create a realistic 3D model of an environment. Kinect Fusion [86] is a notorious

work in the domain of real-time 3D reconstruction based on low-cost RGB-D (RGB + Depth)

camera sensor.

Our first investigation to port dense 3D reconstruction on FPGA is based on Kinect Fusion.

We present the main components of this application, which have been reused and extended by

many other works since Kinect Fusion, such as the InfiniTAM algorithm that we use for our

second set of experiments (Section 2.4). In this section, we also describe our partial FPGA

35

implementation of this algorithm, the results and conclusions that we obtained by running the

application on multiple hardwares.

2.3.1 Dense SLAM Overview

This work is based on Kinfu, an open-source implementation of Kinect Fusion that exists

within the PCL library [97]. Kinfu runs its major components on a GPU by using the CUDA

programming language. Fig. 2.2 illustrates the 3D Reconstruction framework used in Kinfu. It

takes as input a depth map from an RGB-D camera (e.g., the Microsoft Kinect) and processes

this depth map through three main modules:

• Tracking estimates the camera’s position in 3D space based upon the current depth map

and previous data.

• Depth Fusion (also called Volumetric Integration) integrates the input depth map into the

current 3D model.

• Ray Casting fetches a 2D view of the model (Voxel Map) at the current camera pose.

This is an iterative algorithm where the three modules run every frame, and thus they

must run quickly if real-time behavior is required. Below we give a brief description of the major

components of the system, with more details in the original paper.

Map Representation

The 3D model is stored in a grid of voxels using the Truncated Signed Distance Function

(TSDF) [29]. TSDF represents the world as a set of voxels. Each voxel records the distance to

the nearest surface, along with a weight value to encode a confidence. The distance is normalized

to a maximum value called truncation distance. The PCL implementation of Kinect Fusion

instantiates a 3D grid of voxels of size 512× 512× 512 that represents a real space of size

3m×3m×3m. The grid is created at the initialization of the algorithm and cannot move; as a

result, the model must be contained within this area. Additionally, all the voxels are instantiated,

36

Tracking (ICP)

Ray Casting
Pre-

processing
Raycast

Post-
processing

Depth Fusion
Pre-

processing
FusionVoxel

Map

3D Model
(TSDF Volume)

Depth
Map

6DoF Transformation

Figure 2.2. 3D Reconstruction workflow. Each iteration of the algorithm takes the depth map
from the RGB-D camera as input, then goes through three steps: ICP, Depth Fusion, and Ray
Casting. The overall process is the same on Kinect Fusion and InfiniTAM. The pre-processing
steps only exist in InfiniTAM.

regardless of whether they have received sensor information or not. They are organized into a

plain 3D grid, accessible by a regular set of (x,y,z) coordinates.

Depth Fusion

The depth fusion algorithm iterates over all the voxels in the 3D grid. Each voxel is

projected into the depth map, the distance to the camera center is compared to the depth map

value, and if the two distances are within the truncation distance, the voxel’s current distance to

the surface is merged with the old distance value using a weighted average.

Ray Casting

The ray casting algorithm consists of sending a ray from each pixel of a 2D view into

the 3D TSDF model, to find a zero-crossing (a point where the distance to the nearest surface

varies from positive to negative). The resulting distance is saved as a 3D point in a Voxel Map.

A post-processing step estimates a surface normal for each resulting 3D point, and optionally

calculates a color intensity on each point for display purposes.

37

Tracking

Tracking is based on 3D registration with the Iterative Closest Point (ICP) algorithm [9].

ICP finds the optimal alignment between the input depth map and the 2D projection of the current

model from the last camera position (the output of Ray Casting). The calculated transformation

between these two inputs represents the motion between the previous and the current frame.

The details of this particular implementation of ICP are presented in the original Kinect Fusion

paper [86].

2.3.2 Iterative Closest Point (ICP) on FPGA

The particular version of the Iterative Closest Point algorithm that is used in Kinfu is

presented in [56, 86]. We also provide an algorithm listing to explain the process (Algorithm 1).

Note that this listing is based on the InfiniTAM implementation of ICP (Section 2.4), but it is

functionally equivalent. The main difference is that the original GPU implementation in Kinfu is

divided into two kernels, the second one taking care of summing all values together (line 13).

The ICP algorithm aligns the current depth map with the Voxel Map calculated in the

previous Ray Casting iteration. It finds pairs of corresponding points by 1) projecting points from

the previous and the current voxel maps into a common 2D frame (lines 5 to 8), and 2) comparing

the distance and angle between pairs against threshold values to determine if they are inliers

or outliers (line 10). The distance and angle between corresponding points are turned into a

system of equations represented by two triangular matrices H and ∇. These matrices are summed

together over all points, and are solved on the CPU to update the global transformation matrix

between the frames. The initial transformation matrix is set to the transformation of the previous

frame, then updated at each iteration. ICP operates on multiple resolutions of the input data

(original resolution, half resolution on each axis, and a quarter resolution on each axis).

We first ported the original CUDA implementations of ICP to OpenCL by keeping the

same structures and features, with minimal differences. We consider that the OpenCL version is

38

Algorithm 1: ICP Algorithm
Input :Depth map; Voxel Map; Normal Map

1 Initialize Hg and ∇g to 0
2 for each pixel (x,y) do
3 Fetch depth D at (x,y)
4 if D = 0 then continue ;
5 Transform D with current estimated pose→ pcur
6 Project pcur into 2D view→ (i, j)
7 if (i, j) not valid then continue ;
8 Fetch 3D point from Voxel Map at (i, j)→ pprev
9 if pprev not valid then continue ;

10 if distance(pprev, pcur)> threshold then continue ;
11 Fetch 3D normal from Normal Map at (i, j)→ nprev
12 Calculate Hl and ∇l
13 Accumulate Hl and ∇l into Hg and ∇g

14 end
15 Save Hg and ∇g into global memory

Output :Hg and ∇g

the baseline implementation. Then, we made incremental modifications to better optimize the

algorithm on FPGA. We present the different steps that we took to optimize the ICP algorithm.

Baseline implementation

The original GPU code for ICP is divided into the search kernel that calculates the

correspondence between every points, and the reduction kernel that sums the transformation

of all the corresponding points. The summation is done with a tree reduction that uses shared

memory and synchronization between compute units.

Kernel specialization

We first moved the entire tree reduction to the second kernel (specialize kernels in

Figure 2.3). This removed a lot of thread synchronization in the search kernel and resulted in

a better overall performance. However the data had to be transferred through global memory,

which became a bottleneck due to large bandwidth requirements.

39

Loop unrolling and index dependency

The original code used a double nested loop, where one index was function of the other.

This resulted in poor optimization from the compiler. We removed the index dependencies and

unrolled the loops manually (as it used slightly less board space than using OpenCL pragma

unroll). Figure 2.3 presents the improvement of both modifications separately.

Tune reduction parameter

In the original GPU-style tree reduction, 512 work-items ran an individual summation of

their own data, then a tree reduction was performed in local memory to get the final sum. We

reduced the number of work-items to a number of 64 obtained experimentally to get much better

performance. However we ultimately replaced the entire tree reduction as seen below.

Altera channels and shift registers

The GPU-style reduction was very inefficient on a FPGA, mainly because of the large

data transfer through global memory. The access time and bandwidth limitation of this memory

was slowing down both kernels. To remove this unnecessary access, we used Altera OpenCL

channels. Channels are created in hardware as simple FIFO queues that can transfer data between

kernels in 1 cycle per value. We used 27 of them to transfer the transformation vectors of 27

values to the reduction kernel. We tried to implement 27 independent reduction kernels, but

found out that a single one was performing much better. We implemented it as an OpenCL task

(single execution unit) to take advantage of loop pipelining provided by the compiler. To remove

the inherent data dependency of a summation, we used a shift register. Shift registers have to

be implemented manually by looping through the data, but this structure is recognized by the

compiler and implemented efficiently in hardware. We used a 32 elements-wide shift register,

and we chose the depth to be 8 values based on performance estimations. These techniques

decreased the running time by 55%.

40

Other optimizations

a) We used compiler flags to optimize floating-point operations by reordering. b) We

simplified the indexing of input arrays for the compiler to perform more aggressive optimizations.

c) We changed the layout of the input data from Structure of Arrays to Array of Structures to

take advantage of a 512-bits wide global memory access. d) We experimented with fixed-point

arithmetic, however there is no native support in OpenCL for this format and this resulted in

suboptimal design that did not fit on the FPGA board. Also, this implementation of ICP performs

operations on both large and small numbers. This made it impractical to choose appropriate

precisions for the integer and decimal parts without losing overall accuracy. e) We could not use

SIMD operations or duplicated compute units because Altera channels cannot be vectorized, and

because the ICP algorithm was using too much area on the board.

2.3.3 Depth Fusion and Ray Casting

Depth Fusion and Ray Casting are algorithms that interact with the 3D model to either

retrieve or store information. Depth Fusion merges data from the depth map into the 3D model,

and Ray Casting fetches 3D points from this same model. The 3D model is represented by a

TSDF volume, and implemented with a grid of 512×512×512 voxels. This large data structure

is an issue on FPGA as it must stay in the external memory, and the total bandwidth between the

FPGA and the memory is limited. Data caching is generally not an option without completely

changing the behavior of both algorithms. Depth Fusion must step through every single voxel,

which creates a large memory bottleneck. Ray Casting does not access all the voxels, however

the access pattern is very irregular and difficult to cache without a dedicated pre-processing step.

One solution to mitigate this issue is to reduce the size of the grid. However, this solution

would severely limit either the voxel resolution or the map size. The data structure would need

to be reorganized for an efficient access by a different hardware than a GPU. For these reasons,

we only implemented a baseline version of Depth Fusion with basic optimizations, and did not

41

49.20

15.40

10.70

11.50

3.14

3.58

3.20

0.55

27.40

25.60

5.50

5.00

0.02

0.02

0 10 20 30 40 50

Original GPU code

Specialize kernels

Remove loop index dependency

Tune reduction parameter

Unroll loop

Use channels & shift registers

Change data layout

Running time (ms)ICP performance after tuning the code

Search kernel

Reduction kernel

Figure 2.3. Running time of 1 iteration of ICP at full resolution for the major modifications made
to the baseline GPU implementation. The modifications are cumulative. The search kernel is
the part of the algorithm that compares every vertex to find corresponding points. The reduction
kernel sums the equation matrices for all the points.

investigate the Ray Casting algorithm further in the context of this application.

2.3.4 Kinect Fusion Running Time

First we measured the performance of each algorithm running on its own, using a set

of fixed input data. Then we integrated the tuned implementations into the complete Kinfu

application. We ran the original and modified application on a desktop computer with an Intel

i7-4960X CPU, a NVidia GTX 760 GPU, and a Terasic DE5 board with an Altera Stratix V

FPGA.

ICP

We measured the running time of ICP for one iteration at full resolution. The baseline

FPGA implementation takes 49.9 ms on a FPGA. After tuning the code, we decreased the time

to 3.22 ms on the FPGA with a clock frequency of 197 MHz. The running time of intermediate

versions of the code are summarized in Fig. 2.3. However we could not achieve one cycle

per element because of several factors, including reads from unpredictable locations in global

memory. We reduced the impact of these reads by grouping the elements, reducing the number

of memory accesses, but it was not possible to make use of local memory since there is no

data reuse. The execution pipeline is also delayed by multiple floating-point computations with

42

dependencies, including divisions and square root functions. Another big limitation is the area

utilization. Because ICP uses around 78% of the board logic, we could not integrate another

algorithm on the same hardware.

Depth Fusion

Our basic implementation of Depth Fusion runs on the FPGA in 100 ms, which is very

slow compared to the rest of the application. The algorithm performs operations on 512 MB of

data and there is little data reuse to optimize memory access. Transferring the data back and

forth from the FPGA to the GPU would take too long and would require too much bandwidth

(15 GB per second) to justify any peformance increases from the Altera compiler and the FPGA.

The baseline version of volumetric integration used 89% of the board logic, which precluded

placing the VI kernel on the same board as the ICP kernel.

Integration with Kinfu

We ran the Kinfu application on the GPU and FPGA described above. Due to the area

limitation discussed before, we could only run one algorithm on the FPGA (Depth Fusion or

ICP) and the rest of the project on the GPU. For the Depth Fusion algorithm, we realized that the

data transfers between the GPU and the FPGA would take a significant portion of time, because

the amount of data copied back to and from the FPGA totals over 512 MB. Given that, achieving

a real-time solution for the resolution of 512x512x512 could not be accomplished in real-time.

For ICP, we had to copy the voxel and normal maps of two frames from the GPU memory to

the FPGA off-chip memory. Even with aligned memory buffer on the host, this took around

18 ms and the entire ICP process 37.8 ms. The entire project ran at 13.5 FPS in average. To

get a real-time performance, we removed the high-resolution input data and ran 12 iterations

at 320x240 and 8 iterations at 160x120. The memory transfer took around 5 ms and the ICP

algorithm ran in 13.5 ms with no noticeable accuracy loss. The entire system (ICP on FPGA,

everything else on GPU) was running at 26-28 FPS.

43

2.4 FPGA Architectures for InfiniTAM

We create FPGA architectures for the SLAM framework called InfiniTAM [58] which is

itself derived from Kinect Fusion, and runs on a multicore CPU or on a GPU

2.4.1 Overview

InfiniTAM follows the same process as Kinect Fusion (Fig. 2.2), but the main difference

is the utilization of a hash table to store the TSDF representation of the 3D model. A hash table

is an efficient way of storing a TSDF volume by only keeping non-empty voxels. Moreover, hash

tables are shown to perform very efficiently on FPGAs [55, 110] in terms of memory accesses.

InfiniTAM leverages the voxel hashing representation of [87], with a hash function based on

the coordinates. The hash table actually references blocks of 8×8×8 voxels, while the actual

voxels are stored in a flat memory buffer.

Additionally, InfiniTAM presents a few more differences with respect to Kinect Fusion.

The Depth Fusion and Ray Casting algorithms contain a pre-processing step that leverages the

hash table to limit the number of voxels used in the actual computation. The ICP algorithm is

almost identical with the addition of an option to solve the transformation for rotation only or

translation only.

In this section, we describe our proposed FPGA architectures for the main components of

InfiniTAM, along with the optimization options that we enable. We focus on the core algorithms,

without pre- or post-processing steps. For each algorithm, we develop parameterized OpenCL

code that is synthesized to an FPGA using the Intel FPGA OpenCL SDK. Different optimizations

are enabled, disabled, and tuned using parameters, also called knobs for design space exploration

purposes [74, 77]. We define many knobs (e.g., loop unroll factor, memory layout, etc.) that

generate designs with different performance, resource usage, and accuracy. In the following, we

describe the OpenCL implementations for each algorithm, with a focus on the key optimization

knobs that we analyze in Section 2.5.

44

We also propose a new algorithm that combines Depth Fusion and Ray Casting to improve

throughput. We refer to this algorithm as the Combined Kernel.

2.4.2 Depth Fusion

The Depth Fusion algorithm takes as input the depth map, a list of hash table entries

indexes, the hash table, and the buffer containing actual voxel data. The algorithm contains an

outer loop to process each hash table entry (block), and an inner loop to process the 512 voxels

inside each block. In the following, we describe how we modified this implementation with

FPGA-specific optimizations.

Loop Optimizations

The OpenCL compiler offers multiple options to implement loops. This includes using

OpenCL work-items (WI) (on FPGA, a WI is generally interpreted as a single – data-dependency

free – stage of a pipelined loop), a simple for loop that automatically gets pipelined, or work-

groups (groups of WI) that enable coarse-grained parallelism. We provide knobs to switch

between these representations. The coarse-grain parallelism enabled with work-groups is an

OpenCL feature called compute units. Each compute unit is a duplication of the kernel to increase

the parallelism and thus easily scale the task on larger devices. We provide another knob to

control the number of compute units.

Memory Optimizations

Input buffers can be cached using local memory, which has better latency for non-

predictable accesses, such as depth map indexing. We implement a knob to optionally pre-load

the depth map into local memory in a predictable way. In this case, the depth size must be

fixed (another knob) and the design uses more BRAMs. Lastly, to prevent a potential memory

bottleneck when accessing voxels, we implement a knob to cache one block of voxels in local

memory for reading and optionally for writing.

45

Additional Optimizations

We also provide knobs to control the unrolling factors on various loops. Another knob

controls the placement of a branch condition, which either groups voxel accesses together or

keeps an early branch to potentially terminate the loop earlier.

2.4.3 Ray Casting

The Ray Casting algorithm iterates over the pixels of a 2D view to project 3D information

into that view. For each pixel, it steps along a 3D ray and reads the distance value from the

hash table until that distance becomes negative. Then the algorithm refines the location of the

surface by stepping backwards along the ray using interpolated distance values. Estimations of

the starting and ending points of the ray are pre-calculated in a downsampled min/max input map.

The output is a Voxel Map, an organized point cloud containing one 3D point per pixel.

Memory Optimizations

The data access pattern is complex and non-contiguous particularly when fetching voxel

data. Consecutive accesses to the same data can be manually cached, and the compiler also

provides an automatic cache mechanism. We provide knobs to enable/disable these caches,

which provides tradeoffs between BRAM usage and cache speedup. The interpolation fetches 8

different values for averaging. We provide the option to disable this interpolation, which may

decrease the overall quality of the SLAM system. Finally, the algorithm ends with a Refine step

that creates another voxel data access. We can disable it with a knob. These last two knobs are

often necessary to save logic elements and fit the kernel on smaller devices.

Other Optimizations

Just like Depth Fusion, we can also switch between a for loop and work-items for the

outer loop, and we have the option to fix the 2D image size to simplify some calculations. We

can also remove some coordinate system transformations and memory accesses by simplifying

46

Algorithm 2: Combined Algorithm
Input :Depth Map; Visible blocks IDs; Hash table; Voxel Buffer; Truncation

threshold µ

1 for each visible block ID do
2 Fetch block B from hash table
3 From B, fetch pointer to voxel block in voxel buffer
4 for each voxel V = (x,y,z) in the voxel block do
5 (gx,gy,gz)← Calculate global coordinates of V
6 (cx,cy,cz)← (gx,gy,gz) to camera view
7 (i, j)← Project (cx,cy,cz) into 2D image
8 D← Get depth at (i, j)
9 (w,d)← Fetch weight and distance from V

10 if w 6 wmax or |cz−D|6 µ then
11 (w′,d′)← New weight and distance
12 Store new voxel V ← (w′,d′)
13 end
14 d← Fetch distance from V
15 if |d|< ProjectionMap[i,j] then
16 cz← cz +d
17 (x,y,z)← (cx,cy,cz) to global coord.
18 Save (x,y,x) position into Voxel Map
19 ProjectionMap[i,j]← |d|
20 end
21 end
22 end

the start and end points of the ray. The ray can start at a depth of 0, and end at the maximum

sensor range, which makes an assumption about the input data. We keep both options as knobs.

2.4.4 Combining Depth Fusion and Ray Casting

Ray Casting provides a view of the fused 3D model at the current position, and as such,

accesses most of the voxels that have just been updated by Depth Fusion. Thus, it is beneficial

to combine both steps into one coordinated process. However these two steps process data in

opposite directions. Depth Fusion projects 3D voxels into a 2D view, while Ray Casting sends

rays from the 2D view into the 3D volume. Depth Fusion is more efficient as it involves less

memory accesses due to the pre-processing step. We create a Combined kernel by integrating

47

Ray Casting into Depth Fusion. We implement the uninterpolated and unrefined version of Ray

Casting to avoid significant random accesses to the hash table and the voxel data. The main

issue arises when Depth Fusion projects multiple points on the same pixel. Because we lose the

sequential aspect of the Ray Casting algorithm, we need a way to select which distance (d) to

keep on each pixel.

The Combined algorithm is presented in Algorithm 2. There are two computation blocks:

the Depth Fusion block at line 10, and the Ray Casting block at line 15. The Depth Fusion

is similar to the orginal implementation. The Ray Casting block writes the distance d of the

current voxel to a projection map which is the same size as the 2D image view. The goal of the

projection map is to save only the smallest d in the projected pixel. When a new distance dnew is

projected into the map, it is saved only if |dnew|< |d|, at which point the Voxel Map is updated

with the new point. This creates a dependency between iterations that is difficult to avoid without

duplicating the entire projection map.

Optimizations

This implementation mostly uses the same knobs as Depth Fusion with some restrictions.

We restrict the outer and inner loops to be implemented as for loops only. We add the possibility

of implementing the inner loop as work-items, which in the OpenCL model creates a race

condition on the projection map. On FPGA, this race condition occurs depending on the depth

of the pipeline, which can create a small loss of precision in the result. We also add a knob to

use either local or external memory for the projection map.

2.4.5 Iterative Closest Point (ICP)

ICP aligns the current depth map with the Voxel Map from Ray Casting. It finds pairs

of corresponding points by projecting them into a common 2D frame and rejecting candidate

pairs based on threshold values. The distance and angle between pairs of points are turned into a

system of equations represented by two triangular matrices H and ∇. These matrices are summed

48

together over all points and solved on the CPU to update a global transformation matrix. ICP has

the option to solve for rotation or translation only, which uses smaller H and ∇ matrices. We

propose a number of optimizations for the FPGA implementation.

Interpolation

The 3D points and 3D normals from the depth map and Voxel Map can be read with

bilinear interpolation. These interpolations can be disabled with knobs.

Branching

This kernel has a lot of branches and therefore a lot of control logic. It contain branches to

differentiate between long and short iterations, i.e., whether we solve for rotation and translation,

or only one component. We implement a knob to disable these branches, and fully calculate the

matrices even for short iterations. This helps reduce the resource utilization.

Accumulation

This kernel has a lot of data dependency between each iteration due to the matrices need-

ing to be summed together. We implement multiple shift registers to decrease this dependency.

To balance between speed and logic utilization, we provide knobs to enable shift registers and

control their size. In the case where we do not use shift registers, we implement knobs which

unroll the computation and accumulation of the matrices to decrease the latency.

2.5 Experimental Results And Analysis

In this section, we analyze the effects of the various hardware optimizations to provide

insight on how to design architectures for real-time dense SLAM systems. To ground our design

process in reality, we focus on two different FPGA platforms – an embedded FPGA SoC and a

higher performance PCIe FPGA system.

49

Table 2.1. Summary of the knobs for all four algorithms, along with their names used in
Section 2.5

Depth Fusion Ray Casting

Name Description Name Description

ComputeUnits Num. compute units Interpolate Enable interpolation
XyzLoop Inner loop type Refine Enable refine step
EntryIdLoop Outer loop type IndexCache Voxel access cache
EntryIdNumWI Outer loop num. WI HashCLcache Hash access cache (auto)
HardcodeSize Hardcode depth size VoxelCLcache Voxel access cache (auto)
CacheVoxels Voxels block cache HardcodeSize Hardcode image size
XyzLoopFlat Flatten inner loop UseWi Outer loop type
XyzUnroll Unroll inner loop Minmax Simplify start/end of ray
EntryIdUnroll Unroll outer loop
DepthLocal Depth map cache
BranchPos Condition placement

ICP Combined

Name Description Name Description

PointInterp Point interpolation - Same knobs as Depth Fusion
NormalInterp Normal interpolation SdfLocal Projection map cache
NablaSumtype How ∇ is summed
HessianSumtype How H is summed
Branch Enable branching
NablaUnroll ∇ sum - unroll factor
HessianUnroll H sum - unroll factor
ShiftRegister Size of shift registers

50

2.5.1 Experimental Setup

We implement the full end-to-end InfiniTAM application on: 1) a Terasic DE1-SoC board

with a Cyclone V FPGA and a dual-core ARM Cortex A9 processor, and 2) a Terasic DE5 PCIe

board with a Stratix V FPGA, connected to a workstation with an x64 quad-core i7-4790K CPU.

We write all of our kernels using OpenCL, compile them with the Intel FPGA OpenCL

SDK v16.1, and integrate them into the InfiniTAMv2 code base. Each combination of knobs

in our kernels produces a unique design. We choose reasonable values for knobs by selecting

mostly powers of two and values likely to generate a small design, considering the smallest

FPGA. In total, we have compiled more than 480 unique designs across all algorithms for the

DE1 FPGA, and more than 2600 for the DE5 FPGA.

For most of our experiments, we fix the input depth map size to QVGA (320x240), with a

few designs compiled for an input size of 320x180. To test and measure the performance of the

kernels, we use the following benchmarks from the standard TUM RGB-D SLAM dataset [105]:

fr1/desk, fr1/360 and fr1/room. We also use a custom dataset (Cave) made from data collected

with a Google Tango tablet in an underground cave environment. We set the TSDF voxel size to

1 cm, which is comparable to the depth resolution of the sensor used in the benchmarks.

We record the running time of different modules of InfiniTAM. Due to the limited amount

of shared memory that can be allocated on the SoC board, our kernels are configured to handle a

limited amount of data in the 3D model. We run each benchmark for a specific number of frames

(fr1/desk: 595; fr1/room: 700; fr1/360: 440; cave: 400). Below we present the results of this

design space exploration, combining FPGA logic utilization and running time.

2.5.2 FPGA SoC Design

Here we describe a fully functional dense SLAM system running on a small Cyclone V

FPGA SoC. Consequently, we want to focus on designs that have low resource usage while still

maintaining real-time performance. To do this, we perform comprehensive analysis of the design

51

(a)

0.5 1.0
Total Throughput (Hz)

50

75

100
Lo

gi
c

U
ti

liz
at

io
n

(%
)

Depth Fusion
Raycasting
Combined
ICP

Entire application throughput (b)

0.0 0.2 0.4 0.6 0.8 1.0
Throughput (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

Lo
gi

c
U

ti
liz

at
io

n
(%

)

0 50

50

75

2.5 5.0
70
80
90

0 10
60

80

1.5 2.0 2.5

80
90

Individual algorithm throughput

Figure 2.4. Design spaces of InfiniTAM running on the DE1 board with the Room benchmark.
(a) plots the throughput of the entire application when running the selected algorithm on FPGA;
(b) plots the throughput of individual algorithms. The y axis shows the logic utilization of
individual algorithms.

spaces for the different dense SLAM components.

Fig. 2.4 illustrates the design spaces on one of our benchmarks (room). Fig. 2.4(a) shows

the total frame rate of the application when running different designs of different modules on

FPGA, and Fig. 2.4(b) shows the throughput measured individually on each design.

ICP has the worse individual throughput overall and does not contribute to decrease the

total running time of the application. The best versions of Depth Fusion and Raycasting both

increase the total throughput and the Combined algorithm provides the highest total throughput.

This highlights the benefit of combining Depth Fusion and Ray Casting into a single kernel as

the individual kernels cannot both fit on the device.

Throughput

Table 2.2 presents the lowest running times for each benchmark, on the dual-core

ARM processor with OpenMP (Baseline) and with one module accelerated on FPGA. We

use RaycastO3, which is the Ray Casting algorithm without the interpolation and refine steps.

As we implement these optimizations on FPGA, we also transpose them to CPU for a fair

comparison. The Combined algorithm is compared to the added time of Depth Fusion and

RaycastO3 on ARM.

52

Table 2.2. Comparison of the lowest running times of different kernels running on the DE1 SoC
board. Each row compares the algorithm running on the ARM processor of the DE1 (top, in ms)
and on the FPGA (bottom, in ms).

Cave Desk 360 Room

Depth
Fusion

702.25 425.75 573.90 508.89
18.09 (38.8×) 13.47 (31.6×) 16.80 (34.2×) 15.71 (32.4×)

RaycastO3
522.66 538.92 455.15 448.64
35.21 (14.8×) 30.49 (17.7×) 26.53 (17.2×) 28.34 (15.8×)

Combined
1224.91 964.67 1029.05 957.53
78.29 (15.6×) 89.41 (10.8×) 85.08 (12.1×) 84.92 (11.3×)

ICP
348.35 537.88 508.22 557.56
265.84 (1.3×) 357.57 (1.5×) 330.29 (1.5×) 368.87 (1.5×)

0

0.5

1

1.5

Cave Desk 360 Room

Th
ro

u
gh

p
u

t
(H

z)

ARM Baseline ARM RaycastingO3 ARM Combined
Depth Fusion Raycasting CombinedDepth Fusion Raycasting Combined ICP

Figure 2.5. Comparison of the average total frame rate between different versions of the
application running on the DE1: running on ARM only, or the best versions accelerated on the
FPGA. We present the results for different benchmarks.

The Depth Fusion algorithm presents the highest acceleration (up to 38×, or 34× for the

TUM benchmarks). ICP is not very well accelerated because the designs implementing shift

registers could not fit on this device, but the Combined kernel, replacing two of the three main

algorithms, is accelerated more than 10×.

Fig. 2.5 shows the average throughput in frames per second (FPS) for each benchmark.

We compare the different baseline versions (without modifications, with RaycastingO3, with the

Combined algorithm) and the fastest FPGA versions. We achieve the best throughput with the

Combined kernel, but Depth Fusion and Ray Casting are also faster than the baseline. We can

achieve up to 1.55 FPS at 320x180, and up to 1.22 FPS at 320x240, which is faster than the CPU

version (up to 0.49 and 0.65 FPS respectively).

53

LASSO Analysis

We perform a statistical analysis to better understand the impact of knobs on each design

space. We use the LASSO operator [109] which creates a least square regression model over

the knob values that best fits the objective curve (throughput, logic). LASSO can create sparse

models by forcing knobs with a small contribution to the model to zero with an alpha parameter

(a larger alpha will force more coefficients to zero). We perform a cross-validated search for

the alpha that yields a model with the smallest Mean Squared Error (MSE). The result of this

analysis is a coefficient for each knob, which represents a relative contribution for this knob to

the linear model. A larger coefficient indicates a higher correlation between the knob value and

the constructed model. We focus our analysis on the throughput factor and we only present a

summary of the results. Our complete data and scripts for a deeper analysis is available in our

repository.

For each algorithm, we choose as inputs all the knobs and their 2nd degree polynomial

interactions to account for the non-linearity of certain knobs. We vary alpha, compute the model

for each alpha, and find the model with the best MSE. Using the knobs without polynomial

interactions leads to a higher MSE for most design spaces, which indicates a certain degree of

non-linearity in the influence of knobs over the hardware architecture. We present the knobs

with the highest coefficients for the models with the lowest MSE in Table 2.3.

The dominant knobs are directly related to the implementation of a loop (XyzLoop in

Depth Fusion / Combined; UseWI in Ray Casting). Using work-items has a great influence on

the throughput when compared to using a for loop. The compiler is able to infer a better pipeline

with work-items without dependency between iterations and an minimal initiation interval.

Other important knobs are generally related to memory caching. Depth Fusion, Raycasting,

and Combined all benefit from caching depth or voxel data in the local memory and these

mechanisms have a large impact on the running time. The ICP and Combined algorithms are

notably different. In the case of ICP, using shift registers to sum large vectors together requires

54

Table 2.3. LASSO analysis of throughput on the DE1 SoC board for the Room benchmark. We
take the models with the minimum mean squared error (MSE), and show the 5 knob features
with the largest contribution to that model. The knob names are summarized in Table 2.1.

Depth Fusion (Min MSE = 0.0075) Raycasting (Min MSE = 0.0010)

Knob Coef Knob Coef

XyzLoop2 0.130 UseWI 0.261
CacheVoxels2 0.067 VoxelClcache2 0.152
CacheVoxels 0.031 Minmax 0.075
XyzUnroll2 0.031 IndexCache,UseWi 0.071
CacheVoxels,XyzLoopFlat -0.023 HashClcache2 0.055

ICP (Min MSE = 0.0054) Combined (Min MSE = 10−6)

HessianUnroll 0.336 XyzLoop2 0.155
NablaUnroll 0.040 XyzLoop 0.051
Branch NablaSumtype 0.023 XyzLoop,VoxelCache -0.001
NablaSumtype 0.022 XyzFlat 0.001
HessianUnroll,NablaSumtype 0.016 VoxelOutUnroll2 -0.001

a large amount of resources, and the designs using this optimization cannot fit on the small

FPGA. As a result, the remaining designs are very sensitive to the amount of unrolling that is

used to paralellize the vector accumulation. This situation leads to a much slower running time

(Table 2.2). The Combined kernel is also quite complex and certain memory optimizations do

not fit on the Cyclone V FPGA. Consequently, the run time is largely dominated by the loop

implementation knob: using work-items speeds up the algorithm, while other knobs impact the

running time very little.

2.5.3 PCIe FPGA Design

We compile the algorithms on a DE5 board with a Stratix V FPGA, which is about 7

times larger than the DE1 FPGA (comparing Logic Elements, as defined by Intel). We perform a

design space exploration to understand how the algorithms scale to a larger device, especially

with respect to runtime.

Fig. 2.6 shows the design spaces of individual algorithms and of the entire application

running on the Room benchmark. The differences with the DE1 design spaces are mostly due to

55

(a)

0 20 40
Total Throughput (Hz)

20

40

60
Lo

gi
c

U
ti

liz
at

io
n

(%
)

Depth Fusion
Raycasting
Combined
ICP

Entire application throughput (b)

0.0 0.2 0.4 0.6 0.8 1.0
Throughput (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

Lo
gi

c
U

ti
liz

at
io

n
(%

)

0 200

30
40

0 100

40

60

0 100

30
40
50

0 1000

40

60

Individual algorithm throughput

Figure 2.6. Design spaces of InfiniTAM running on the DE5 board with the Room benchmark.

0.1

1

10

100

1000

Depth Fusion Ray Casting Combined ICP TotalTh
ro

u
gh

p
u

t
(H

z)

ARM Best (indiv.) DE1 Best (indiv.) x64 Best (indiv.)

DE5 Best (ICP+DF+RC) DE5 Best (ICP+Combined) DE5 Best (indiv.)

Figure 2.7. Comparison of the best frame rate for individual algorithms and the entire application.
We compare the best results on both DE1 and DE5 hardware setups, including the processor
and FPGA results. On the DE5, we use bitstreams implementing either multiple algorithms
(ICP+DF+RC / ICP+Combined) or only one (indiv.).

the designs that do not fit on the smaller device. The logic utilization is generally low because

most of the optimizations were focused on reducing this value to fit on the SoC chip. ICP

produces a particularly different design space. There is a clear tradeoff between running time

and logic utilization, which means that the most efficient designs have a high utilization and

cannot be implemented on a smaller FPGA. The ICP algorithm clearly takes advantage of the

increased number of registers on the Stratix V FPGA. Because it is computation-bound, it can

be drastically sped up by using a large number of shift registers. Fig. 2.6(a) highlights the most

efficient design tradeoffs for the entire application. While the application is not optimized for the

DE5 board, we can see that using the Combined designs is generally faster.

We also compare the throughput improvement from the best designs on the DE1 to the

designs on the DE5. We extend the design space exploration of individual kernels and compile

56

Table 2.4. LASSO analysis of throughput on the DE5.

Depth Fusion (Min MSE = 0.010) Raycast (Min MSE = 0.003)

Knob Coef Knob Coef

XyzLoop2 0.047 HashCLCache2 0.152
XyzLoop,DepthLocal -0.039 UseWI 0.116
ComputeUnits,DepthLocal -0.039 Minmax 0.088
EntryidLoop,DepthLocal -0.034 IndexCache2 0.085
CacheVoxels 0.029 Minmax2 0.055

ICP (Min MSE = 0.007) Combined (Min MSE = 0.0016)

HessianSumtype 0.056 XyzLoop2 0.061
NablaSumtype 0.054 SdfLocal,XyzLoop -0.024
NablaSumtype,ShiftRegister 0.047 SdfLocal,XyzUnroll -0.012
HessianUnroll 0.038 SdfLocal,XyzFlat 0.012
HessianUnroll,HessianSumtype 0.033 XyzUnroll -0.010

two other types of bitstreams: one containing Depth Fusion, Ray Casting and ICP (DF+RC+ICP),

and one with the Combined kernel and ICP (Combined+ICP). A full design space exploration

of multiple kernels would lead to millions of unique combinations, so we only compile a few

combinations of Pareto-optimal designs. We report the best performance of each algorithm for

the different types of bitstreams (DF+RC+ICP, Combined+ICP), and individual algorithms in

Fig. 2.7. In this figure, we compare the best throughput results between the DE1 FPGA, DE1

processor, DE5 FPGA, and DE5 processor, for individual algorithms and the entire application

on the Room benchmark. Depth Fusion is improved by 3.6×, Ray Casting 4.8×, Combined

13.1×, and ICP is accelerated by 425.2×. The entire application runs at up to 44 FPS.

LASSO Analysis

We perform a LASSO analysis on these design spaces to better understand the importance

of knobs on larger and more complex architectures. Table 2.4 presents the summary of our

LASSO analysis on the Room benchmark. In general, the throughput is harder to model on

these larger spaces. There are more knob values and interactions, and as a result, the MSE is

slightly higher for all algorithms. The general principles defined from the DE1 LASSO analysis

57

still apply, as the type of loop implementation still has a great influence on the throughput,

and memory caching is another useful optimization. The Combined algorithm has a large data

dependency which is removed when using work-items, which tends to change the accuracy result.

ICP is much less memory bound, and this fact is reflected in the knob coefficients, which tend to

give weights to the knobs affecting the summation of data.

2.5.4 Real-Time Experiments

To test our implementation in a real environment using a complete system, we use a

Google Tango tablet as both a depth camera and a screen to display real-time feedback. The

Google Tango implements a light network client that only sends depth data and receives an

image for display. The DE1 board receives, processes, and sends the data back through the

wired/wireless network. We run the fastest Combined kernel from our design space exploration

on the FPGA. We scan an office desk for about 1 minute (100 frames) and obtain the result

shown in Fig. 2.1. In average, each frame took 505 ms to process (almost 2 FPS).

2.6 Conclusion

We have described implementations of dense SLAM on an FPGA, outlining the potential

hardware optimizations for the sub-algorithms (Tracking, Depth Fusion, and Ray Casting). We

have parameterized our designs to create a vast set of FPGA architectures, and analyzed the

resulting design spaces to adapt them to two different FPGA platforms. We have built functional

dense SLAM systems on two FPGA platforms. Our complete end-to-end system on the FPGA

SoC achieves up to 2 FPS, and 44 FPS on a higher performance PCI-e FPGA. We expect that

these numbers would be largely increased by using newer SoC boards currently on the market.

Design space exploration has provided insightful information about hardware tradeoffs

for dense SLAM. Our analysis showed that the representation of loops in OpenCL for FPGA

has a profound impact on the run time. Additionally, it benefits greatly from memory cache

optimizations.

58

Our architectures for InfiniTAM are made open-source, which includes our full system

implementations, OpenCL code, and design space exploration results. These results can be useful

to gain valuable insight into the implementation of complex SLAM applications on different

FPGA hardware, but also to understand the mapping between optimization knobs and the final

design spaces. Ultimately, this knowledge can help develop automated tools for design space

exploration to avoid the manual optimization process for designers.

Future Work

With recent improvements in deep learning algorithms, dense SLAM can now be for-

mulated as a learning problem and can provide results on par with traditional SLAM tech-

niques [106, 128]. Additionally, there has been much progress in the implementation of deep

neural networks on FPGA [123, 116, 113]. Future work can explore the implementation of

neural network-based SLAM, and analyze the effects of hardware knobs as well as software

knobs (network depth, etc.) on the SLAM results.

Acknowledgments

Section 2.3, in part, is a reprint of the material as it appears in the International Conference

on Field-Programmable Technology (FPT) 2014. “Real-time 3d reconstruction for fpgas: A

case study for evaluating the performance, area, and programmability trade-offs of the altera

opencl sdk.” Gautier, Quentin; Shearer, Alexandria; Matai, Janarbek; Richmond, Dustin; Meng,

Pingfan; and Kastner, Ryan. The dissertation author was the primary investigator and author of

this paper.

Chapter 2, in part, is a reprint of the material as it appears in the International Conference

on Application-specific Systems, Architectures and Processors (ASAP) 2019. “FPGA Architec-

tures for Real-Time Dense SLAM.” Gautier, Quentin; Althoff, Alric; and Kastner, Ryan. The

dissertation author was the primary investigator and author of this paper.

59

Chapter 3

Spector: An OpenCL FPGA Benchmark
Suite

3.1 Introduction

FPGA design was traditionally relegated to only experienced hardware designers, and

required specifying the application using low-level hardware design languages. This provides

opportunities to create highly specialized custom architectures; yet it is time consuming as every

minute detail must be specified on a cycle-by-cycle basis. Recently, FPGA vendors have released

high-level synthesis tools centered around the OpenCL programming model. The tools directly

synthesize OpenCL kernels to programmable logic creating a custom hardware accelerator. They

raise the level of abstraction of the programming model and increase the designer’s productivity.

Furthermore, the tools manage the transfer of data between the FPGA and the CPU host. This

opens the door for more programmers to easily utilize FPGAs.

OpenCL is a open standard that provides a framework for programming heterogenous

systems. The language extends C with features that specify different levels of parallelism and

define a memory hierarchy. There exists OpenCL implementations for a variety of multicore

CPUs, DSPs, and GPUs. More recently, commercial tools like Xilinx SDAccel [5] and the Altera

OpenCL SDK [3] add FPGAs into the mix of supported OpenCL devices. This greatly simplifies

the integration of FPGAs into heterogeneous systems, and provides a FPGA design entry point

for a larger audience of programmers.

60

The OpenCL FPGA design process starts with implementing the application using

OpenCL semantics. The designer then typically employs some combination of well-known

optimizations (e.g. varying the number of work-items, using SIMD vectors, loop unrolling, etc.)

and settles on a small set of designs that are considered optimal according to some metric of

performance (resource utilization, power, etc.). Most designers will need multiple attempts with

several optimization options to understand the design space. Unfortunately, a major drawback of

these OpenCL FPGA tools is that the compilation time is long; it can take hours or even days.

This severely limits the ability to perform a large scale design space exploration, and requires

techniques to efficiently guide the designer to a good solution.

In many applications, it is difficult to predict the performance and area results, especially

when optimization parameters interact with each other in unforeseen manners. As an example,

increasing the number of compute units duplicates the OpenCL kernel, which should improve

performance at the expense of FPGA resources. However, this is not always true as memory

contention may limit the application’s performance. Finding when this occurs requires a better

understanding of the memory access patterns and how other optimizations alter it. Many other

optimizations are also intertwined in non-intuitive ways as we describe throughout the paper.

We propose an OpenCL FPGA benchmark suite. Each benchmark is tunable by changing

a set of knobs that modify the resulting FPGA design. We compiled over 8000 designs across

9 unique benchmarks using the Altera OpenCL SDK. All of our results are openly available

and easily accessible [4]. This provides large sets of designs to enable research on system-level

synthesis for FPGAs. These results can be used to evaluate methods for improving the process of

design space exploration. We provide our own analysis of the data to show that the exploration

of such designs is not always an easy task.

The major contributions are:

• Designing and releasing an OpenCL FPGA benchmark suite

• Creating an optimization space for each benchmark and describing the parameters that

61

define it.

• Performing a comprehensive set of end-to-end synthesis experiments, the result of which

is over twenty thousands hours of compilation time.

• Providing a statistical analysis on the results to give insights on OpenCL FPGA design

space exploration.

The remainder of this chapter is organized as follows. In Section 3.2, we motivate the

need for this research, and discuss related work. In Section 3.3 we detail our benchmark design

process and talk about how we obtained the results. In Section 3.4 we describe the benchmarks,

detail the tunable knobs and their effect on the architectures, and present their design spaces. We

give a statistical analysis of some of the results in Section 3.5 and conclude in Section 3.6.

3.2 Motivation

There are substantial number of application case studies for parallel computing, hetero-

geneous computing, and hardware design. One can start with reference designs from hardware

vendors such as Intel, NVIDIA, Altera, and Xilinx. Unfortunately, these are often scattered

across different websites, use different target compute platforms (CPU, GPU, FPGA), and they

lack a common lingua franca in terms of optimization parameters. This makes them difficult

to provide a fair comparison across the different applications. This is the general motivation

for benchmark suites – they provide highly available, well documented, representative set of

applications that can assess the effectiveness of different design strategies and optimizations.

Several open-source benchmarks for parallel applications currently exist. Many of these,

e.g., the HPEC challenge benchmark suite [48] or Rodinia [24], focus on GPUs and multicore

CPUs. FPGAs have a different compute model. Thus, while some of the applications in these

benchmarks suites are applicable to studying the OpenCL to FPGA design flow, they require

modifications to be useful. Several of our benchmarks are found in these existing benchmark

suites.

62

Figure 3.1. Our workflow to generate each benchmark and the design space results.

There are a number of FPGA specific benchmarks suites. These generally target different

parts of the design flow. For example, the applications in ERCBench [21] are written in Verilog

and useful for studying RTL optimizations or as a comparison point for hardware/software

partitioning. Titan [83] uses a customized workflow to create benchmarks to study FPGA

architecture and CAD tools. The OpenCL dwarfs [38, 63] contain several OpenCL programs

that have been optimized for FPGA. Unfortunately, they usually have a fixed architecture with

little to no optimization parameters.

We seek to extend these benchmark suites by leveraging the existing OpenCL benchmarks

and reference programs, and outfitting them with multiple optimization parameters. Each of these

designs can be compiled with a commercial program or open-source tool to generate thousands

of unique configurations. We make open-source our results that we obtained from the Altera

software, and encourage the community to compile our benchmarks with different tools. One of

our motivating factors in creating this benchmark suite was the lack of a common set of designs

and optimization parameters for comparing different design space exploration (DSE) techniques.

Machine learning techniques for DSE in particular can benefit from a large set of designs, e.g.,

[130] and [74] use machine learning approaches to explore design spaces and predict the set

of Pareto designs without having to compile the entire space. These techniques could directly

leverage our results to verify and perhaps improve their models. And in general, we believe that

open repository of OpenCL FPGA designs will benefit this and other areas of research.

63

Table 3.1. Number of successfully compiled designs.

BFS 507 Histogram 894 Normal estimation 696
DCT 211 Matrix Multiply 1180 Sobel filter 1381
FIR filter 1173 Merge sort 1532 SPMV 740

3.3 Methodology

We designed nine benchmarks that cover a wide range of applications. We selected

benchmarks that are recurrent in FPGA accelerated applications (FIR filter, matrix multiply, etc.),

but we also included code with more specific purpose to cover potential real-world programs (like

histogram calculation and 3D normal estimation). These benchmarks come from various places:

some were written directly without example source code, others come from GPU examples,

and some come from FPGA optimized examples. In all cases, we started from programs that

contained little to no optimization parameters, thus requiring us to define the optimization space.

For each benchmark, we proceeded as illustrated in Figure 3.1. First we created or

obtained code that was partially or fully optimized for FPGA. It is important to note that we were

not trying to reach a single “most optimal” design, but instead defining an optimization space

that covers a wide range of optimizations. We studied which types of optimization would be

relevant for each benchmark. Then we added several optimization knobs, which are values that

we can tune at compile-time. These knobs can enable or disable code, or affect an optimization

parameter (e.g., unrolling factor). We compiled several sample designs to ensure that the knobs

we had chosen would have some impact on the timing and area. Each benchmark has a set

of scripts to generate hundreds of unique designs, with all the possible combinations of knob

values. In most cases we restricted the values of the knobs to a subset of the options (e.g., powers

of two). We also removed values that were likely to use more resources than available, and

filtered out further using pre-place-and-route estimations. All the benchmarks were written using

standard OpenCL code with a C++ host program that can run and measure the time of execution.

The OpenCL code works with the Altera SDK for FPGA, and can also be executed on GPU

64

and CPU. Although we have not tested the programs with other commercial or open-source

OpenCL-to-FPGA pipelines, we expect that little to no modifications are required to ensure

compatibility.

Each design was then individually compiled using the Altera OpenCL SDK v14.1, with

a compile time typically requiring 1 to 4 hours on a modern server, and occasionally taking

more than 5 hours per design. In total we successfully compiled more than 8300 designs (see

Table 3.1), plus many more that went through almost the entire compilation process but failed

due to device resource limits. We executed the successful designs on a Terasic DE5 board with a

Stratix V FPGA to measure the running time for a fixed input. Some applications can behave

differently given a different set of input data however, and the optimizations to use in these cases

might vary. This is the case for algorithms like graph traversal or sparse matrix multiplication,

where the sparsity of the input can have a significant impact on the design space. In both of

these benchmarks we ran the program with two sets of inputs. We ran BFS with both a densely

connected graph and one with sparse edges. Sparse matrix-vector multiplication was run with

one matrix containing 0.5% of non-zero values and one only 50% sparse. We extracted the

running time and area data (such as logic, block RAM, DSPs, etc.) for each run. The set of

design spaces that we present in Figure 3.2 shows the logic utilization against the running time,

as logic is usually the most important resource and often the limiting factor. These results are

generated from the scripts plot design space.m and plot all DS.m available in our repository.

3.4 Benchmarks Description

Here we describe the benchmarks and the knobs that we have chosen, so that the reader

can interpret the design space results based on the design choices. First we explain some of the

most common optimization types in OpenCL designs. Then we explain each benchmark in more

details, followed by an overview of the shape of the design space.

Work-items: These are parallel threads with a common context on GPU. On FPGA,

65

Normalized Throughput
0 0.2 0.4 0.6 0.8 1

N
o
rm

a
liz

e
d
 1

/L
o
g
ic

 u
ti
liz

a
ti
o
n

0.2

0.4

0.6

0.8

1

BFS dense

Normalized Throughput
0 0.2 0.4 0.6 0.8 1

N
o
rm

a
liz

e
d
 1

/L
o
g
ic

 u
ti
liz

a
ti
o
n

0.2

0.4

0.6

0.8

1

BFS sparse

Normalized Throughput
0 0.2 0.4 0.6 0.8 1

N
o
rm

a
liz

e
d
 1

/L
o
g
ic

 u
ti
liz

a
ti
o
n

0.2

0.4

0.6

0.8

1

DCT

Normalized Throughput
0 0.2 0.4 0.6 0.8 1

N
o
rm

a
liz

e
d
 1

/L
o
g
ic

 u
ti
liz

a
ti
o
n

0.2

0.4

0.6

0.8

1

FIR filter

Normalized Throughput
0 0.2 0.4 0.6 0.8 1

N
o
rm

a
liz

e
d
 1

/L
o
g
ic

 u
ti
liz

a
ti
o
n

0.2

0.4

0.6

0.8

1

Histogram

Normalized Throughput
0 0.2 0.4 0.6 0.8 1

N
o
rm

a
liz

e
d
 1

/L
o
g
ic

 u
ti
liz

a
ti
o
n

0.2

0.4

0.6

0.8

1

Matrix Multiply

Normalized Throughput
0 0.2 0.4 0.6 0.8 1

N
o
rm

a
liz

e
d
 1

/L
o
g
ic

 u
ti
liz

a
ti
o
n

0.2

0.4

0.6

0.8

1

Merge Sort

Normalized Throughput
0 0.2 0.4 0.6 0.8 1

N
o
rm

a
liz

e
d
 1

/L
o
g
ic

 u
ti
liz

a
ti
o
n

0.2

0.4

0.6

0.8

1

Normal estimation

Normalized Throughput
0 0.2 0.4 0.6 0.8 1

N
o
rm

a
liz

e
d
 1

/L
o
g
ic

 u
ti
liz

a
ti
o
n

0.2

0.4

0.6

0.8

1

Sobel filter

Normalized Throughput
0 0.2 0.4 0.6 0.8 1

N
o
rm

a
liz

e
d
 1

/L
o
g
ic

 u
ti
liz

a
ti
o
n

0.2

0.4

0.6

0.8

1

SPMV 0.5%

Normalized Throughput
0 0.2 0.4 0.6 0.8 1

N
o
rm

a
liz

e
d
 1

/L
o
g
ic

 u
ti
liz

a
ti
o
n

0.2

0.4

0.6

0.8

1

SPMV 50%

Figure 3.2. Normalized design space for each benchmark. We plot the inverse logic utilization
against the throughput such that higher values are better. The Pareto designs are shown in red
triangles.

they can be interpreted as multiple iterations of an outer loop that is pipelined by the compiler.

Using only one can give more flexibility to the programmer to control unrolling and pipelining,

66

while using multiple can enable optimizations such as SIMD. Work-groups: This defines how

many groups of work-items to use, each group using a different context (no shared memory).

This is useful to enable the compute units optimization. Compute units: How many duplicates

of the kernel are created on the FPGA chip. Compute units can run work-groups in parallel,

however they all access the external memory and thus might be limited by the bandwidth. SIMD:

Work-items can be processed simultaneously by increasing local area usage. It is only possible

when there is no branching. Unrolling: By explicitly unrolling a loop, we can process multiple

elements simultaneously by using more area, usually storing data in more local registers.

3.4.1 Breadth-First Search (BFS)

This code is based on the BFS FPGA benchmark from the OpenDwarfs project [38, 63],

and originally based on the BFS benchmark from the Rodinia Benchmark Suite [24]. It is an

iterative algorithm that simply traverses a graph starting at a specified node by performing a

breadth-first traversal, and returns a depth value for each node. The algorithm iterates over two

OpenCL kernels until all the reachable nodes have been visited. Each kernel launches work-items

for each node in the graph and uses binary masks to enable computation. There are 6 knobs with

varying values in these kernels.

• Unroll factor in kernel 1: Unrolls a loop to process multiple edges simultaneously. We

enable additional code for edge cases only if the unroll factor is greater than 1.

• Compute units in kernel 1 and 2, SIMD in kernel 2.

• Enable branch in kernel 1: Describes how to check if a node was visited and how

to update graph mask values. Either enables the code from OpenDwarfs with bitwise

operators to avoid branching, or enables the code from Rodinia with regular if statement.

• Mask type: Number of bits used to encode the values of graph masks.

67

Design space

The design space for the dense input is clearly divided along the timing axis. The

left cluster represents the designs where the branching code is disabled. The more optimized

branching code gets better performance as we increase the unrolling factor. The discontinuity

between the middle and right clusters is caused by a jump in the knob values. The impact of the

unrolling factor is however limited by the number of edges to process per node. This limitation

is reflected in the sparse input design space that is more uniform.

3.4.2 Discrete Cosine Transform (DCT)

This algorithm is based on the NVIDIA CUDA implementation of a 2D 8x8 DCT [90].

The program divides the input signal into 8x8 blocks loaded into shared memory, then processed

by calculating DCT for rows then columns with precalculated coefficients. Some knobs enable

multiple blocks to be loaded in shared memory, and multiple rows and columns to be processed

simultaneously. Each work-group processes one 8x8 block, and within the group each work-item

processes one row and column. This can be altered by 9 tunable knobs:

• SIMD and Compute units.

• Block size: Number of rows/columns to process per work-item.

• Block dim. X and Block dim. Y: Number of blocks per work-group in X or Y direction.

• Manual SIMD type: Using OpenCL vector types, each work-item processes either

multiple consecutive rows/columns, or processes multiple rows/columns from different

blocks.

• Manual SIMD: Number of rows/columns for one work-item to process using SIMD

vector types.

• Unroll factor: Unroll factor for the loops launching 8-point DCT on rows and columns.

68

Table 3.2. FIR filter Pareto optimal designs.

Coef. shift 8 8 1 8 1 1 8 1 8 1 8 1
Num. parallel 1 2 2 1 1 4 2 2 2 2 1 1
Unroll inner 32 32 32 32 32 1 2 2 1 1 2 2
Unroll outer 2 1 1 1 1 1 1 1 1 1 1 1
Work-items = Work-groups = SIMD = Compute units = 1
Time (ms) 0.70 0.71 0.78 1.08 1.14 80.73 85.35 94.93 151.9 159.9 190.1 192.2
Logic 52% 50% 50% 36% 34% 34% 34% 33% 32% 31% 31% 30%

• DCT unroll: Either use the loop version of 8-point DCT, or the manually unrolled 8-point

DCT.

Design space

The designs are clearly divided into clusters along the logic utilization axis. These

clusters can be mostly explained by the block size, manual SIMD and compute units knobs that

have a similar impact on logic. The combination of these knobs increases by steps, creating the

clustering of the design space.

3.4.3 Finite Impulse Response (FIR) Filter

This benchmark is based on the Altera OpenCL design example of a Time-Domain FIR

Filter, itself based on the HPEC Challenge Benchmark suite [48]. This code implements a

complex single-precision floating point filter, where multiple filters are applied to a stream of

input data using a sliding window. After a block of input data has been processed, it loads the

next filter’s coefficients while still shifting the sliding window to avoid too much branching

complexity. The kernel is originally a single work-item task, but it has been extended to use

multiple work-items. There are 8 tunable knobs:

• Coefficient shift: Number of filter coefficients to load at each loading iteration.

• Num. parallel: Number of FIR computations to perform in a single iteration. This extends

the size of the sliding window.

69

• Unroll inner: Unroll factor for the FIR computation loop (for each coefficient).

• Unroll outer: Unroll factor for the main loop (for each input value).

• Work-items Number of work-items. This divides the input data into multiple blocks, each

work-item works on one block.

• Work-groups: Number of work groups, same consequences as work-items, but also

enable compute units.

• SIMD and Compute units.

Design space

The FIR filter benchmark has this particularity to present a small group of outlier results

that turn out to be the most efficient designs. Unsurprisingly, the values of the knobs correspond

to the original code from Altera that is thoroughly optimized for FPGA. It’s a single work-item

sliding window with a fully unrolled filter computation, loading 8 complex numbers when

loading a new filter (8x2x32 bits = 512 bits, the external memory width). The difference with

the original is the unrolling or sliding window size that are bigger, allowing two elements per

iteration to be processed. This is possible because we use a smaller filter size than the original.

As we follow the Pareto front toward less logic utilization (Table 3.2), we simply unroll less the

computation, and decrease the sliding window size. From this design space we can also learn

that, even though not Pareto optimal, the next most efficient designs come from using pipelining

with multiple work-items. It is less efficient due to accesses to non-contiguous portions of the

external memory.

3.4.4 Histogram

This code calculates the distribution histogram of unsigned 8-bits values by calculating

the number of each of the 256 unique values. One OpenCL kernel counts the input values into a

local histogram. If multiple work-items are used, we divide the input data and calculate multiple

70

histograms that can be combined either in shared memory, or through global memory with a

second kernel. The second kernel uses a single work-item to sum them locally and output the

result. The first kernel can also process multiple values at the same time by using several local

histograms. There are 7 tunable knobs:

• Num. histograms: This is the number of local histograms in the first kernel to compute

simultaneously.

• Histogram size: Switches between local histogram storage in registers or in block RAM.

• Work-items: This will create intermediate results that need to be accumulated.

• Work-groups: If there are multiple work-groups, the intermediate results have to be

accumulated in a second kernel (cannot use shared memory).

• Compute units.

• Accum. shared memory: Choose to accumulate the intermediate results in shared

memory if possible (only one work-group), or in a second kernel.

• Unroll factor Unrolls the main loop over the input values.

Design space

This is one of the few design spaces that appear relatively uniform. All the knobs seem

to have a similar impact on the variations between designs, although a few design make the

exception by using more logic. These designs set the histogram size such that the compiler will

prefer to use registers instead of block RAMs, as they are using only one local histogram. But as

opposed to some other uniform design spaces, the parameters cannot be linearly modeled, as

presented in Section 3.5.

71

3.4.5 Matrix Multiplication

This code is based on an Altera OpenCL example. It implements a simple matrix

multiply C = A∗B with squared floating-point matrices. The matrix C is divided into blocks,

each computed individually. The implementation includes several knobs to change the size of

the blocks and to process multiple blocks at once. Each work-group takes care of one block of C.

Each work-item takes care of one element in a block, including loading elements to local storage,

multiplying one row of block A by one column of block B, and copying back to global storage.

There are knobs that enable multiple block processing for work-groups and work-items, either

by adding an inner loop, or by using OpenCL vector types for SIMD computation. There are 9

tunable knobs in this code:

• Block dimension: Width of blocks.

• Sub-dimension X and Sub-dimension Y: How many blocks of C in X or Y direction to

process in one work-group. This adds a for loop so that each work-item processes this

number of blocks.

• Manual SIMD X and Manual SIMD Y: How many blocks of C in X or Y direction to

process in one work-group. This performs the inner matrix multiply with OpenCL vector

types.

• SIMD and Compute units

• Enable unroll: Enables or disables unrolling loop on load and store operations.

• Unroll factor: Unroll factor for multiple loops.

Design space

The matrix multiplication Pareto-optimal designs are a good example of an almost linear

relationship between area and timing (in this optimization space). By looking at the knob values

along the Pareto front, we can determine that it’s mostly a combination of block dimension,

72

manual SIMD X, SIMD, and unroll factor that can vary the results and create the trade-off

between speed and area. The other knobs still have an impact on the design space, but tend to

have a single optimal value for both area and timing. Typically, manual SIMD Y is not enabled

in the optimal designs, as the data are organized along the X direction.

3.4.6 Merge Sort

This program applies the Merge Sort algorithm using loops, merging in local memory

first, then in global memory:
1: for each chunk of size localsortsize do

2: copy the entire chunk into local memory

3: for localchunksize = 2 to localsortsize do

4: for each local chunk of the chunk do

5: merge two halves of local chunk

6: end for

7: swap input/output buffers

8: end for

9: end for

10: for chunksize from localsortsize to inputsize do

11: for each chunk of the input do

12: merge two halves of the chunk

13: end for

14: swap input/output buffers

15: end for

• Work-items: Each work-item processes a different chunk in lines 4 and 11.

• Local sort size: Varies localsortsize.

• Local use pointer: Use pointers to swap buffers in local memory. This can force the use

of block RAMs instead of registers.

73

x/y/z x/y/z

x/y/z x/y/z

x/y/z

x/y/z

x/y/z

x/y/z

x/y/z

null

null null

x/y/z x/y/z x/y/z x/y/z

✄

✄

�

x/y/zx/y/z

Vertex map Normal map

Sliding window:

Size = 1 Size = 2

Figure 3.3. Estimating 3D normals from 3D vertices organized on a 2D map. The top of the
figure shows how the sliding window works in the algorithm. The bottom illustrates how the
sliding window can be tuned.

• Specialized code: Enable a specialized code to merge chunks of size 2.

• Work-groups: Each work-group runs the algorithm on one portion of the input data. A

second iteration of the kernel is launched to merge the final output.

• Compute units

• Unroll: Unroll factor for the loops copying data from/to local memory.

Design space

This design space is mainly divided into 2 clusters, due to the compute units knob that

can take the value 1 or 2. In this case, using multiple compute units has a large impact on the

resource utilization, while the other knobs have a much smaller impact on resources, and are

responsible for smaller variations within each cluster. Interestingly, the fastest designs use only

one compute unit, but make use of the pipeline optimization from work-items.

74

3.4.7 3D Normal Estimation

This code is inspired by an algorithm in the KinectFusion code from the PCL library

[97]. It estimates the 3D normals for an organized 3D point cloud that comes from a depth map

(vertex map). We can quickly estimate the normals for all the points by using the right and

bottom neighbors on the 2D map, then calculate the cross-product of the difference between

each neighbor and the current point, and normalize. If any of the vertices is null, the normal

is null. One kernel does the entire computation using a small sliding window where the right

neighbor is shifted at each iteration to be reused in the next iteration. As illustrated in Figure 3.3,

a parameter can vary the window size so that multiple inputs are processed in one iteration. If

multiple work-items are used, the input data are cut into blocks of whole rows. There are 6

tunable knobs:

• Work-items, Work-groups and Compute units.

• Unroll factor 1: Unroll factor for the outer loop that iterates over all the input data.

• Unroll factor 2: Unroll factor for the loop that iterates over the elements within a sliding

window.

• Window size: Size of the sliding window. ie. number of consecutive elements to process

in one iteration.

Design space

Normal estimation is another example of a fairly uniform design space. It is easier to

create a model of the knobs (see Section 3.5), and it is a good example of a optimization space

where most parameters have an impact of similar importance on both the timing and the area

utilization.

75

3.4.8 Sobel Filter

This code applies a Sobel filter on an input RGB image, based on the Altera OpenCL

example.
1: for each block on the input image do

2: load pixel values from block in shared memory

3: for each pixel in local storage do

4: load the 8 pixels around from shared memory to registers

5: convert pixels to grayscale

6: apply the 3x3 filter in X and Y

7: combine the X and Y results and apply threshold

8: save result in global storage

9: end for

10: end for
Work-group take care of blocks (line 1) and work-item take care of pixels within the

block (line 3). The knobs can enable a sliding window within the blocks, SIMD computation, or

make a work-item perform multiple computations. With the SIMD parameter, each work-item

loads more pixels to registers to apply multiple filters by using OpenCL vector types. The sliding

window parameter creates an inner loop (after line 3) where each work-item processes one pixel

(or multiple with SIMD), then shifts the registers to load one new row or column of data from

the local storage. There are 8 knobs in this code:

• Block dimension X and Block dimension Y: Size of each block in X or Y.

• Sub-dimension X and Sub-dimension Y: Local sliding window size, moving in X or Y

direction.

• Manual SIMD X and Manual SIMD Y: Number of elements to process as SIMD in X

or Y direction.

• SIMD and Compute units.

76

Design space

The Sobel filter is another example of a mostly uniform design space where all the knobs

seem to have a similar impact on the output variables. A more detailed look at the knob values

actually shows that along the timing axis, the manual SIMD X knob is one of the most important

factors, and the most important on the Pareto front. This is a case where manually designing

SIMD computation is better than using automatic SIMD, and this becomes apparent from the

analysis of an entire optimization space.

3.4.9 Sparse Matrix-Vector Multiplication (SPMV)

This code is also based on an OpenDwarfs benchmark. It calculates Ax+ y where the

matrix A is sparse in CSR format and the vectors x and y are dense. Each work-item processes

one row of A to multiply the non-zero elements by elements of x. Two knobs control the number

of elements processed simultaneously by one work-item: one unrolls a loop, and the other

enables the use of OpenCL SIMD vector types to store and multiply the data. There are 4 tunable

knobs:

• Block dimension: Number of work-items per work-group.

• Compute units.

• Unroll factor: This creates an inner loop over some number of elements and unrolls it so

that elements can be processed simultaneously.

• Manual SIMD width: This is the size of the OpenCL vector type to use when processing

elements. Elements are loaded and multiplied in parallel using this type.

Design space

This benchmark is dependent on the type of input and behaves differently for more or

less sparse matrices. This is reflected in the design spaces, where the most efficient designs

for sparse matrices, and particularly the Pareto optimal designs, tend to have smaller values for

77

Unroll factor and Manual SIMD width. When processing a denser matrix, the best designs tend

to have a higher value for these knobs, as it allows simultaneous processing of elements in rows.

For sparse matrices, the pipelining provided by block dimension is usually preferred to the SIMD

and unroll optimizations.

3.5 Design Space Analysis

To demonstrate one potential use of our data, we perform an example analysis to deter-

mine the viability of multiple sparse linear regression to model design space performance and

area. In mathematical form we compute model coefficients β in

f (x) = β0 +
n

∑
i=1

xiβi +
m

∑
i=n+1

m

∑
j=i+1

xix jβi·m+ j (3.1)

where x is a vector of design space knob values, n is the number of design space knobs, and the

number of entries in β is m = n(n+1)/2. In the following sections, we use the term “parameters”

to refer to values of β and “realization” to refer to a single design (a single point in the design

space plots of previous sections).

The purpose of this analysis is not to suggest that linear regression is a good idea when

seeking to model a design space in general. Rather we observe that there are many cases where

simple linear models are effective, and equally many where they are misleading and/or downright

ridiculous. The lesson here is that DSE research involving parametric models should not overstate

their generality, particularly where performance is concerned.

3.5.1 The Least Absolute Shrinkage and Selection Operator (LASSO)

The LASSO is a well-known statistical operator [109] useful for variable selection and

sparse modeling. While we present its mathematical form in equation (3.2), LASSO is, in

essence, ordinary least squares regression with a penalty forcing small variables toward zero.

The operator parameter λ determines “small”, and it is often—as it is in our case—selected

78

via cross-validation. A small value at βk indicates that variation of the kth parameter does not

produce significant variation in the output. We prefer LASSO for this analysis because it tends

to produce simpler and more interpretable models. The LASSO in mathematical form is

min
β

‖y−Xβ‖2
2 +λ‖x‖1 (3.2)

= min
β

n

∑
i=1

(yi−
m

∑
j=1

Xi jβ j)
2 +λ

m

∑
i=1
|βi|

where Xi j is the entry of the matrix X at row i and column j. In the remainder of this section β

refers to the vector minimizing the LASSO for a λ minimizing the model mean squared error.

While LASSO explicitly determines coefficients for a linear model, it is also useful for

variable selection in nonlinear systems [64]. In this situation we do not read very deeply into β ,

but rather use it to detect when simple linear, perhaps even obvious, relationships exist between

parameters and the realized design space. To summarize the LASSO results we compute the

coefficient of determination—also known as the r2 value—independently for throughput and

area, denoted r2
t and r2

` respectively. r2 is a commonly used goodness-of-fit measure indicating

the amount of variance in the data explained by the model. Alongside r2
t,` we also compute the

Gini coefficient of β , Gt,`(β), as a measure of model complexity. Note that if r2 is small then

G(β) is a nearly worthless quantity. We do, however, include values for all design spaces in

Table 3.3 for completeness.

3.5.2 Gini Coefficient

The Gini coefficient [46] G is a statistic frequently used to measure economic inequality.

G takes values in the range [0,1]. If G(v) = 1−ε for a particular vector v and small ε , then there

are a few elements of the set that are very large relative to others. If G(v) = ε then all vector

elements have values that are close to each other.

Equation (3.3) describing G is calculated using equation (3) with bias correction from

79

Table 3.3. LASSO r2 and G(β) values for logic (`) and timing (t) across benchmarks for
complete and near-Pareto spaces

Complete Space Within 0.1 of Pareto
Benchmark r2

` G`(β) r2
t Gt(β) r2

` G`(β) r2
t Gt(β)

BFS (Dense) 0.89 0.91 0.97 0.97 0.92 0.85 0.83 0.97
BFS (Sparse) 0.89 0.91 0.85 0.84 0.98 0.68 0.92 0.80
DCT 0.98 0.83 0.91 0.86 0.58 0.86 0.95 0.86
FIR 0.61 0.92 0.37 0.94 0.79 0.95 0.99 0.96
Histogram 0.73 0.90 0.04 0.80 -0.05 1.00 0.15 0.94
Matrix multiply 0.83 0.76 0.70 0.70 0.91 0.82 0.94 0.71
Normal estimation 0.90 0.81 0.91 0.57 0.98 0.72 0.98 0.69
Sobel 0.78 0.77 0.88 0.67 0.98 0.83 0.94 0.78
SPMV (Sparse) 0.88 0.93 0.29 0.71 0.90 0.89 0.24 0.93
SPMV (Dense) 0.88 0.93 0.24 0.82 0.90 0.94 0.68 0.80
Mergesort 0.91 0.89 0.43 0.68 0.95 0.92 0.74 0.81

Note: G(β) values for which the associated r2 < 0.7 are greyed out to indicate that they should be disregarded

[30]

G(x) =
n

n−1
· ∑

n
i=1(2i−n−1)xi

n∑
n
i=1 xi

(3.3)

where x is sorted beforehand. G(β) indicates whether variation in the realized design space can

be accounted for by a few parameters.

3.5.3 Example observations

To give the reader some idea of the sort of descriptive statistical information that can

be gained from these data, we will consider only the the r2 and Gini values from Table 3.3 for

the Histogram and Normal estimation design spaces. A purely visual inspection of the design

space graph, (see Figure 3.2) might suggest that there is a “grid-like” quality to the relationship

between knobs and the realized design space. We demonstrate that this is not necessarily the

case.

80

Histogram

Considering the complete Histogram design space, r2
` = 0.73 where r2

` indicates goodness-

of-fit on the logic axis. This means that there is a 1−r2 fraction of the total variance unaccounted

for by the model, so 0.73 indicates a reasonable—but not excellent—fit for the LASSO model.

G`(β) = 0.9 tells us that the LASSO model, with learned parameter vector β , has a few dominant

parameters, while the remainder have negligible influence over logic utilization. On the other

hand, r2
t = 0.04 means that the performance of the design is not well represented as a linear

model of the input parameters. For this reason Gt(β) should not be taken seriously as an indicator

of parameter dominance. Examining these values for the subset of designs within 0.1 of the

Pareto front tells a different story. r2 for both logic and performance are extremely low. While r2
t

increased—meaning the design space becomes more amenable to linear modeling nearer to the

Pareto front—logic utilization becomes far less explainable by our model.

Normal estimation

In sharp contrast to the Histogram design space, Normal estimation is very well modelled.

r2 for logic and performance both increase towards the Pareto front. Gini coefficients are

split, timing becoming more attributable to a subset of parameters, while logic becomes less

so. Altogether this implies that the model parameters are of the same order of magnitude

in importance and have proportional (or inversely proportional) relationships to the resulting

performance and area.

While these two design spaces are extreme examples on the spectrum of nonlinearity they

demonstrate that inspection alone is insufficient to determine the knob-to-design mapping. Figure

3.4 shows the model predictions alongside the true performance and area results. This example

analysis shows that researchers should be very cautious with parametric models in DSE. Even

very general techniques such as Gaussian process regression (see [130]) have hyperparameters

that must be carefully tuned.

81

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

Histogram Design Space vs. LASSO Model

N
o

rm
a

liz
e

d
 1

/L
o

g
ic

 u
ti
liz

a
ti
o

n
Design # − Sorted by Efficiency

model prediction

ground truth

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

Design # − Sorted by Performance

model prediction

ground truth

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

Normal Est. Design Space vs. LASSO Model

N
o

rm
a

liz
e

d
 1

/L
o

g
ic

 u
ti
liz

a
ti
o

n

Design # − Sorted by Efficiency

model prediction

ground truth

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

Design # − Sorted by Performance

model prediction

ground truth

Figure 3.4. In the above figure we have sorted the ground truth designs and plotted them
alongside the LASSO model predictions. The worst designs begin on the left and progress
toward the best designs on the right. The Histogram model predicts performance very poorly, and
while the logic utilization model appears to follow rather closely for mediocre designs, the most
efficient designs are poorly modeled. The opposite is true for Normal estimation: Near-Pareto
designs are modeled more accurately than the remainder of the space.

3.6 Conclusion

We have created a set of OpenCL benchmarks targeted at FPGA design space exploration

for high-level synthesis. These benchmarks and the corresponding results can expand our

knowledge on how to improve design choices. We have analyzed the results to show that the

variations between designs can be affected not only by individual parameters, but also by complex

interactions between these parameters that are difficult to model mathematically. Yet we have

barely scratched the surface of the information that we can gather from these data, and further

analysis is required to understand how to navigate design spaces efficiently. This work is a basis

that can be leveraged by machine learning methods to refine optimization techniques.

Acknowledgements

This work was supported in part by an Amazon Web Services Research Education grant.

Chapter 3, in part, is a reprint of the material as it appears in the International Conference

on Field-Programmable Technology (FPT) 2016. “Spector: An opencl fpga benchmark suite.”

Gautier, Quentin; Althoff, Alric; Meng, Pingfan; and Kastner, Ryan. The dissertation author was

82

the primary investigator and author of this paper.

83

Chapter 4

FPGA Design Space Exploration With
Hint Data

4.1 Introduction

High-level synthesis (HLS) has emerged as a powerful tool for increasing designer pro-

ductivity and opening up the hardware design process to software programmers. Unfortunately,

it is not a panacea. Designers still must expose parallelism and perform code refactoring to tailor

the application towards the target hardware platform. Eking out the best design typically requires

deep insight into both the application and the underlying hardware.

In order to optimize an application, a designer typically goes through a design space

exploration (DSE) process where they parameterize that application, tune the parameters, syn-

thesize to determine the performance and resource usage, and repeat the tuning process ad

infinitum (or until they exhaust themselves or run up against the time-to-market constraint).

Fully synthesizing a single FPGA design can take hours. And because the space of all possible

configurations can contain hundreds, thousands, or even more designs, a brute-force optimization

approach would take days to weeks of synthesis time. To address this DSE problem, several

machine learning framework were developed to intelligently explore the space of possible de-

signs [77, 74, 132]. These frameworks aim to sample the minimum amount of designs and find

only the Pareto-optimal designs w.r.t. performance and resource utilization.

It is possible to get some “hints” about the quality of the design without going through the

84

entire synthesis process. For example, an HLS tool typically provides throughput and resource

utilization estimates before the lengthy place-and-route process (i.e., pre-PnR estimations), which

is by far the most time consuming aspect of synthesis. While these estimates provide useful

global information, they are not entirely accurate and often fail to fully model the clock period,

resource utilization, and other low level details that are greatly influenced by physical synthesis.

Taking this even further, one could also derive estimates by running the same code on

other non-FPGA compute platforms. For example, when using the OpenCL language, the same

code can be compiled to CPUs and GPUs. In this process, the functionality of the design is

preserved across platforms, but the performance is not. Using OpenCL to compile the same

designs on a GPU or a CPU is a very fast process, and thus we can often perform a brute

force search across the entire space or at minimum evaluate orders of magnitude more designs

compared to what we could do with FPGA synthesis. However, the underlying architectures are

different and the results may not directly translate to the FPGA optimization. Yet, we show that

it does provide useful nuggets of information that, if properly leveraged, can help the FPGA

DSE process.

In this chapter, we explore how external information (hint data) can help HLS design

space exploration. We are particularly interested in the case where the hint data do not come

from a fine-tuned analytical model, but from data acquired easily and automatically. We use

hint data from pre-PnR estimations in addition to CPU and GPU performance data. These data

are estimates, and some are better than others, but they are all derived from the same design

specifications. As such, it is possible to find subsets of the hint data that correlates with the

FPGA data. We show how to leverage these potentially subtle correlations in order to guide the

sampling process of FPGA design space exploration. In other words, we develop a framework

that leverages external data as hints to better guide the machine learning algorithms in the DSE

process. Our contributions are as follows:

• We provide a comprehensive framework for exploiting external data in the FPGA DSE

85

process, that is completely agnostic to the type of data.

• We compare several methods to extract useful information from inaccurate FPGA estima-

tion data.

• We evaluate our methods on OpenCL FPGA benchmarks covering multiple types of

applications and thousands of optimization combinations.

• We use three different types of hint data to improve the DSE overall efficiency up to 33%.

The remainder of this chapter is organized as follows. In Section 4.2, we describe

the problem and present related work. We describe our baseline framework in Section 4.3.

Section 4.4 gives an overview of our proposed methods, which are described in more details

in Section 4.5. Section 4.6 presents our experimental protocol, and we show the results of our

experiments in Section 4.7. Finally, we conclude in Section 4.8.

4.2 Design Space Exploration (DSE) for FPGAs

4.2.1 Definitions

When performing design space exploration, we must carefully understand the application

that we want to optimize and develop a set of parameters that modify the design in order to

provide better performance and/or resource usage. For example, we may have a parameter that

states how many times to unroll a for loop. Each modification is represented as a parameter,

which we call a knob.

Knobs can be categorical, continuous or discrete. Categorical knobs can take multiple

non-numerical values to represent a decision (e.g., a boolean enabling/disabling a hardware path,

or switching between multiple possible implementations); continuous and discrete knobs take

a numerical value that has a direct impact on the design (e.g., unroll factor, initiation interval,

etc.). In this paper, we only consider discrete knobs by assigning values to categorical knobs and

discretizing continuous knobs with hardware-friendly values (e.g., powers of 2).

86

Knob 1 Knob 2 Knob 3 Knob 4 Knob 5

1 1 1 1 1

2 1 1 1 1

4 1 1 1 1

1 4 2 1 1

8 8 1 16 2

4 16 2 8 4

4 32 2 1 2

1 1 1 2 8

2 2 1 4 4

16 8 2 1 2

Objective 1 Objective 2

0.1 20

0.2 15

0.4 10

0.1 18

0.5 5

0.8 6

0.2 16

0.3 13

0.7 4

0.3 14

Hint1 Hint 2

0.15 18

0.12 13

0.4 15

0.2 14

0.5 8

0.75 2

0.3 18

0.3 1

0.8 5

0.25 10

Objective 1

O
b

je
ct

iv
e

2

Pareto front

𝑛
d

es
ig

n
s

𝑚 knobs 𝑜 objectives 𝑜 objective hints

𝑿: Input space 𝒚: Output space 𝒚𝒉: Hint output space

2D plot of
output space

Figure 4.1. Illustration of the concepts of input space and output space that both form a design
space.

We define the space of all valid combinations of knobs, by considering the conditions

and constraints that may exist between the knobs, where each combination yields one possible

design for the application. This set of knob values and all possible knob combinations forms

the input space, represented by a matrix X of dimensions (n×m), where n is the number of

knob combinations (i.e., the number of design candidates), and m is the number of knobs. Each

row of X represents a unique combination of knob values, and thus, a unique design. Figure 4.1

illustrates the input space matrix X .

The goal is then to explore this space. We define exploring as maximizing or minimizing

a number of objectives that are given by the evaluation of each possible design. In the case

of hardware applications, the two objectives that we are optimizing are 1) throughput and

2) resource utilization. Ground truth results for these objectives are obtained by fully synthesizing

and implementing designs from standard benchmark suites (e.g., [98, 42]) to an FPGA, and

evaluating them on a dataset representative of the target application. These results form the

87

output space (see Figure 4.1), represented by a matrix y of dimensions (n×o), where o is the

number of objectives. Each row of y is a fully resolved sample. In practice, ground truth data are

typically not available; in other words, y is unknown. However, we assume that there exists a

relationship between X and y, i.e., there exists a function f : Rm→ Ro such that:

y = f (X)

We assume that f can potentially be non-linear, and thus would require a large number of samples

to be estimated. Furthermore, since the rows of y generally come from measurements (e.g.,

running time, accuracy, etc.), we consider that the output space is noisy, which means that a

proper design space exploration tool needs to be robust to noise in order to build a stable model

of f . A design space is the combination of an input space and an output space, although the

designation is often informally used to refer to either the input space, output space, or both.

4.2.2 Methods

There are multiple ways to explore the design space and DSE is broadly divided into

synthesis-based methods and predictive-based methods, and a few hybrid solutions. Synthesis-

based methods [77, 74, 132, 100] rely on machine learning to predict the entire design space

by sampling a small number of implementations, synthesizing them, and measuring the actual

results of the design. These methods effectively reduce the compute time compared to a brute-

force approach. However, these works only rely on data from the target architecture (FPGA)

and overlook the opportunity to use training data from another source, which may provide a

further reduction of the DSE time. Predictive-based methods [75, 117, 99, 127, 126, 115] create

an analytical or probabilistic model based on the target architecture, and potentially analyze

the source code directly to estimate the final performance and required resources. The created

models can be used to predict or estimate the design space, accelerating its exploration since it

does not require any synthesis. Predictive models depend a lot on the chosen training set and

88

on parameter tuning in order to achieve the best accuracy. Hybrids methods aim to combine

both prediction and synthesis, e.g., Liu and Schafer [73] use the pre-place-and-route resource

estimates to guide the sampling process. Another example is the work of Cui et al [28] who build

predictive models for circuit delay and use transfer learning from these models to improve the

prediction of delay on true circuits.

Our work presents similar ideas as the last two examples, but generalizes the concepts

to multiple types and sources of hint data. We do not only rely on pre-PnR estimations given

by the tool. Our methods are more general, as we show how to use any data to guide the DSE

process. We use these data to guide a full iterative active learning process aimed at finding and

sampling the Pareto-optimal designs. Additionally, we consider the HLS tool and the target

FPGA architecture as a black box for which we do not have - and thus do not need - any

information. In essence, we create a hybrid method using a performance model to help the

synthesis-based sampling, where the performance model is general and does not need to be based

on the target architecture.

4.3 ATNE Sampling

This work is based upon an existing design space exploration framework called Adaptive

Threshold Non-pareto Elimination (ATNE) [77]. ATNE is a machine learning method that

searches for optimal designs in a pool of candidates while minimizing the number of designs

that need to be sampled. Designs are considered optimal based on objectives specified by

the designer, and representative of the goal of the application. In hardware design, objectives

are often related in a way that makes it impossible to perfectly optimize all the objectives

simultaneously. Typically, improving throughput requires to increase the logic utilization and

conversely. This is why many DSE algorithms – ATNE included – aim to find designs that are

Pareto-optimal with respect to the user-defined objectives. In other words, we are trying to find

the Pareto front of the design space. The Pareto front represents the set of designs within the

89

Choose initial samples (TED)

Final sampled design space

Random Forest
regression

δ threshold
calculation

Design elimination

Sample selection
Synthetize sampled

FPGA designs

ATNE Sampling Framework

Active Learning

1 2

34

5

Figure 4.2. Overview of the original ATNE sampling framework. ATNE is composed of an
initial sampling step performed by the TED algorithm, followed by an iterative active learning
process.

design space that cannot be improved further on one objective without making another objective

worse. An example of design spaces with two objectives and highlighted Pareto-optimal designs

can be seen in Figure 4.4 and 4.5.

The original ATNE algorithm optimizes for throughput and logic utilization. Our open-

source implementation of ATNE (see Section 4.6) can handle any number of objectives, although

we focus on two objectives in the remainder of this paper.

ATNE employs active learning [102], which is a process where a new data label is queried

at each iteration to improve the model. ATNE enhances this process by focusing the queries into

the optimal portion of the output space by regularly eliminating non-optimal design candidates.

Figure 4.2 presents the main steps of the process that we briefly describe below. The original

paper [77] contains the relevant pseudo-code and equations.

4.3.1 Initial Sampling

The algorithms starts by sampling an initial number of designs. This initial set of samples

is built using the Transductive Experimental Design (TED) algorithm [121]. TED is a sampling

method by itself, however it is not meant to produce samples matching the ground truth Pareto

90

front. It is meant to choose a representative set of experiments that we can use to estimate the

global design space. TED only operates on the input space (knob values), and as such does not

benefit from valuable feedback from the output space, but it is a good choice as an initial step to

build a robust regression model.

4.3.2 Regression Model

Figure 4.2, steps 1 and 2. The initial set of selected samples is fully synthesized, compiled,

and run on FPGA to measure the output objective values (e.g., throughput and utilization). We

call this set, the set of known designs. The known outputs are then used to build a regression

model to estimate the shape of the entire space. ATNE uses a random forest regressor [15]

that uses the inputs (knob values) and outputs (measured objectives) of the known designs, and

estimates the outputs of the unknown designs. One of the key components of ATNE is that it

actually builds several models from different subsets of the known data, based on a bootstrap

ratio. It uses n f random forests, each with nt trees, and each training on the known designs to

create a model and predict the unknown data. Thus, each unknown design has multiple (n f)

estimated output values.

4.3.3 Design Elimination

Figure 4.2, steps 3 and 4. Each random forest produces one set of predicted output values.

The algorithm calculates a pairwise subtraction of all these values on each set, and computes

the standard deviation of each resulting subtraction across the sets. The subtraction creates an

order between all pairs of designs (i.e., which design is better, and by what amount), and the

standard deviation represents the divergence between multiple models. This standard deviation

on each value is used to derive a threshold δ that is used as a margin of error in order to eliminate

non-optimal designs. δ is controlled by a user-defined parameter α , which can be tuned to

make the elimination step more or less aggressive. The idea is to eliminate designs that are

dominated in most models. However, using a strict domination criterion would lead to a high

91

number of false negatives. Therefore, the algorithm only eliminates designs that are dominated

by a distance δ calculated independently on each objective. Once identified, the potentially

non-optimal designs are simply removed from the set of unknown designs and not considered in

subsequent iterations.

4.3.4 Active Sampling

Figure 4.2, steps 5 and 1. Finally, the algorithm calculates a score for each remaining

unknown design based on its dominance over other designs across all the regression models.

This score gets higher as a design is estimated Pareto-optimal by a large number of models. The

design with the highest score is chosen, synthesized and run, then added to the set of known

designs. In the next and all subsequent iterations, the regression models are re-computed with

the newly sampled data, and all the previous steps are applied until a sampling budget is reached,

or until there are no more remaining design candidates.

4.4 Hint Data Overview

FPGA design data are very time-consuming to sample (hours), however we can easily

collect other, related types of data quickly (seconds or minutes), e.g., estimations of the design

tools, executing the code on other architectures, etc. These data can generally not be used directly

to guess the performance of FPGA designs, but they can be used as a hint to help finding the

best designs and eliminating the non-optimal ones. We want a general design space exploration

technique that can take as input any arbitrary data as a hint and use this information to guide the

exploration process. The key is extracting the useful data from the external hint data in a generic

manner that is robust to noise and to misleading information.

Our goal is to investigate several methods of various complexity to extract information

from hint data. We want to design and test these methods on multiple datasets in order to quantify

the improvement (or deterioration) of the quality of results when applying these methods to a

synthesis-based DSE algorithm.

92

Active learning

Collect hint dataInitial sampling

Final sampled
design space

Pareto hint /
Hint output

Calculate order
information

Calculate
correlations

Cluster hint data

Find non-Pareto
in clusters

Validate non-
Pareto designs

ATNE

Hint Elimination

Hint data mining

Elimination hint

Current samples

Figure 4.3. Overview of our proposed methods to improve the sampling results. We propose to
improve the initial sampling with information from the hint data, and we design a hint elimination
algorithm to further help the elimination step of ATNE.

We extend the ATNE algorithm presented in Section 4.3 and the TED algorithm that

is used as initialization of ATNE. We enhance them with both a simple and a more complex

technique to extract and use external hint information as illustrated in Figure 4.3. We measure the

effectiveness of our hint-based techniques by measuring the total number of designs evaluated

(sampled), and by calculating an error metric. We use the Average Distance to Reference Set

(ADRS) metric [92, 94]. ADRS measures the average normalized distance between the estimated

Pareto front and the ground truth Pareto front. As it is a normalized value, we report it as a

percentage. The closer it is to 0, the better the estimation is.

There exists multiple ways to extract useful information from data coming from external

sources. Here we define the concept of hint data and the assumptions that we make about these

data. We consider as hint data, any data that can be obtained at least an order of magnitude faster

than post-PnR (place-and-route) FPGA results, and that likely have some level of correlation

with FPGA data. This includes pre-PnR estimations, GPU or CPU runs of OpenCL designs, or

data coming from an analytical model. A hint design space contains the same input space X

as the FPGA design space, but contains a different output space represented by the matrix yh

93

of dimensions (n×o) (see Figure 4.1). As opposed to y, we consider that the values of yh are

known (as they are very fast to obtain). We also assume that we have data on all target objectives

so that the hint output space can form a design space of the same dimensionality as the FPGA

output space. In our case, we combine area utilization estimates from the pre-PnR results as the

first hint objective, with performance data from either pre-PnR results, GPU or CPU runs as the

second objective. We create hint output spaces yh
est , yh

GPU , and yh
CPU . Note that, technically, the

hint data do not need to be complete, i.e., yh can be incomplete, although we only experimented

with complete hint spaces in this paper. Finally, while we assume that some subsets of yh are

correlated to subsets of y, we also assume that yh is noisy and thus not completely reliable.

We can extract information from these hint design spaces and use them to improve either

the sampling algorithm directly, the set of initial samples, or both (see Figure 4.3).

4.5 Exploiting Hint Data

We aim to most effectively utilize the hint data in order to make our FPGA design space

exploration faster and more accurate. In this section, we discuss various techniques to extract

useful information from hint data to improve the DSE algorithm. We divide our techniques in

three categories: A) techniques using the hint data directly without running the DSE algorithm,

B) techniques improving the initialization of the DSE algorithm, and C) techniques to improve

the elimination step of the DSE algorithm.

4.5.1 Directly Using Hint Data

The best scenario is when the hint space correlates extremely well with the FPGA design

space. In this case, we could quickly find the Pareto-optimal designs in the hint space and directly

use these as the best designs in the FPGA space. This eliminates costly FPGA synthesis and if

accurate would result in a very fast design space exploration process. But this is all contingent

on how well these two design spaces track one another.

Figure 4.4 shows the hint and FPGA output spaces (for the same input space) for the

94

GPU Throughput1
/ P

re
-P

nR
 A

re
a

Ut
iliz

at
io

n Hint Design Space

FPGA Throughput

1
/ F

PG
A

Ar
ea

 U
til

iza
tio

n

 FPGA Design Space

Hint Pareto designs
Hint Pareto designs (with margin)

All designs
FPGA Pareto designs

Figure 4.4. Example of directly using the hint data to find the Pareto-optimal points. On the left
is the hint space from pre-PnR resource data and GPU performance data. On the right is the
ground truth FPGA design space. Strict optimal designs (crosses) and optimal design with a 1%
margin (squares) from the hint space are plotted in the FPGA space. They are very different
from the true optimal set (triangles).

Pre-PnR Throughput1
/ P

re
-P

nR
 A

re
a

Ut
iliz

at
io

n Hint Design Space

FPGA Throughput1
/ F

PG
A

Ar
ea

 U
til

iza
tio

n FPGA Design Space

Hint Pareto designs
Hint Pareto designs (with margin)

All designs
FPGA Pareto designs

Figure 4.5. Directly using the hint Pareto-optimal designs on a different benchmark, using the
pre-PnR throughput estimations. Selecting optimal designs from the hint space with a margin of
1% leads to sampling 90 designs.

histogram benchmark from our dataset (see Section 4.6.3). The left graph plots the hint design

space; it uses GPU results for throughput and pre-place and route (pre-PnR) results for utilization.

The FPGA design space on the right corresponds to the fully synthesized and implemented FPGA

results for throughput and utilization (obtained from an estimated 2200 hours of computation).

95

On the hint space, the Pareto-optimal designs are highlighted with crosses, and on the FPGA

space, the optimal designs are highlighted with triangles.

A quick observation of the plots shows that the design spaces do not look similar. For

example, the FPGA design space has many designs clustered in the upper left corner (low

utilization and low throughput), and its Pareto front has a low gradient curve. The hint design

space is more evenly distributed and the slope of the Pareto front curve is steeper.

However, the shape of the entire design space is not as important as whether the Pareto

optimal designs are correlated. We do not care much about the worst and non-optimal designs. If

the best (Pareto-optimal) designs correlate well, then we can still directly utilize the hint space to

find the Pareto designs in the FPGA space.

We calculated the Pareto-optimal designs in the hint space and highlighted these designs

in the ground truth FPGA design space. For comparison, we also calculated the Pareto optimal

designs in the FPGA design space. We can see that the estimated Pareto designs (crosses) are far

from the ground truth Pareto (triangles).

This observation holds when we relax the condition of optimality by selecting designs

within a certain distance of the Pareto front. Here we define a Pareto margin of 1% of the distance

between the strict Pareto front and the minimum value on each axis. On Figure 4.4 and 4.5, the

designs within this margin are highlighted using small squares on the hint space, and reported on

the FPGA space for comparison. This margin is insufficient to attain the true optimal designs,

while significantly increasing the number of selected samples. The second example in Figure 4.5

(BFS dense benchmark) shows that even a 1% margin can lead to a very large number of sampled

designs; in this case 90 designs are selected on the hint space, and are all far from the FPGA

Pareto front when plotted into the FPGA space. We observe that the estimated optimal designs

are generally better on the area utilization axis. This reflects the ability of the synthesis tool to

properly estimate the hardware architecture. While this method can sometimes work when hint

data are very correlated, its results are difficult to predict and vary greatly between design spaces

(see Section 4.7 for more detailed results). We need to implement methods that can produce a

96

more reliable outcome.

4.5.2 Improving initialization

The choice of initialization algorithm for learning-based DSE methods can have a large

impact on the quality of results. A smart selection of designs representative of the entire space is

better than a randomized selection [74]. Transductive Experimental Design (TED) [121] selects

a representative subset of experiments (i.e., points on the input space) to better characterize the

output space. For our problem, this means that TED selects a set of initial designs to synthesize

before starting the machine learning process. TED does not make any assumptions on the

learning model and is therefore suited to start the active learning stage of ATNE. We want to

investigate methods to improve the design sampling performed by the TED algorithm by using

our collected hint data.

We use domain adaptation [95] to improve our information extraction process. The exact

definition of domain adaptation sometimes varies; we use it as a subset of transfer learning where

we attempt to adapt a model created in a source domain to predict labels in a target domain. In

our case, the hint design space is the source domain and the FPGA design space is the target

domain. As the hint output space is fully resolved, we can use it as a base model to adapt to the

target space.

The first use of domain adaptation technique applies information from the source domain

to initialize the hypothesis in the target domain. In our case, we use the hint space to improve the

selection of initial samples in the target space. We want to improve TED with information from

the hint data. In the following, we describe and compare three different methods to achieve this

goal.

Pareto Hint + TED (TEDhpar)

Our first method uses the Pareto-optimal hint designs to initialize the sampling framework.

The goal of the sampling process is to target the Pareto front. Therefore, if the Pareto hint designs

97

are similar to the target Pareto designs, the sampling algorithm will provide an initial bias toward

the Pareto front.

The size of the strict Pareto front is typically limited to less than ten designs. In the

case where there are not enough Pareto hint designs to meet the initial sampling budget, we

have two choices: increase the Pareto margin or initialize the remaining designs with TED. The

problem with increasing the Pareto margin is that it produces unstable results (see Figure 4.5).

Additionally, we assume that TED is generally better at selecting useful designs to build a model.

Therefore we use TED to initialize at least half of the initial sampling budget, along with the

optimal designs from hint data.

TED on Hint Output Space (TEDout)

The goal of TED is to select experiments that are likely to be representative of the entire

output space, but without knowledge of the outcome of these experiments. In other words, TED

operates on the input space only. Basically, TED provides an even distribution of samples in the

input space without creating dense clusters. In our case, the algorithm considers the knob values

and tries to create a grid-like distribution of samples in this space. Since the hint output space

is fully resolved (i.e., we have hint values on all the objectives for each design), we can take

advantage of that additional information by asking TED to create an even distribution of samples

in the output space. We are more interested by the shape of the output space (i.e., what are the

values of the objectives for each design on FPGA) and therefore, by selecting a representative

subset of the hint output space, we can hope that it will also be representative of the FPGA output

space.

TED on All Hint Output Spaces (TEDall)

Running TED on one output space (TEDout) focuses the algorithm on finding evenly

spaced samples in that particular space. However, one particular hint space might be too noisy

or biased in a certain way. Since we can potentially obtain performance data from multiple

98

sources (CPU, GPU, models, etc.), we can leverage all this information to help the sampling.

We concatenate the matrices of multiple output spaces to create a new, enhanced output space.

Essentially, we add extra dimensions to our output data, which forces TED to evenly distribute

points in these new dimensions as well. This new distribution has the potential to include

samples with high disagreement among hint data, which can help reduce noise from these hints.

Additionally, given enough initial samples, TED will create a representative subset of each hint

space, which increases the probability of selecting a good representative subset of the FPGA

space.

4.5.3 Improving Elimination With Hint Data

A fundamental idea of the ATNE algorithm is to progressively eliminate non-optimal

samples from the set of design candidates. The elimination step of the algorithm removes

designs from consideration if it is reasonably confident that they are not Pareto-optimal. Domain

adaptation techniques can utilize source domain information to further improve target domain

learning. Combining these two concepts, we can leverage similarities between the hint design

space and the FPGA design space in order to eliminate more designs. We present a method

to “mine” the hint data for relevant information about the optimality of FPGA designs, and

effectively use that information to discard a subset of the design space. We can perform this

process at any time during the sampling algorithm. In our experiments, we run it at each iteration

of the ATNE active learning loop.

Hint Elimination Algorithm

This algorithm takes as input the hint data along with the sampled FPGA data, finds

useful information in these data, process it, and return a suggested set of designs that are likely

non-optimal. These designs can then be eliminated by the ATNE algorithm to avoid sampling

them and thus accelerate the overall convergence.

The hint data are provided on all objectives and create a fully resolved design space

99

FPGA design order
2 3 4 … 𝑛

1 𝐹1 − 𝐹2 x 𝐹1 − 𝐹4 𝐹1 − 𝐹𝑛

2 x 𝐹2 − 𝐹4 … 𝐹2 − 𝐹𝑛

3 x x

… …

𝑛 − 1 𝐹𝑛 − 𝐹𝑛−1

Hint design order
2 3 4 … 𝑛

1 𝐻1 − 𝐻2 𝐻1 − 𝐻3 𝐻1 − 𝐻4 𝐻1 − 𝐻𝑛

2 𝐻2 − 𝐻3 𝐻2 − 𝐻4 … 𝐻2 − 𝐻𝑛

3 𝐻3 − 𝐻4 𝐻3 − 𝐻𝑛

… …

𝑛 − 1 𝐻𝑛 − 𝐻𝑛−1

Order correlation
2 3 4 … 𝑛

1 1 x -1 … 1

2 x 1 … -1

3 x … x

…

…

…

𝑛 − 1 1

𝑆𝑖𝑔𝑛(𝐴 ∗ 𝐵)

Clustering

1
-1

-1

1 x

x 1
1 1

1 1
xx
x

x

x
xx

x

x

-1
-1 -1 -1

-1
1

-1 1
xx

x

x1 x-1
1x xx

x

1
-1

-1

1 x
1

-1

x 1
1 1

1 1-1
xx
x

x

x

-1 xx
x

x

1-1
-1 -1 -1

-1
1

-1 1
xx

x

x1 x-1
1

-1
x x

1x

x

Apply clusters

Find clusters with agreement

✔ ✔

x = Unknown designs

x

1
-1

x
-1

-11
1-1

1 2 3 4 5 … 𝑛

𝐹1 𝐹2 x 𝐹4 x 𝐹𝑛

1 2 3 4 5 … 𝑛

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5 𝐻𝑛

FPGA designs Hint designs

1
1 1

1
1
1 -1

-1-1
-1 -1 -1

-1 -1

-1

Transfer information
to unknown data

Figure 4.6. Our hint elimination method. 1) Calculate matrix of design order (pairwise differ-
ences between designs on one objective) for known FPGA designs and hint designs. 2) Calculate
a simplified correlation between the two. 3) Cluster the hint design order. 4) Apply these clusters
to the correlation data. 5) Find clusters containing only the same values and propagate that value
to the unknown FPGA data.

yh. Since we assume that yh contains a certain level of noise, we need to design a method to

discriminate between useful information and information that could hurt the performance of the

algorithm (e.g., by suggesting to eliminate designs that are in fact Pareto-optimal).

The information that we are looking for in this method is the design order. Considering

two designs A and B, for one particular objective, we need to determine if design A outperforms

100

design B, or the opposite. We define it simply by the subtraction

Order = A−B

where Order, A and B are vectors of o elements (the number of objectives). In this method,

we are particularly interested in the sign of this equation that represents the relative ordering

(better/worse) between designs on each axis.

We want to calculate and compare design order in both the hint space and the FPGA

space. In particular, we want to find clusters of information where hint design order and FPGA

design order are in agreement. In such clusters, we infer that unknown FPGA designs follow the

same trend. We can then select elimination candidates based on these information. The accuracy

of our predictions depends on selecting the proper size for clusters. We provide more details on

cluster determination below.

Figure 4.6 illustrates the processed applied to each DSE objective. The first step of the

process is to calculate the design order of the known FPGA designs and the hint data. For each

design space, we calculate a matrix of pairwise differences, and only keep the upper half to avoid

redundant information.

The second step is to compute a simplified correlation: 1 if both the hint order and the

FPGA order agree, −1 if they disagree, and unknown if the value is unknown on FPGA data. At

this point, we have a matrix composed of 1 and −1 that is hard to exploit.

Our third step is to find clusters on the hint order matrix, and apply these clusters to the

correlation matrix. The result is a number of clusters containing 1, −1 and unknown values.

Within each cluster, we look at the known values. If some of these clusters only contain perfectly

agreeing values, i.e. contain only 1 or only −1, we consider that the unknown values are similar.

From this, we can deduct that within such a cluster, all the orders are correlated or anti-correlated.

Using the information from these agreeing clusters, we can compute which unknown

designs are sub-optimal on all objectives, and mark them as candidates for elimination. The last

101

step not illustrated here is the validation of the elimination candidates. This step is currently

tightly integrated with ATNE, but could easily be adapted to a different framework. We use

the random forest regressors to verify that the prediction model that they build agrees that the

designs are non-optimal. We do not check for perfect agreement, otherwise it would indicate

that the original algorithm can already find non-optimal designs, but we look for very large

disagreement to remove potential candidates for which the uncertainty is very high. In other

words, if the disagreement is too high, we safely decide to keep that design for another iteration.

The entire process is described in details in Algorithm 3. The first top-level loop

corresponds to the creation of the order matrices and the correlation matrix, and the clustering

of the hint data. The clustering method is detailed below and in Algorithm 4. The second loop

shows how designs are chosen for elimination from the cluster information. Finally the third

loop presents the validation process. Note that our algorithm is agnostic to the type and number

of objectives that it can work on. We can potentially run it on a design space exploration that

would include a third axis such as an accuracy metric for example.

Clustering the Hint Data

One important feature of our method is to be able to cluster the hint data in order to infer

unknown FPGA data. But in order to get the best accuracy in our predictions, we have to choose

the cluster size carefully. More specifically, we need to determine how many known values must

exist inside a cluster to maximize the probability of predicting correctly. The number of known

values that we need is a threshold T . If T is too small, then we risk using too few known values

to predict unknown values. But if T is too large, we risk that the clusters are not meaningful as

they can contain heterogeneous data. Therefore it is important to choose a good threshold. To

that end, we formalize the problem and provide a theoretical solution.

Our goal is to find clusters such that the simplified correlation matrix composed of 1 and

−1 can be used to predict whether unknown values are 1 or −1. The sampling process within

each group can be mathematically modeled as drawing boolean samples without replacement.

102

Algorithm 3: Hint Data Mining Algorithm
Input :Hint data; Sampled FPGA data; Predicted Space by regressors

1 for o = 1 to Nob jectives do
2 OrderFPGA(o) = pairwise differences for FPGA data
3 OrderHINT (o) = pairwise differences for Hint data
4 Initialize Corr(o) matrix to 0
5 for each pair (f ,h) in (OrderFPGA(o),OrderHINT (o)) do
6 c = 0
7 if f is known then
8 if (f ∗h)> 0 then c = 1;
9 else if (f ∗h)< 0 then c = -1;

10 end
11 Save c into Corr(o)
12 end
13 (clusterIndexes(o),clusterValues(o)) =ClusterRecursive(OrderHINT (o),Corr(o))
14 end
15 EliminationCandidates = /0
16 for i = 1 to Ndesigns do
17 for j = 1 to Ndesigns do
18 for o = 1 to Nob jectives do
19 cidx = clusterIndexes(o, i, j)
20 corr = 0
21 if all clusterValues(o,cidx) == 1 then corr = 1;
22 else if all clusterValues(o,cidx) == -1 then corr = -1;
23 OrderFPGA(o,i,j) = corr * OrderHINT (o,i,j)
24 end
25 if OrderFPGA(i, j)< 0 for all objectives then
26 Add i to EliminationCandidates
27 else if OrderFPGA(i, j)> 0 for all objectives then
28 Add j to EliminationCandidates
29 end
30 end
31 end
32 for each c in EliminationCandidates do
33 differences = /0
34 for each design in Prelaxed do
35 d = predictedValues(design)− predictedValues(c)
36 Add d to differences
37 end
38 Nin f erior = Num designs s.t. di f f erences > 0 for all objectives
39 if Nin f erior < 5 then Remove c from EliminationCandidates;
40 end

Output :EliminationCandidates

103

Algorithm 4: Recursive Clustering
1 Procedure ClusterRecursive(OrderHINT ,Corr)
2 Compute sampling threshold T using Equation 4.2
3 if Num known values in Corr > T and Corr contains both 1 and −1 then
4 IdxL, IdxR = Cluster OrderHINT into 2 groups
5 CIdxL,ValuesL =ClusterRecursive(OrderHINT (IdxL),Corr(IdxL))
6 CIdxR,ValuesR =ClusterRecursive(OrderHINT (IdxR),Corr(IdxR))
7 CIdx = Combine CIdxL and CIdxR

8 Values = Combine ValuesL and ValuesR

9 else
10 CIdx = matrix of all 1
11 Values(1) = Corr
12 if Num known values in Corr < T then
13 Values(1) = all 0
14 end
15 end
16 Return CIdx,Values

Therefore, its underlying probability distribution is hypergeometric:

P(X = k) =
CK

k CN−K
n−k

CN
n

(4.1)

where Ci
j is “i choose j”, N = the population size, K = the number of 1’s versus −1’s in the

population, k = the number of 1s drawn, and n = the total number of samples.

Under this model the ideal threshold n is the answer to the question, “With a fixed

likelihood 1−β , what is the minimum number of samples n for which I am likely with probability

1−β to draw all 1’s even though the population contains (εN) −1’s and (1− εN) 1’s?” To see

this more clearly, note that we are attempting to determine how likely it is that we have been

tricked by our sampling limitations into thinking that a cluster is either entirely composed of

1’s, or vice versa. We use a recursive numerical method described in equation 4.2 to solve this

problem.

f (x) :=

 x if N!(K̂−x)!
K̂!(N−x)!

≤ β or x = N

f (x+1) otherwise

 (4.2)

where K̂ = bN(1− ε)e. We let the user of our tool provide β and ε as two parameters describing

104

how much error is acceptable for the DSE. Then, we can take the β and ε into the numerical

method to produce the appropriate T .

The equation to calculate T is included in the clustering algorithm presented in Algo-

rithm 4. This algorithm is recursive and works as follows. First it considers four configurations:

1) The cluster contains exactly T known values, it’s a termination condition 2) The cluster

contains less than T known values, it is marked as invalid and terminates 3) The cluster is pure,

the algorithm terminate 4) There are more than T unknown values and the cluster is not pure. In

the fourth configuration, the hint data are clustered into two groups. Then each group is clustered

recursively, the results are combined together and the algorithm terminates.

4.6 Experimental Setup

In order to test the validity and performance of our methods, we implement and run these

methods on multiple datasets, and compare the results with a baseline algorithm. In this section,

we present the algorithms that we use and how we tune them, along with the datasets we use,

and the metrics that we use and define to measure the outcome of our experiments.

4.6.1 Algorithms

In our experiments, we use the Adaptive Threshold Non-Pareto Elimination (ATNE)

algorithm from [77] as a baseline DSE method, and we extend it to include the various hint-based

exploration methods described in Section 4.5. We implement ATNE using Python 3 and the

Random Forest implementation from the scikit-learn package. All the source code for our

implementation of ATNE extended with our methods is made available open-source [1]. ATNE

uses the Transductive Experimental Design (TED) algorithm as an initialization process. We

also use our Python implementation of this algorithm to test our enhanced initialization methods.

ATNE outputs two values by default: The first is the total number of designs sampled by the

algorithm after it converges (i.e., all possible designs have been sampled or eliminated). The

second is the ADRS metric computed from the output set of Pareto designs and the set of ground

105

Table 4.1. ATNE and hint elimination parameters

Init Samples Forests Trees Bootstrap α β ε

15 / 40 30 200 0.5 0.999 / 0.2 0.1 0.25

truth Pareto designs. We also output the ADRS value at each iteration to observe the rate at which

the error decreases, although this metric is difficult to summarize as explained in Section 4.6.5.

4.6.2 Hyperparameters

The ATNE algorithm has several parameters that can be tuned (Section 4.3): number

of initial samples, number of random forests, number of trees per forest, forest bootstrap ratio,

and the parameter α that controls how aggressive the algorithm is (i.e., how much the process

eliminates designs, at the potential expense of accuracy). In order to tune these parameters,

we generate a series of synthetic design spaces. The synthetic design spaces are created from

random non-linear function with multi-dimensional input and two outputs. Each of these spaces

have 200 designs. We combine nine synthetic designs spaces, with the smallest benchmark

from our chosen benchmark suite (which has about 200 designs as well), and we perform a grid

search of the hyperparameters on multiple independent subsets the set of spaces. We also search

for the hyperparameters controlling the cluster size of our hint elimination method: β and ε .

We pick values with an ADRS below 1%, and fix most of these values for our experiments.

The two exceptions are: the number of initial samples, and the α parameter. The α parameter

is at the core of the original ATNE algorithm, therefore we want to verify that our method

works with a very different value (we pick 0.2, which is an extreme value considering that this

parameter is very sensitive to small changes). The number of initial samples can influence the

total number of selected designs, and is particularly important in several of our methods relying

on modifying TED. For this reason, we chose to run experiments with both a small number

of initial samples (15) and a higher number (40). All the values that we selected for all the

parameters are summarized in Table 4.1.

106

4.6.3 Benchmarks

We use the Spector benchmark suite [42] to obtain ground truth data from FPGA im-

plementations. Spector provides the input matrix X for each design, along with a ground truth

output space y that we can use to measure the performance of our design space exploration

methods. Our hyperparameter tuning process employs the DCT benchmark in addition to the

synthetic design spaces; as a result, we do not include DCT in our experiment results.

4.6.4 Hint data

In addition to the Spector data, we have collected the pre-PnR estimation values from

the Intel FPGA synthesis tool (same version as used in the benchmarks) for all the designs. We

have also run the OpenCL designs on a Nvidia Tesla K20c GPU and an Intel i7-4790K CPU,

and collected the throughput data. These three types of data can be combined to create several

hint output space matrices yh. For each hint output space, we create two axes: one axis for logic

utilization hint, and one axis for throughput hint. The logic hint axis consists of pre-PnR resource

utilization estimations from the synthesis tool. The throughput hint axis can be either either the

pre-PnR throughput estimations from the synthesis tool (Est.T.), GPU throughput (GPU), or

CPU throughput (CPU). Pre-PnR throughput estimations are often not reliable as they do not

take into account data-dependent information such as external memory accesses, inter-modules

communication and branches on the architecture. GPU and CPU data are not very reliable either

due to architecture differences and some hardware knobs not having any effect on GPU/CPU,

however, they have the advantage of measuring the memory accesses and all the data flow in

general. Additionally, GPUs share some features of FPGAs such as some level of parallelism

and a similar memory hierarchy.

4.6.5 Metrics

We run multiple versions of ATNE (modified with our methods and unmodified) with the

parameters described above on all of the benchmarks, and take the average of 15 runs to account

107

for the non-determinism of the algorithm. We run ATNE until it converges to a solution, and

collect two sets of metrics. The first set of metrics is composed of: 1) the sampling complexity

(percentage of design space sampled), and 2) the ADRS (error between the sampled space and

the ground truth). We also derive a third metric to summarize the first two, called difficulty. It

is defined as the following: Difficulty = (Complexity+ADRS)/2, and represents the global

difficulty of learning a design space. As both the complexity and the ADRS are defined between

0 and 1, the difficulty gives an equal weight to the two metrics. For some specific applications, it

can be useful to define the difficulty with different weights, but we present the general case here.

We want to minimize all of these metrics, and compare the results of our methods (target) to

the results of the original ATNE algorithm (baseline). For a fair comparison across benchmarks,

we choose to normalize the results. However, in order to achieve a symmetrical scale between

positive results (target is better) and negative results (baseline is better), we calculate a piecewise

normalization:

Improvement =


Baseline−Target

Baseline if Baseline > Target

Baseline−Target
Target if Target > Baseline

0 if Baseline = Target

 (4.3)

This equation provides a scale defined as: 0% if the target and baseline results are equal;

+100% if the target is perfect (equals 0) and the baseline is worse; -100% if the baseline was

perfect and the target results are worse.

The second set of metrics is collected by calculating the ADRS relative to the ground

truth at each iteration of the algorithm, which results in a curve describing how fast the algorithm

is able to decrease the error and describe the true Pareto front (see Figures 4.11 and 4.12).

However, because ATNE is eliminating samples, it eventually converges and stops sampling

before reaching the sample budget (which we set to the total number of designs), and the

convergence rate depends on the state of the random number generator. This situation results

in multiple curves of variable length for multiple runs of the same algorithm on the same

108

BFS
Dense

BFS
Sparse

FIR Hist Matrix
Mul

Msort Normals Sobel SPMV
0.5%

SPMV
50%

0

20

40

60

80

AD
RS

 (%
)

ADRS using Hint data directly
Baseline ATNE 15
Baseline ATNE 40
GPU Pareto Hint
Est.T. Pareto Hint
CPU Pareto Hint

Figure 4.7. Prediction errors (ADRS) for different approaches: using ATNE without hint data,
directly using Pareto hint data with GPU performance / pre-PnR estimations / CPU performance.

benchmark. Additionally, not all benchmarks have the same size, which is why the x axis

presents the number of samples as a percentage of the total design space. This percentage also

varies across benchmarks since we have a fixed number of initial samples, and always sample

one design at a time. In order to summarize the results and present an average of this metric,

we have several options: we could either extrapolate missing values to match the longest curve

(i.e., use the last ADRS value for all remaining x axis values), or simply ignore missing values.

We choose the latter option, as we have not noticed any significant difference between the two

possibilities. However, this issue means that values at both curve extremities can be slightly less

accurate.

4.7 Results

4.7.1 Directly using hint data

Here we present the results of simply sampling designs based on the hint design space as

mentioned in Section 4.5.1. First, we calculate the Pareto optimal designs on the hint space, and

compare the ADRS obtained by using this method to the ADRS obtained by running the baseline

ATNE. We can see in Figure 4.7 that only using the hint Pareto designs leads to a large error.

However, this methods generally selects few designs, while ATNE selects a much larger number.

Therefore, we also compare the same method, but using various margin values when calculating

the Pareto front. As mentioned before, using a margin is not always reliable, as it is difficult to

109

0 20 40 60 80 100
Design space sampled (%)

0

10

20

30

AD
RS

 (%
)

Results using Hint Pareto designs with varying margins
Baseline ATNE 15
Baseline ATNE 40
GPU
Est. T.
CPU

Figure 4.8. Comparison of the sampling/ADRS tradeoff between the baseline algorithm and the
method selecting Pareto designs from hint data with various margins. All the results are averaged
across all benchmarks.

TEDall TEDhpar
GPU

TEDout
GPU

TEDhpar
Est.T.

TEDout
Est.T.

TEDhpar
CPU

TEDout
CPU

0

20

40

60

80

AD
RS

Im
pr

ov
em

en
t (

%
) Results of running TED only

15 samples
40 samples

Figure 4.9. Improvement of modified versions of TED over the original TED in terms of ADRS
for 15 and 40 samples. The results are averaged over all the benchmarks. TEDhpar uses normal
TED plus the Pareto hint data, TEDout uses TED on the output hint space, and TEDall uses TED
on all the output hint spaces.

control the number of sampled designs, but we are still interested in the performance of such

a method in average over all the benchmarks. We selected multiple margin values between

0% (strict Pareto front) and 100% (all designs selected), and averaged the resulting number of

selected samples and ADRS across all benchmarks. We compare this curve to the baseline ATNE

curve in Figure 4.8. Most of the time, the tradeoff between number of samples and ADRS is

worse when using this technique, although the values on the left of the curve indicate that the

hint data can help with initialization.

110

4.7.2 TED Only

In these experiments, we modify TED as described in Section 4.5.2. TEDhpar is TED +

Pareto Hint, TEDout is TED running on the output hint space, and TEDall is TED running on all

the output hint spaces. Here we run the TED algorithm only, without the DSE framework. TED

takes as input the number of designs to select. We choose the number of initial samples that

we selected for the DSE framework, as we are aiming to improve the initialization of the DSE.

Figure 4.9 reports the improvement of the various modified TED (target) over the original TED

(baseline), in terms of ADRS, and averaged over all the benchmarks. In average, the improvement

is always positive, which means that the hint data helps TED selecting designs that are closer to

the Pareto front than the original TED for the same number of designs. The improvement is also

much higher when we select a higher number of samples. We have established that hint data

can improve TED, and now we want to apply these experiments to the machine learning ATNE

framework, and combine them with our hint elimination method.

4.7.3 ATNE

The results of modifying TED are generally positive, but the goal TED is not to find

the Pareto-optimal designs. We want to use these modified TED algorithms to give the entire

machine learning DSE a better start. We run more experiments on the ATNE framework, by

using our modified TED as initializer, and by applying the hint elimination algorithm described

in Section 4.5.3. We measure the improvement in terms of ADRS and sampling complexity after

convergence, and we also calculate the combined metric “difficulty”. We experiment using the

hyperparameters described earlier, and we present the results for α = 0.999, 15 initial samples,

and 40 initial samples. Figure 4.10 (a) shows the results for α = 0.999 and 15 initial samples,

averaged over all benchmarks. Overall, the results are very positive with few exceptions. In

general, using modified TED only does not lead to a high improvement. While the error metric is

vastly improved in some cases, it is often at the expense of sampling complexity, which translates

111

TE
D all

TE
D hp

ar

TE
D ou

t

TE
D + El

im
.

TE
D hp

ar
 + El

im
.

TE
D ou

t +
 El

im
.

TE
D all

 + El
im

.

TE
D hp

ar

TE
D ou

t

TE
D + El

im
.

TE
D hp

ar
 + El

im
.

TE
D ou

t +
 El

im
.

TE
D all

 + El
im

.

TE
D hp

ar

TE
D ou

t

TE
D + El

im
.

TE
D hp

ar
 + El

im
.

TE
D ou

t +
 El

im
.

TE
D all

 + El
im

.

0

20

40

60
Im

pr
ov

em
en

t (
%

)
GPU Est. T. CPU

GPU Hint Est.T. Hint CPU Hint Sampling Complexity ADRS Difficulty

TE
D all

TE
D hp

ar

TE
D ou

t

TE
D + El

im
.

TE
D hp

ar
 + El

im
.

TE
D ou

t +
 El

im
.

TE
D all

 + El
im

.

TE
D hp

ar

TE
D ou

t

TE
D + El

im
.

TE
D hp

ar
 + El

im
.

TE
D ou

t +
 El

im
.

TE
D all

 + El
im

.

TE
D hp

ar

TE
D ou

t

TE
D + El

im
.

TE
D hp

ar
 + El

im
.

TE
D ou

t +
 El

im
.

TE
D all

 + El
im

.

20

0

20

40

Im
pr

ov
em

en
t (

%
)

GPU Est. T. CPU

(a)

(b)

Figure 4.10. Improvement of various methods over the baseline ATNE algorithm in terms of
ADRS, sampling complexity, and the combined difficulty metric. Here we use α = 0.999. (a)
uses 40 initial samples and (b) uses 15 initial samples. The results are averaged over all the
benchmarks. We test the three modified version of TED and the original, combined or not with
the hint elimination algorithm (Elim.). Each method is tested with the hint design spaces from
GPU, Estimation Throughput, and CPU.

into only a small difficulty improvement or none at all. However, once added the hint elimination

algorithm, the overall improvement is much more obvious.

The results when using only 15 initial samples are presented in Figure 4.10 (b). This

graphs shows more negative results when using modified versions of TED only, which is a

logical consequence of using less initial samples, and therefore modified TED showing less

improvement (see Figure 4.9). The main reason for the negative difficulty improvement is that

modified TED algorithms might sample more toward the Pareto front, but leaving large portions

of the design space unknown, which turns into a low-confidence area that must be sampled by

the ATNE algorithm, hence the large increase in sampling complexity. This low-confidence area

can be pruned as a non-optimal space by the hint elimination algorithm, which leads to much

better results. However, as shown in Figure 4.10, if the hint elimination algorithm is used too

112

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
TEDall GPU

ATNE
TEDall

TEDhpar

TEDout

TED + Elim.
TEDhpar + Elim.
TEDout + Elim.
TEDall + Elim.

10 20 30
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
Est.T.

10 20 30

CPU

Design space sampled (%)

AD
RS

 (%
)

Figure 4.11. Curves showing the change in ADRS in function of the number of sampled designs,
in average over all benchmarks. Each curve is a different algorithm, with α = 0.999 and 40
initial samples. The curves are grouped by hint data type, with the addition of TEDall which
uses all hint types. Note that because each curve is an average, and not all runs of the algorithm
converge to the same value, the curve can sometimes go up.

early without the help of hint-based modified TED (TED + Elim.), the error tends to increase.

Indeed, the elimination step can sometimes underestimate the optimality of certain designs when

the difference between these ground truth designs and their corresponding hint designs is too

large, and they are situated in an under-sampled portion of the space. This flaw is solved when

using the modified TED to obtain better information on these areas. These results underline the

necessity of designing complex methods to extract information to avoid hurting the performance

by feeding misleading data to the algorithm.

Fig. 4.11 and 4.12 show the change in ADRS as the different versions of the algorithm

sample more designs. These curves cannot be compared directly with the plots in Figure 4.10,

because the plots use the ADRS after the algorithm has finished sampling, while these curves

113

0

5

10

15

20

25

30

TEDall GPU
ATNE
TEDall

TEDhpar

TEDout

TED + Elim.
TEDhpar + Elim.
TEDout + Elim.
TEDall + Elim.

0 10 20 30
0

5

10

15

20

25

30

Est.T.

0 10 20 30

CPU

Design space sampled (%)

AD
RS

 (%
)

Figure 4.12. Curves showing the change in ADRS in function of the number of sampled designs,
in average over all benchmarks, with α = 0.999 and 15 initial samples.

present the average ADRS for different sampling ratios. Moreover, as explained in Section 4.6.5,

the curves are not perfectly accurate due to the average and convergence differences, but we

can still observe general trends. The hint elimination algorithm by itself does not improve the

ADRS/sample curve by any significant amount, as it is designed to help the algorithm converge

faster, rather than improve the sampling pattern. However, once combined with a modified TED

initialization, it tends to decrease the error faster. The algorithm using the estimation throughput

hint data with 15 initial samples show some limitations of our methods. With the Est.T. hint

space, some techniques have a higher ADRS in average after sampling more than 7-8% of the

design space. This is due to the modified TED versions picking bad starting points, as the Est.T.

hint space is less accurate than the other two. This observation is supported by the TEDall+Elim

curve which performs better as it can use all the information from the other hint spaces.

114

TE
D all

TE
D hp

ar

TE
D ou

t

TE
D + El

im
.

TE
D hp

ar
 + El

im
.

TE
D ou

t +
 El

im
.

TE
D all

 + El
im

.

TE
D hp

ar

TE
D ou

t

TE
D + El

im
.

TE
D hp

ar
 + El

im
.

TE
D ou

t +
 El

im
.

TE
D all

 + El
im

.

TE
D hp

ar

TE
D ou

t

TE
D + El

im
.

TE
D hp

ar
 + El

im
.

TE
D ou

t +
 El

im
.

TE
D all

 + El
im

.
0

20

40

60
Im

pr
ov

em
en

t (
%

)
GPU Est. T. CPU

GPU Hint Est.T. Hint CPU Hint Sampling Complexity ADRS Difficulty

TE
D all

TE
D hp

ar

TE
D ou

t

TE
D + El

im
.

TE
D hp

ar
 + El

im
.

TE
D ou

t +
 El

im
.

TE
D all

 + El
im

.

TE
D hp

ar

TE
D ou

t

TE
D + El

im
.

TE
D hp

ar
 + El

im
.

TE
D ou

t +
 El

im
.

TE
D all

 + El
im

.

TE
D hp

ar

TE
D ou

t

TE
D + El

im
.

TE
D hp

ar
 + El

im
.

TE
D ou

t +
 El

im
.

TE
D all

 + El
im

.

0

20

40

60

Im
pr

ov
em

en
t (

%
)

GPU Est. T. CPU

(a)

(b)

Figure 4.13. Improvement of hint data methods over the baseline ATNE algorithm for α = 0.2,
with (a) 40 initial samples and (b) 15 initial samples.

4.7.4 ATNE with low alpha

The results when using α = 0.2 are very similar as previous results, and the conclusions

remain the same. Choosing this alpha value means that the baseline ATNE algorithm is more

“aggressive”, i.e., has a lower threshold to eliminate designs and generally eliminates more

designs at each iteration. Figure 4.13 shows the improvement of our methods over the baseline

ATNE with this alpha. The improvement is similar as before. Only the results using 15 samples

and estimation throughput (Est. T.) hint data are slightly worse, due to less accurate elimination

suggestions based on this hint space, combined with a less stable algorithm. With a low alpha,

the regression model tends to be based on less ground truth points, hence the need for a better

hint to improve the accuracy of the elimination process.

4.8 Conclusion

We have shown that externally acquired hint data can improve FPGA design space

exploration in average. It can reduce the sampling complexity to save hundreds of hours of

115

computation, and it can increase the accuracy to find more optimal designs. Although hint

data can come from any source (CPU, GPU, various models, etc.), we also show that the

useful information need to be extracted with care. Simple methods may not always work,

and sometimes hurt performance, but smart data mining will improve the results. While our

algorithms can be made more robust to uncorrelated hint design spaces, they all show promising

improvement. These techniques can be generalized to other frameworks to further improve the

value of information that can be collected from hint data.

Acknowledgements

Chapter 4, is coauthored with Althoff, Alric; Meng, Pingfan; and Kastner, Ryan. The

dissertation author was the primary author of this chapter.

116

Chapter 5

Sherlock: A Multi-Objective Design Space
Exploration Framework

5.1 Introduction

The process of optimizing a hardware design is usually a lengthy tuning of parameters that

control various aspects of the design. One can tune the amount of parallelism, pipelining, memory

caching, etc. to balance the resulting throughput, area utilization, and power consumption. Every

time a modification is made, if the designer wishes to evaluate their design to obtain precise

measurements, they need to compile and run it. This process can easily take multiple hours.

A complex design can comprise of many parameters, rendering the design space exploration

procedure very slow and tedious.

Certain software applications present the same issue when it comes to parameter tuning.

Many machine learning or computer vision applications contains tens or hundreds of parameters,

along with large datasets which makes any evaluation very slow. In either hardware or software

design, all these parameters create a highly complex design space that is often non-linear

[42, 85]. Such a design space generally contains mutually exclusive objectives (e.g., accuracy vs.

throughput). It is therefore interesting for the designer to find the set of optimal designs along

all the objectives. In a context where compiling and/or running each design takes a long time,

evaluating all possible designs is too time-consuming and sometimes impossible.

We develop a machine learning framework called Sherlock, that utilizes active learning

117

to intelligently select designs to evaluate. Sherlock focuses the learning on the set of optimal

designs. Understanding the shape of the entire space can be useful when analyzing the effects of

different parameters on the design, however, in the case of design optimization, we want to obtain

the optimal set as fast as possible. Sherlock can reach the optimal set quickly by minimizing the

initialization size, and performing a sample selection entirely driven by the estimated optimal

set, using a strategy that balances exploration and exploitation based on expected results.

The active learning process is based on a regression model that iteratively provides

estimates of the entire space. We test Sherlock using multiple types of regression models,

spanning from complex models often used in active learning literature, to simpler consensus-

based interpolation kernels that help reaching an almost optimal solution faster. In order to

make our framework more flexible, we also design a model selection strategy based on the

Multi-Armed Bandit problem, that rewards the models directly improving the actual Pareto front.

With this strategy, the framework can quickly decrease the importance of models that do not

provide correct estimates. It can then leverage all models relative to their positive contribution to

reach the optimal designs faster.

The contributions of this work are:

• We develop a design space exploration (DSE) framework that targets the optimization of

FPGA designs, but that also generalizes to other applications with slow evaluation time.

• We outfit our DSE framework with a model selection strategy to adapt it to a wide variety

of design spaces.

• Against similar state-of-the-art frameworks, we improve the convergence toward the Pareto

front on several FPGA applications and three complex software application.

We discuss related work in Section 5.2. In Section 5.3, we introduce the problem and

notations, and we describe the core active learning algorithm. In Section 5.4, we present our

118

method to select regression models. Section 5.5 contains the results of running Sherlock on

multiple datasets, and we conclude in Section 5.6.

5.2 Related Work

The Design Space Exploration topic in literature is often focused on hardware design,

a very time-consuming and costly process. FPGA design is a popular topic, especially in

recent years with the improvements of High-Level Synthesis (HLS) tools that render the design

parameterization easier, and open the field to designers with less expertise in hardware design.

In these cases, DSE techniques allow one user to specify potential optimizations, and determine

the best specifications to produce the most optimal architectures. The automation aspect of DSE

is what drives algorithms to attempt to reach the optimal solutions faster.

Several strategies exist to explore design spaces without sampling all the designs. Evo-

lutionary design space exploration [93, 26, 81] uses genetic algorithms to converge toward

an optimal solution. Particle swarm optimization [91, 80] generates a population of particles

searching the space of designs and using various metrics to advance toward the optimal solutions.

These techniques require a large number of samples to converge, and therefore are more adapted

to problems where the evaluation of each sample is a fast process, but the space is too large to be

evaluated entirely, which usually not applies to hardware optimization.

In hardware design, architectures often take several hours to compile on a multicore

machine. In these scenarios, the designer does not wish to explore the entire space. Specifically,

the number of samples is very important, as each single design not sampled can save hours

of optimization. To solve this problem, one solution is to substitute the design space for an

approximation. Predictive-based methods for DSE replace the actual design by an analytical

model. By using such a model, a rapid exploration of the space can be performed, either

by exploring the entire space, or using an evolutionary approach. [75] designs a scheduling

system to predict and efficiently simulate the designs, to quickly explore the design space of

119

the analytical model. [117, 115] analyze the structure of FPGA kernels generated by High-

Level Synthesis (HLS) using the OpenCL language, and build a compute and memory model

that can be use as a surrogate to significantly speed up the DSE process. Their performance

prediction error varies between 4 and 16%. [99] explores the design space at the pragma level by

building a probabilistic model for each type of pragma. They perform a fast exploration by using

an ant colony optimization algorithm, and obtain an error of 1.7% on SystemC benchmarks.

[127] and [126] propose tools to analyze the structure of the HLS code directly before the

synthesizing steps occurs. Their model achieve a 400×-4000× speedup in DSE, and a final DSE

accuracy of 95%. Generally, predictive-based methods exploit features specific to the optimized

application. These specific features make predictive approaches difficult to generalize to other

types of problems. In our work, we aim to build a tool that applies to a wide variety of problems,

and therefore we do not choose the predictive approach.

Often opposed to predictive-based methods, evaluation-based methods measure the

exact quantity of the target objectives to optimize. In hardware design, this method consists

of compiling an architecture specification to the actual hardware, then running the compiled

design onto an application-specific dataset, and measure the throughput, area utilization, power

consumption, and other potential optimization goals. These measurements give a very accurate

representation of how the design actually performs and how it compares to different designs at

the cost of long processing time.

One solution to accelerate this evaluation process is to parallelize it, and employ a smart

division of the space to attribute the computing resources. [119] proposes a Multi-Armed Bandit

(MAB) algorithm to balance the computing resources between different portions of the space,

and leverages the exploration-exploitation tradeoff of MAB to iteratively allocate more resources

to the optimal subspaces.

Another popular solution is to use iterative machine learning algorithms, such as active

learning [74, 132], to minimize the number of designs to evaluate. [77] proposes an active

learning framework called ATNE based on non-Pareto elimination. ATNE creates multiple

120

regression models from different subsets of the known data, then computes an elimination

threshold from the variance of the predictions. Based on this threshold, designs predicted to be

dominated are eliminated from consideration. The algorithm then samples a new design and

reiterate until convergence. This technique allows a much faster convergence toward the Pareto

front than previous techniques. The Hypermapper framework described in [11, 85] performs

active learning by modeling known designs with a random forest regression algorithm, and

simultaneously sampling all the predicted Pareto-optimal solutions. The algorithm iterates until

a sampling budget is reached. This framework is more optimized toward very large design

spaces where it is still reasonable to perform a high number of design evaluations (100 to

300 samples per iterations). Their framework is applied to the optimization of Simultaneous

Localization And Mapping (SLAM) algorithms. The ε-Pareto Active Learning (ε-PAL) [131] is

an improvement over PAL [132], and uses Gaussian Process as a regression model in order to

predict an uncertainty region for each predicted design output. By using these uncertainty regions,

the algorithm can discard non-optimal designs with high accuracy, and progressively build a

predicted Pareto-optimal set with an ε margin. The sampling process is based on minimizing the

uncertainty of the predictions.

Our work is similar to ε-PAL and ATNE, but without the pruning step, which can

potentially eliminate optimal designs from consideration, especially when the regression model

is not adapted to the design space being searched. Another similar work is Flash [84], a method

to explore the space of possible configurations for software systems. Flash uses decision trees to

iteratively sample configurations. While our work focuses primarily on optimizing hardware

design, we show that it can work on software design spaces as well, and perform better than

Flash in most cases.

Additionally, these algorithms rely on well-known regression models, such as Random

Forest or Gaussian Process, that may not perform well on all types of design spaces. Our

framework uses simpler regression kernels by default, and we propose a solution to automatically

utilize more complex models for design spaces that require it.

121

Initialize

Surrogate Model

Pareto Hypothesis

Keep Sampling
Method

Pareto
Score

Change Sampling
Method

Pareto Dominance
“Exploit”

Sample

Max Uncertainty
“Explore”

score increases score decreases

Figure 5.1. Sherlock workflow.

5.3 The Sherlock Algorithm

Sherlock implements an evaluation-based strategy for Design Space Exploration (DSE)

that utilizes an active learning technique to iteratively improve the known set of optimal designs.

First we define the problem and introduce formal definitions, then we present the active learning

algorithm and how its different components interact.

5.3.1 Scope and Definitions

Sherlock is a DSE framework that can target any application. As such, it only considers

an abstract representation of that application, through its design space. A design space of an

application is composed of both an input space and an output space. The input space is the set

of all possible variations of the application that are functionally identical. These variations are

created through the use of parameters, also known in the DSE literature as knobs. Knobs take n

values, for n ∈ [2,∞[. They can be discrete, categorical, or continuous. Our framework requires a

finite pool of candidates. Continuous knobs can generally be discretized by knowing the bounds

of the knob and choosing a reasonable set of values based on the target platform (e.g., powers of

122

two, regular grid, etc.). Categorical knobs are interpreted as numerical values. The input space X

is then defined as X = {k1× k2× ...× kn} ∈Xm×n where ki is a knob vector containing all the

possible values for this knob, and in this case,X=R. The resulting matrix has n columns for

each knob, and m rows for each unique and valid combination of knob values; in other words, m

design candidates.

The output space is defined by the optimization objectives set by the designer of the

application, such as throughput, accuracy, power consumption, etc. The output space y ∈Ym×o

is a matrix of m rows for each design candidate, and o columns for each optimization objective.

The final design space S is the combination of the input and output space: S = {(Xi,yi)}.

The problem is defined as follow: X is known by the designer, but y is unknown. What

is the set P ⊆ S of design candidates that are optimal on all objectives? As a multi-objective

optimization problem, this set P corresponds to the set of Pareto optimal design, i.e., designs that

can not be improved on one objective without decreasing another, also known as the Pareto front.

5.3.2 Active Learning

In order to find the Pareto optimal designs, Sherlock uses a well-known machine learning

technique known as active learning. Active learning works iteratively by 1) creating a surrogate

model to formulate an hypothesis of optimal designs, 2) selecting a candidate to sample, 3) sam-

pling the chosen design to obtain objective values, and 4) refining the model based on the new

sample. The loop continues until a stopping criterion is met. The specifics of Sherlock’s active

learning workflow are summarized in Fig. 5.1 and described below. The pseudo-code is also

presented in Algorithm 5.

Initialization

As a starting point of the algorithm, we choose an initial number of samples to evaluate

and collect their objective values. We build a set K of known designs (for which yi is known)

123

that will grow with future iterations of the framework.

K = {(X1,y1),(X2,y2), ...} (5.1)

Before the initial sampling, we do not possess any information on the output space,

therefore the sample selection must occur based on the input space only. This can be achieved by

random selection, but we choose the Transductive Experimental Design (TED) [121] algorithm

as it attempts to provide a representative set of experiments.

Formulation of Pareto Hypothesis

The goal of Sherlock is to focus the learning method on the Pareto front of the design

space. In this step, we try to obtain an estimated Pareto front through the use of a surrogate

model. A surrogate model is defined as a function f̂ :

f̂ ← g(K) (5.2)

g : S→ (X→Y) (5.3)

where g is a supervised learning method for regression. We use the surrogate model to obtain the

estimated Pareto front, along with a measure of the uncertainty of the estimation:

ŷ,H← f̂ (X) (5.4)

P̂,HP̂← pareto(ŷ,H) (5.5)

where ŷ is the estimation of the output space, H is the uncertainty of each estimation, and pareto

is a function to extract the set of Pareto optimal designs.

124

Sample Selection

Sampling is the process of choosing one design si to evaluate and obtain its output value.

The result is an increased set of known designs:

K← K∪{si} (5.6)

We need to determine the index i of the design to sample. Sherlock focuses on sampling designs

on the Pareto front. In order to reach these designs, the algorithm has two options: increase

the understanding of the space near or on the Pareto front (explore), or sampling directly the

estimated Pareto front (exploit). The explore sampling mode chooses a design that has been

estimated by the surrogate model with a high uncertainty:

i← argmax(HP̂) (5.7)

This mode increases the confidence of the estimated Pareto front. The exploit mode selects a

design with a high estimated Pareto dominance:

i← argmax
si∈S\K

(scores(ŷ)) (5.8)

If the model is a good estimation of the space around the Pareto front, this step leads to picking a

more optimal design.

We choose between the two sampling modes based on the improvement of the predicted

Pareto front. We attribute a score to the prediction from the model, and monitor its changes. The

score function is presented in Algorithm 6 and consists of comparing the output value of each

design (scaled by the number of designs) against the sum of the output of all other designs. We

apply this function to the estimated Pareto front. We compare the current maximum score to the

maximum score from the previous iteration. If the score is decreasing, we switch the sampling

125

Algorithm 5: Sherlock Algorithm
Input :X

1 s1,s2 = T ED(X)
2 K = {s1,s2}
3 mode← “explore”
4 prevscore = −∞

5 while |K|< sample budget do
6 f̂ ← g(.;K)

7 ŷ,H← f̂ (X)

8 P̂,HP̂← pareto(ŷ,H)
9 curscore←maxs∈P̂(scores(ŷ))

10 if curscore ¡ prevscore then
11 mode← next(mode)
12 end
13 if mode = “explore” then
14 i← argmax(HP̂)
15 else if mode = “exploit” then
16 i← argmaxsi∈S\K(scores(ŷ))
17 end
18 K← K∪{si}
19 prevscore← curscore
20 end

Algorithm 6: Score Algorithm
Input :y
Output :Scores: array of size m

1 for j ∈ [1..o] do
2 Sum[j] = ∑i y[i, j]
3 end
4 for i ∈ [1..m] do
5 Scores[i] = ∑ j(y[i, j]∗m−Sum[j])
6 end

mode.

5.3.3 Surrogate Model

The surrogate model must be a supervised regression algorithm that can provide a

prediction uncertainty, which is used to refine the global prediction in subsequent iterations.

There exist two major methods to provide an uncertainty in a regression model: 1) with ensemble

126

5 10
Design space sampled (%)

0.00

0.05

0.10

AD
RS

Histogram benchmark
Gaussian Process
Random Forest

2 4 6 8 10
Design space sampled (%)

0.1

0.2

0.3

AD
RS

DCT benchmark
Gaussian Process
Random Forest

Figure 5.2. Illustration of the difference of performance using Sherlock with two regression
models on two benchmarks.

technique, and 2) with Bayesian learning.

Ensemble techniques create multiple regression models, each with a subset of the known

points. The models then output different predictions, which are aggregated by voting or averaging.

This method can provide an estimation of the uncertainty of the prediction by computing the

variance over all the models. A popular ensemble model is the Random Forest predictor based

on a set of decision trees, and is used in several active learning frameworks.

Bayesian learning techniques leverage the Bayes theorem to progressively update statisti-

cal distributions based on provided evidence. Typically, a regression model starts with a prior

distribution over its weights, and combines it with the likelihood from known points to create

a posterior distribution. The parameters of the posterior distribution can be used to compute

a measure of uncertainty. A popular example is Gaussian Process models that create a prior

distribution over functions by using a kernel to express the correlation between points.

Sherlock can use any of these types of learning algorithms. We experiment with Random

Forest and Gaussian Process as they can generally model complex design spaces, and we

also create a consensus-based Radial Basis Function interpolator, that provides kernel-based

interpolation of unknown data, and is faster to compute than a Gaussian Process.

127

5.4 Model Selection

Most design spaces are inherently different as they represent a wide variety of relation-

ships between input variable and output design goals. Some design spaces can be modeled

by a simple linear equation, while others require a more complex model. This is reflected by

the performance of different surrogate models in active learning frameworks. In Figure 5.2,

we present the results of running Sherlock on two different benchmarks, by plotting our error

metric (ADRS) against the percentage of design space sampled. We give more details on the

experimental setup and the results in Section 5.5. Here we want to illustrate the difference

between the use of two different models. In the first design space, using a Gaussian Process

causes the algorithm to converge toward the Pareto front faster, and in the second example, the

Random Forest makes the algorithm converge faster.

A common solution to pick a model is to test the algorithm on similar design spaces, and

choose the most efficient one, possibly by cross-validation. Instead, we propose to learn the

best model using a Multi-Armed Bandit strategy that iteratively updates the importance of each

model based on the Pareto set improvement.

5.4.1 Algorithm

At each iteration of the active learning process, we want to choose a surrogate model

g among a small pool of models G = {g1,g2, ...}. We start with no prior knowledge of which

model performs better, and we want the framework to iteratively increase the importance of

models that generate good results.

A solution to this problem is to use one of the well-known Multi-Armed Bandit (MAB)

strategies. The MAB problem is a Bayesian optimization problem where we wish to determine

the distribution of independent variables with unknown outcome (the bandits), and choose the

variable providing the best outcome. The various MAB algorithms provide a tradeoff between

exploitation (observing the bandit with best known outcome), and exploration (observing other

128

Algorithm 7: Model Selection Algorithm
Input :Models {g1,g2, ...,gi, ...}, Reshape factor r

1 Initialize: αi = 1,βi = 1 ∀i
2 while |K|< sample budget do
3 Pi(θ) = Beta(αi,βi) ∀i
4 θ̂i ∼ Beta(αi,βi) ∀i
5 i = argmax(θ̂i)
6 Choose model g = gi

// Sherlock algorithm

7 Compute Hv = hypervolume(K)
8 x = Hv > prev(Hv)
9 αi = αi + x∗ r

10 βi = βi +(1− x)∗ r
11 end

bandits to refine their distribution).

In this case, we consider each model as a bandit. The outcome of observing one bandit

is either an improvement in the current Pareto set, or no improvement. In other word, we are

trying to learn a Bernoulli distribution for each model. Consequently, we can select the prior

distribution of the bandits as a Beta distribution. We define the prior distribution with parameter

θ for each model i as Pi(θ) = Beta(αi,βi). We update these distributions by selecting one bandit

and observing the outcome. A good choice of sampling algorithm is Thomson Sampling [108]

that provides a good tradeoff between exploration and exploitation [22]. The algorithm draws

a random sample from each distribution: θ̂i ∼ Beta(αi,βi) ∀i, then chooses the bandit with the

highest sample. The observation x of the selected bandit corresponds to the improvement of

hypervolume over the known designs (hypervolume(K)), after we sample a design according to

a strategy as defined in Section 5.3.2. In other words, if the model gi improved the Pareto set, x

is a positive outcome, i.e., x = 1, otherwise x = 0. We compute the posterior distribution based

on the outcome, and use it as prior for the next iteration.

Algorithm 7 shows the details of the method and how it integrates with the Sherlock

algorithm described in Algorithm 5. Note that we use an optional posterior reshaping factor r that

changes the variance of the distributions. As a result, increasing the value of r favors exploitation

129

over exploration (i.e., the model providing the best outcome gets selected more often), and the

policy becomes more greedy. Increasing this value also has the side benefit that each positive

outcome is given more consideration, and potential improvements from models later in the

sampling process will re-adjust their importance faster. It provides a small chance to switch the

most important model during the sampling process.

5.5 Results

5.5.1 Experimental Setup

We implement Sherlock using Python 3 with the numpy and scipy libraries. We imple-

ment four types of surrogate models: a Gaussian Process (GP) with a Matern kernel using the

GPy library, a Random Forest (RF) from the scikit-learn library, and Radial Basis Function (RBF)

interpolation algorithms with consensus decision similar to the implementation in scikit-learn,

with both a multiquadric basis and a thin plate basis. We compute an error metric based on the

ground truth design spaces, using the Average Distance to Reference Set (ADRS) metric [92].

ADRS measures the average normalized distance between the estimated Pareto front and the

reference Pareto front. It is a normalized value, sometimes reported as a percentage. The closer

it is to 0, the better the estimation is. We are particularly interested in the evolution of the ADRS

value as we sample the design space. We measure our results by plotting the ADRS curve in

function of the number of samples. For a better comparison between benchmarks, we normalize

the number of samples to the size of the design space, and report the results in function of the

percentage of the space sampled. The goal of Sherlock is to produce a curve that converges to

zero as fast as possible. To summarize our results, we compute the area under the curve for a

section of the curve (up to a certain percentage of the space, e.g., 20%), as a measure of how fast

the algorithm converges toward a good solution.

We compare our results to the ATNE algorithm [77] implemented in Python 3, the ε-

PAL [131] algorithm implemented in MATLAB, and the Flash [84] algorithm implemented in

130

Python 2. For all algorithms, we set the number of initial samples to five. In ATNE, we monitor

the ADRS for each design sampled until it converges and stops. For ε-PAL, we set the ε to zero,

monitor the ADRS curve for each sample, and complete the curve with the samples from the

estimated Pareto set after the algorithm converges. All frameworks are run multiple times on

each benchmark, and we compute the average ADRS curve.

5.5.2 Dataset

We test our algorithm on a set of FPGA benchmarks that cover different types of appli-

cations. We get our dataset from the Spector benchmarks [42]. These benchmarks are FPGA

applications outfitted with knobs that can be tuned, along with a test dataset to run them and

measure their throughput. The knobs are software-defined parameters that translate into architec-

ture changes. They cover typical FPGA optimizations such as pipelining, unrolling, partitioning,

parallelizing, and also some optimizations specific to each application (sliding window width,

etc.). The different combinations of values for knobs create unique designs that are functionally

equivalent, but produce a different outcome in terms of logic utilization and throughput.

Each design takes multiple hours to compile, making DSE an essential process to tune

these applications. Each unique design of these application has been compiled and run to

create exhaustive design spaces containing between 200 and 1500 designs each. We also add the

Iterative Closest Point (ICP) design space from [44] that implements a Simultaneous Localization

And Mapping (SLAM) algorithm on FPGA using OpenCL, and uses knobs to create a similar

design space as in Spector. It contains 1276 designs. We use these provided design spaces that

consist of the knob values, the actual FPGA area utilization, and the measured throughput of

each design.

The goal of a DSE framework such as Sherlock is to search a predefined space for

optimal designs. Therefore our ground truth consists of the set of Pareto-optimal designs in each

exhaustive design space. We run Sherlock by considering that the outcome of each design is

unknown and let the tool incrementally find and improve an estimated Pareto set. We can then

131

0 10 20 30
Design space sampled (%)

10 3

10 2

10 1

AD
RS

Sherlock Gaussian Process
Sherlock Random Forest
Sherlock RBF (multiquadric)
Sherlock RBF (thin plate)
ATNE
-PAL

Flash

Figure 5.3. Average performance of several algorithms on all the FPGA benchmarks. We plot
the error (ADRS - lower is better) against the percentage of design space sampled. We test
Sherlock with multiple regression models.

compute the ADRS metric between the estimated Pareto set and the ground truth set that we

defined initially.

5.5.3 Active Learning Results

We run the basic active learning algorithm in Sherlock over the FPGA benchmarks. We

calculate the ADRS curve at each sample, based on the provided ground truth design spaces. Our

results focus on the first 30% of the design spaces. 30% is a large budget for most applications

with a slow evaluation time, and in our test cases, it is always sufficient to reach an ADRS

below 1% with the best regression model. Moreover, we want to emphasize the convergence

of the ADRS curve by measuring the area under the curve. This metric puts more weight at

the beginning of the curve where we expect the error to decrease quickly, while fine-tuning

optimizations still influence the metric, but to a lesser extent.

In Figure 5.3, we present an average curve of running Sherlock, ATNE, ε-PAL, and

Flash on the FPGA benchmarks. We run Sherlock with different regression models. We can

observe that all versions of Sherlock perform better or similar as other algorithms in the first

5% of the spaces, and then perform differently based on the chosen model. In average, using

132

0.0005

0.005

0.05

BFS dense BFS sparse DCT FIR Histogram Merge sort MM Normals Sobel SPMV 0.5% SPMV 50% ICP

Area under the curve

ε-PAL ATNE Flash Sherlock GP Sherlock RF Sherlock RBF multiquadric Sherlock RBF thin plate Model Selection

Figure 5.4. Performance of several algorithms on individual benchmarks. We compute the area
under the ADRS curve as a measure of convergence, over the first 30% of design space sampled.
A lower value means that the algorithm reaches a better solution faster. We compare Sherlock
with different regression models to other state-of-the-art algorithms. We also compare with our
proposed model selection algorithm.

30.1 24.2
16.1

10.510.2
7.5

11.6

5.2

16.0

6.86.5

3.7

6.0
4.64.8

3.8

0.5

5.0

50.0

Mean Geomean

x
0

.0
0

1 Area under the curve
ε-PAL

ATNE

Flash

Sherlock GP

Sherlock RF

Sherlock RBF multiquadric

Sherlock RBF thin plate

Model Selection

Figure 5.5. Average area under the curve for the benchmarks presented in Figure 5.4. We present
the arithmetic mean, and the geometric mean to take into account the variability of the results.
The values are scaled by 1000 for readability.

the RBF interpolator with a thin plate kernel tends to work better. However, the average curve

does not reflect the performance on individual benchmarks, and is especially skewed by the FIR

benchmark, which is more difficult for several versions of Sherlock.

We summarize the results for individual benchmarks by calculating the area under the

curve (AUC) over the first 30% of the space. Figure 5.4 shows the AUC of Sherlock, ATNE,

and ε-PAL for all benchmarks, and Figure 5.5 shows the average AUC over all benchmarks. A

smaller AUC represents a faster convergence of the algorithm toward the true Pareto front. The

best performing model in average (RBF with a thin plate kernel) produces an AUC 1.7× smaller

than Flash, 2.7× smaller than ATNE, and 5× smaller than ε-PAL. However, the performance of

each model varies with individual benchmarks. While we could reasonably pick the model with

the best average result, we also want to study the case where we let the algorithm decide which

133

0 10 20
Design space sampled (%)

0.0

0.2

0.4

0.6

0.8

AD
RS

Dataset #1

Gaussian Process
Random Forest
Model Selection

0 10 20
Design space sampled (%)

0.1

0.2

0.3

AD
RS

Dataset #2

Gaussian Process
Random Forest
Model Selection

Figure 5.6. Performance of the model selection algorithm on two simulated datasets.

10 20
Design Space Sampled (%)

0.0

0.5

1.0

Di
st

rib
ut

io
n

M
ea

n

Dataset #1

Gaussian Process
Random Forest

5 10 15 20
Design Space Sampled (%)

0.0

0.5

1.0

Di
st

rib
ut

io
n

M
ea

n

Dataset #2

Gaussian Process
Random Forest

Figure 5.7. Calculated mean of the Beta distributions of the two models for the two simulated
datasets.

model to choose.

5.5.4 Model Selection Results

Algorithm Analysis

We generate two synthetic design spaces, each optimized for a different regression model

(Random Forest and Gaussian Process), and we run the model selection process on these datasets

to verify that the algorithm can choose the proper model for each design space. Figure 5.6

compares the results of Sherlock using a single model and Sherlock using model selection. In

both cases, the algorithm with model selection performs as good as the best model, or better. We

also plot the calculated mean of the Beta distribution associated to each model when running

model selection. Figure 5.7 shows the evolution of this mean. As expected, the model performing

better keeps a larger mean. The spikes in the curve corresponds to the reshaping factor (set to

10) designed to amplify the increase of the mean when an model performs better only later in the

134

sampling process.

Sherlock Results

We run Sherlock with the model selection algorithm on the FPGA benchmarks. We

present the AUC results in Figures 5.4 and 5.5, and the actual ADRS curves in Figure 5.8. In

many cases, the performance of Sherlock with model selection is comparable to Sherlock with

the RBF interpolator, and better in some cases. In average, this algorithm performs better than

the other solutions, without having to choose a particular model. The AUC is about 2× smaller

than Flash, 3× smaller than ATNE, and 6× smaller than ε-PAL. The Gaussian Process and

Random Forest implementations of Sherlock do not converge very well in many benchmarks,

as a result of being stuck in local minimum regions. The model selection process can more

easily avoid these local minima by selecting a different model. Certain models such as FIR filter

contains a local minimum that creates a high variance in the performance of different models,

and the selection process clearly helps in this case. Conversely, a benchmark like SPMV 0.5%

depends more on the learning rate of the chosen model, and the overhead of choosing between

multiple models is more obvious.

5.5.5 Software Dataset

Certain software applications can be very slow to evaluate, while also containing a large

number of knobs. Typically, computer vision algorithms can be complex and contain many

possible configurations. We want to evaluate how well can our framework optimize Simultaneous

Localization And Mapping (SLAM) and Visual Odometry (VO) algorithms.

We design a Visual Odometry (VO) algorithm using the OpenCV library. The main

component in VO is the choice of visual features detector and descriptor. We choose three feature

detectors/descriptors (SIFT, SURF, BRISK), and modify the parameters of each of them. We

run the algorithm on a standard dataset with ground truth data, and measure the running time

and the accuracy of the output (The accuracy is defined by the difference between the estimated

135

0.0 0.2 0.4 0.6 0.8 1.0
Design space sampled (%)

0.0

0.2

0.4

0.6

0.8

1.0

AD
RS

0 10 20 30
10 3

10 2

10 1

BFS dense

Sherlock Gaussian Process
Sherlock Random Forest
Sherlock RBF (multiquadric)
Sherlock RBF (thin plate)

Sherlock Model Selection
ATNE
-PAL

Flash

0 10 20 30
10 5

10 4

10 3

10 2

10 1

BFS sparse

0 10 20 30

10 4

10 3

10 2

10 1

100
DCT

0 10 20 30

10 4

10 3

10 2

10 1

100
ICP

0 10 20 30

10 5

10 3

10 1

FIR

0 10 20 30

10 4

10 3

10 2

10 1

Histogram

0 10 20 30
10 5

10 4

10 3

10 2

10 1

Merge sort

0 10 20 30

10 3

10 2

10 1

MM

0 10 20 30

10 4

10 2

100
Normals

0 10 20 30

10 5

10 3

10 1

Sobel

0 10 20 30
10 4

10 3

10 2

10 1

SPMV 0.5%

0 10 20 30

10 2

10 1

SPMV 50%

Figure 5.8. Comparison of the ADRS curves for multiple algorithms on all the FPGA bench-
marks.

136

0.0 0.2 0.4 0.6 0.8 1.0
Design space sampled (%)

0.0

0.2

0.4

0.6

0.8

1.0

AD
RS

0 10 20 30
10 4

10 3

10 2

10 1

100
InfiniTAM

0 10 20 30

10 3

10 2

10 1

ORBSLAM

0 10 20 30

10 1

Visual Odometry
Sherlock Gaussian Process
Sherlock Random Forest
Sherlock RBF (multiquadric)
Sherlock RBF (thin plate)
Sherlock Model Selection
ATNE
-PAL

Flash

Figure 5.9. Comparison of the ADRS curves for multiple algorithms on the SLAM benchmarks.

trajectory and the ground truth). We create an exhaustive design space from an input space X

using our defined knobs (choice of detector/descriptor algorithms and parameters for each of

them), and an output space y using the measured throughput and accuracy.

Our SLAM design spaces are created using the SLAMBench 2.0 [12] framework. We run

two different types of SLAM algorithms on a dataset with ground truth. We use InfiniTAM [58]

which uses depth-based tracking (i.e., uses only depth information to track the motion of the

camera), and ORBSLAM [82], which uses RGB images for tracking. Both algorithms have very

different configurations to optimize. We create design spaces based on measure throughput and

accuracy.

The ADRS curves are presented in Figure 5.9 and the area under the curve is summarized

in Figure 5.10. Certain algorithms get stuck inside regions of design spaces and fail to explore

the remaining space effectively, but Sherlock with RBF interpolators generally perform well,

and the results from the model selection strategy follow this trend.

0.002

0.02

0.2

InfiniTAM ORBSLAM Visual Odometry Mean Geomean

Area under the curve
ε-PAL

ATNE

Flash

Sherlock GP

Sherlock RF

Sherlock RBF multiquadric

Sherlock RBF thin plate

Model Selection

Figure 5.10. Area under the ADRS curve for the first 30% of the design space sampled.

137

5.6 Conclusion

In this chapter, we have presented Sherlock, our evaluation-based, multi-objective, Design

Space Exploration framework, that improves over previous work on a wide variety of applications.

Sherlock is an active learning algorithm, heavily focused on improving the set of optimal designs

at each iteration, and as such converges very quickly toward a low-error solution. We have

tested our framework with multiple regression models that present a wide variance in the quality

of results on different benchmarks. In general, we have found that simple RBF interpolation

function perform better than traditional Random Forest or Gaussian Process models on FPGA

design spaces. We also proposed a Multi-Armed Bandit-based algorithm to render the framework

agnostic to the type of regression model used, by iteratively selecting the most useful model on a

per-application basis. The results of this model selection are consistent over multiple benchmarks,

and provide a better average performance.

Acknowledgements

Chapter 5, in part, has been submitted for publication of the material as it may appear in

the 28th ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA),

2020. “Sherlock: A Multi-Objective Design Space Exploration Framework”. Gautier, Quentin;

Althoff, Alric; and Kastner, Ryan. The dissertation author was the primary investigator and

author of this paper.

138

Chapter 6

Conclusion

In this dissertation, we have addressed the problem of designing complex software and

hardware applications through the design of a 3D scanning system for archaeological sites. First,

we have manually explored several possible setups for the scanning system. It requires the

combination of one or multiple sensors, with a SLAM algorithm to process the sensor data. We

have quantified the accuracy of multiple hardware/software combinations after running a set

of lengthy experiments that could only be applied to carefully chosen solutions. Then we have

explored possible architectures to transfer a SLAM algorithm to a low-power FPGA platform.

By analyzing thousands of FPGA designs, we have established various relationships between

optimization parameters and optimization goals (throughput, logic utilization, etc.). However,

the brute-force exploration of the design spaces we have created is generally infeasible to create

an optimized architecture.

We have generalized the problem to different types of applications on FPGA, and created

several design spaces in order to improve our understanding of how to efficiently explore these

spaces without wasting design time. By using the OpenCL language for hardware design, we

have established some correlation between optimization goals on FPGA and other computing

platforms. We can leverage these correlations by organizing the design spaces into clusters to

further prune non-optimal designs. These results can lead to more research into transferring

knowledge between design spaces to improve the convergence of design space exploration

139

algorithms. Finally, we have designed a new active learning-based design space exploration

platform that can reach the Pareto front with a very low amount of designs evaluated. We used a

combination of properly chosen regression models along with a sampling strategy to find the

optimal parameters on multiple axes. The choice of regression model can impact the design

space exploration, but we can smartly choose a model based on simple reinforcement learning

strategies. These design space exploration frameworks can help build complex systems by

finding the set of optimal parameters, while minimizing the number of designs to evaluate. We

have tested our framework on hardware designs and SLAM software applications successfully,

suggesting that such a framework could be used to speed up the design and testing of a complex

3D scanning system.

140

Bibliography

[1] Atne source code. https://github.com/qkgautier/ATNE.

[2] Infinitam on fpga: Kernel source and results. https://github.com/fpga3d/infinitam fpga.

[3] Intel fpga sdk for opencl (altera opencl sdk). https://www.intel.com/content/www/us/en/
software/programmable/sdk-for-opencl/overview.html.

[4] Spector repository. https://github.com/KastnerRG/spector.

[5] Xilinx sdaccel. http://www.xilinx.com/products/design-tools/software-zone/sdaccel.html.

[6] Abiel Aguilar-González, Miguel Arias-Estrada, and François Berry. Robust feature
extraction algorithm suitable for real-time embedded applications. Journal of Real-Time
Image Processing, June 2017.

[7] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry
Husbands, Kurt Keutzer, David A Patterson, William Lester Plishker, John Shalf,
Samuel Webb Williams, et al. The landscape of parallel computing research: A view from
berkeley. Technical report, Technical Report UCB/EECS-2006-183, EECS Department,
University of , 2006.

[8] David F. Bacon, Rodric Rabbah, and Sunil Shukla. Fpga programming for the masses.
Commun. ACM, 56(4):56–63, April 2013.

[9] P. J. Besl and N. D. McKay. A method for registration of 3-d shapes. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 14(2):239–256, February 1992.

[10] Hans-Georg Beyer and Bernhard Sendhoff. Robust optimization a comprehensive survey.
Computer Methods in Applied Mechanics and Engineering, 196(33):3190–3218, 2007.

[11] B. Bodin, L. Nardi, M. Z. Zia, H. Wagstaff, G. S. Shenoy, M. Emani, J. Mawer, C. Kot-
selidis, A. Nisbet, M. Lujan, B. Franke, P. H. J. Kelly, and M. O’Boyle. Integrating
algorithmic parameters into benchmarking and design space exploration in 3d scene un-
derstanding. In 2016 International Conference on Parallel Architecture and Compilation
Techniques (PACT), pages 57–69, September 2016.

141

https://github.com/qkgautier/ATNE
https://github.com/fpga3d/infinitam_fpga
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://github.com/KastnerRG/spector
http://www.xilinx.com/products/design-tools/software-zone/sdaccel.html

[12] Bruno Bodin, Harry Wagstaff, Sajad Saeedi, Luigi Nardi, Emanuele Vespa, John H Mayer,
Andy Nisbet, Mikel Lujn, Steve Furber, Andrew J Davison, Paul H.J. Kelly, and Michael
O’Boyle. Slambench2: Multi-objective head-to-head benchmarking for visual slam. In
IEEE Intl. Conf. on Robotics and Automation (ICRA), May 2018.

[13] K. Boikos and C. S. Bouganis. Semi-dense slam on an fpga soc. In 2016 26th International
Conference on Field Programmable Logic and Applications (FPL), pages 1–4, August
2016.

[14] K. Boikos and C. S. Bouganis. A high-performance system-on-chip architecture for direct
tracking for slam. In 2017 27th International Conference on Field Programmable Logic
and Applications (FPL), pages 1–7, September 2017.

[15] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, October 2001.

[16] G. Bresson, Z. Alsayed, L. Yu, and S. Glaser. Simultaneous localization and mapping: A
survey of current trends in autonomous driving. IEEE Transactions on Intelligent Vehicles,
2(3):194–220, September 2017.

[17] Mihai Bujanca, Paul Gafton, Sajad Saeedi, Andy Nisbet, Bruno Bodin, MF O’Boyle,
Andrew J Davison, PH Kelly, Graham Riley, Barry Lennox, et al. Slambench 3.0:
Systematic automated reproducible evaluation of slam systems for robot vision challenges
and scene understanding. In IEEE International Conference on Robotics and Automation
(ICRA), 2019.

[18] W. Burgard, C. Stachniss, G. Grisetti, B. Steder, R. Kmmerle, C. Dornhege, M. Ruhnke,
A. Kleiner, and J. D. Tards. A comparison of slam algorithms based on a graph of relations.
In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
2089–2095, October 2009.

[19] Marcello A. Canuto, Francisco Estrada-Belli, Thomas G. Garrison, Stephen D. Houston,
Mary Jane Acuña, Milan Kováč, Damien Marken, Philippe Nondédéo, Luke Auld-Thomas,
Cyril Castanet, David Chatelain, Carlos R. Chiriboga, Tomáš Drápela, Tibor Lieskovský,
Alexandre Tokovinine, Antolı́n Velasquez, Juan C. Fernández-Dı́az, and Ramesh Shrestha.
Ancient lowland maya complexity as revealed by airborne laser scanning of northern
guatemala. Science, 361(6409), 2018.

[20] Senthil K. Chandrasegaran, Karthik Ramani, Ram D. Sriram, Imré HorváTh, Alain
Bernard, Ramy F. Harik, and Wei Gao. The evolution, challenges, and future of knowledge
representation in product design systems. Comput. Aided Des., 45(2):204–228, February
2013.

[21] Daniel W. Chang, Christipher D. Jenkins, Philip C. Garcia, Syed Z. Gilani, Paula Aguilera,
Aishwarya Nagarajan, Michael J. Anderson, Matthew A. Kenny, Sean M. Bauer, Michael J.
Schulte, and Katherine Compton. ERCBench: An open-source benchmark suite for
embedded and reconfigurable computing. Proceedings - 2010 International Conference
on Field Programmable Logic and Applications, FPL 2010, pages 408–413, 2010.

142

[22] Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In
J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 24, pages 2249–2257. Curran Asso-
ciates, Inc., 2011.

[23] Arlen F. Chase, Diane Z. Chase, Jaime J. Awe, John F. Weishampel, Gyles Iannone,
Holley Moyes, Jason Yaeger, and M. Kathryn Brown. The use of lidar in understanding
the ancient maya landscape: Caracol and western belize. Advances in Archaeological
Practice, 2(3):208–221, 2014.

[24] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee, and K. Skadron. Rodinia:
A benchmark suite for heterogeneous computing. In Workload Characterization, 2009.
IISWC 2009. IEEE International Symposium on, pages 44–54, October 2009.

[25] Paolo Cignoni, Claudio Rocchini, and Roberto Scopigno. Metro: Measuring error on
simplified surfaces. In Computer Graphics Forum, volume 17, pages 167–174. Wiley
Online Library, 1998.

[26] Carlos A Coello Coello, Gary B Lamont, David A Van Veldhuizen, et al. Multiobjective
evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary
Computation, 1(1):32–49, 2011.

[27] Gaspar Muñoz Cosme, Cristina Vidal Lorenzo, and Alessandro Merlo. La acrópolis de
chilonché (guatemala): Crónica de las investigaciones de un patrimonio en riesgo en el
área maya. Restauro Archeologico, 22(2):99–115, 2014.

[28] Xiuhai Cui, Datong Liu, Yu Peng, and Xiyuan Peng. Estimating the circuit delay of
fpga with a transfer learning method. In AOPC 2017: 3D Measurement Technology for
Intelligent Manufacturing, volume 10458, pages 10458 – 10458 – 6, 2017.

[29] Brian Curless and Marc Levoy. A volumetric method for building complex models from
range images. In Proceedings of the 23rd Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’96, pages 303–312, New York, NY, USA, 1996.
ACM.

[30] Christian Damgaard and Jacob Weiner. Describing inequality in plant size or fecundity.
Ecology, 81(4):1139–1142, 2000.

[31] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. Monoslam: Real-time sin-
gle camera slam. IEEE Transactions on Pattern Analysis and Machine Intelligence,
29(6):1052–1067, June 2007.

[32] G. De Michell and R. K. Gupta. Hardware/software co-design. Proceedings of the IEEE,
85(3):349–365, March 1997.

[33] Andrea Di Filippo, Luis Javier Snchez-Aparicio, Salvatore Barba, Jos Antonio Martn-
Jimnez, Roco Mora, and Diego Gonzlez Aguilera. Use of a wearable mobile laser system

143

in seamless indoor 3d mapping of a complex historical site. Remote Sensing, 10(12),
2018.

[34] A. C. Duarte, G. B. Zaffari, R. T. S. da Rosa, L. M. Longaray, P. Drews, and S. S. C.
Botelho. Towards comparison of underwater slam methods: An open dataset collection.
In OCEANS 2016 MTS/IEEE Monterey, pages 1–5, September 2016.

[35] H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping: part i. IEEE
Robotics Automation Magazine, 13(2):99–110, June 2006.

[36] EM Farella. 3d mapping of underground environments with a hand-held laser scanner. In
Proc. SIFET annual conference, 2016.

[37] Francesco Fassi, Luigi Fregonese, Sebastiano Ackermann, and V De Troia. Comparison
between laser scanning and automated 3d modelling techniques to reconstruct complex
and extensive cultural heritage areas. volume XL-5/W1, February 2013.

[38] Wu-chun Feng, Heshan Lin, Thomas Scogland, and Jing Zhang. Opencl and the 13 dwarfs:
A work in progress. In Proceedings of the 3rd ACM/SPEC International Conference on
Performance Engineering, ICPE ’12, pages 291–294, New York, NY, USA, 2012. ACM.

[39] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza. Svo: Semidirect
visual odometry for monocular and multicamera systems. IEEE Transactions on Robotics,
33(2):249–265, April 2017.

[40] Thomas G. Garrison, Jose Luis Garrido Lpez, and Alyce de Carteret. Investigaciones en
la estructura m7-1 (operacin 21) (pirmide del dintel de madera). Proyecto Arqueolgico El
Zotz Informe No. 7, Temporada 2012, pages 59 – 97, 2012.

[41] Thomas G. Garrison, Dustin Richmond, Perry Naughton, Eric Lo, Sabrina Trinh, Zachary
Barnes, Albert Lin, Curt Schurgers, Ryan Kastner, Sarah E. Newman, and et al. Tunnel
vision: Documenting excavations in three dimensions with lidar technology. Advances in
Archaeological Practice, 4(2):192–204, 2016.

[42] Q. Gautier, A. Althoff, P. Meng, and R. Kastner. Spector: An opencl fpga benchmark
suite. In 2016 International Conference on Field Programmable Technology (FPT), pages
141–148, December 2016.

[43] Q. Gautier, A. Shearer, J. Matai, D. Richmond, P. Meng, and R. Kastner. Real-time
3d reconstruction for fpgas: A case study for evaluating the performance, area, and
programmability trade-offs of the altera opencl sdk. In 2014 International Conference on
Field-Programmable Technology (FPT), pages 326–329, December 2014.

[44] Quentin Gautier, Alric Althoff, and Ryan Kastner. Fpga architectures for real-time dense
slam. In 2019 IEEE 30th International Conference on Application-specific Systems,
Architectures and Processors (ASAP). IEEE, 2019.

144

[45] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti vision
benchmark suite. In 2012 IEEE Conference on Computer Vision and Pattern Recognition,
pages 3354–3361, June 2012.

[46] Corrado Gini. Variabilità e mutabilità. Reprinted in Memorie di metodologica statistica
(Ed. Pizetti E, Salvemini, T). Rome: Libreria Eredi Virgilio Veschi, 1, 1912.

[47] Daniel Girardeau-Montaut. Cloudcompare. 2011.

[48] Ryan Haney, Theresa Meuse, Jeremy Kepner, and James Lebak. The hpec challenge
benchmark suite. In HPEC 2005 Workshop, 2005.

[49] Robert M. Haralick. Performance characterization in computer vision. CVGIP: Image
Underst., 60(2):245–249, September 1994.

[50] Steven P. Haveman and G. Maarten Bonnema. Requirements for high level models sup-
porting design space exploration in model-based systems engineering. Procedia Computer
Science, 16:293–302, 2013. 2013 Conference on Systems Engineering Research.

[51] Cato Holler. Chapter 101 - pseudokarst. In William B. White, David C. Culver, and Tanja
Pipan, editors, Encyclopedia of Caves (Third Edition), pages 836–849. Academic Press,
third edition edition, 2019.

[52] Stephen D Houston, Sarah Newman, Edwin Román, and Thomas Garrison. A tomb and
its setting. In Temple of the Night Sun: a royal tomb at El Diablo, Guatemala, pages
12–29. Precolumbia Mesoweb Press, 2015.

[53] A. Huletski, D. Kartashov, and K. Krinkin. Evaluation of the modern visual slam
methods. In 2015 Artificial Intelligence and Natural Language and Information Extraction,
Social Media and Web Search FRUCT Conference (AINL-ISMW FRUCT), pages 19–25,
November 2015.

[54] I. Z. Ibragimov and I. M. Afanasyev. Comparison of ros-based visual slam methods in
homogeneous indoor environment. In 2017 14th Workshop on Positioning, Navigation
and Communications (WPNC), pages 1–6, October 2017.

[55] Z. István, G. Alonso, M. Blott, and K. Vissers. A flexible hash table design for 10gbps
key-value stores on fpgas. In 2013 23rd International Conference on Field programmable
Logic and Applications, pages 1–8, September 2013.

[56] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe,
Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew Davison, and
Andrew Fitzgibbon. Kinectfusion: Real-time 3d reconstruction and interaction using
a moving depth camera. In Proceedings of the 24th Annual ACM Symposium on User
Interface Software and Technology, UIST ’11, pages 559–568, New York, NY, USA, 2011.
ACM.

145

[57] Matthew Johnson-Roberson, Oscar Pizarro, Stefan B. Williams, and Ian Mahon. Genera-
tion and visualization of large-scale three-dimensional reconstructions from underwater
robotic surveys. Journal of Field Robotics, 27(1):21–51, 2010.

[58] Olaf Kahler, Victor Adrian Prisacariu, Carl Yuheng Ren, Xin Sun, Philip Torr, and
David Murray. Very high frame rate volumetric integration of depth images on mobile
devices. IEEE Transactions on Visualization and Computer Graphics, 21(11):1241–1250,
November 2015.

[59] Olaf Kähler, Victor A. Prisacariu, and David W. Murray. Real-time large-scale dense
3d reconstruction with loop closure. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max
Welling, editors, Computer Vision – ECCV 2016, pages 500–516, Cham, 2016. Springer
International Publishing.

[60] Eunsuk Kang, Ethan Jackson, and Wolfram Schulte. An approach for effective design
space exploration. In Radu Calinescu and Ethan Jackson, editors, Foundations of Computer
Software. Modeling, Development, and Verification of Adaptive Systems, pages 33–54,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[61] Stefan Kohlbrecher, Oskar Von Stryk, Johannes Meyer, and Uwe Klingauf. A flexible
and scalable slam system with full 3d motion estimation. In 2011 IEEE International
Symposium on Safety, Security, and Rescue Robotics, pages 155–160. IEEE, 2011.

[62] Marek Kraft, Michał Nowicki, Adam Schmidt, Michał Fularz, and Piotr Skrzypczyński.
Toward evaluation of visual navigation algorithms on rgb-d data from the first- and
second-generation kinect. Machine Vision and Applications, 28(1):61–74, February 2017.

[63] Konstantinos Krommydas, Wu chun Feng, Muhsen Owaida, Christos D. Antonopoulos,
and Nikolaos Bellas. On the characterization of OpenCL dwarfs on fixed and reconfig-
urable platforms. Proceedings of the International Conference on Application-Specific
Systems, Architectures and Processors, pages 153–160, 2014.

[64] Sunil L Kukreja, Johan Löfberg, and Martin J Brenner. A least absolute shrinkage and
selection operator (lasso) for nonlinear system identification. IFAC Proceedings Volumes,
39(1):814–819, 2006.

[65] M. Labb and F. Michaud. Memory management for real-time appearance-based loop
closure detection. In 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 1271–1276, September 2011.

[66] M. Labb and F. Michaud. Appearance-based loop closure detection for online large-scale
and long-term operation. IEEE Transactions on Robotics, 29(3):734–745, June 2013.

[67] M. Labb and F. Michaud. Online global loop closure detection for large-scale multi-
session graph-based slam. In 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2661–2666, September 2014.

146

[68] Butler W. Lampson. Hints for computer system design. SIGOPS Oper. Syst. Rev.,
17(5):33–48, October 1983.

[69] Craig Larman and Victor R. Basili. Iterative and incremental development: A brief history.
Computer, 36(6):47–56, June 2003.

[70] M M. Lehman, J F. Ramil, P D. Wernick, D E. Perry, and W M. Turski. Metrics and
laws of software evolution - the nineties view. In Proceedings of the 4th International
Symposium on Software Metrics, METRICS ’97, pages 20–, Washington, DC, USA, 1997.
IEEE Computer Society.

[71] Max Leingartner, Johannes Maurer, Alexander Ferrein, and Gerald Steinbauer. Evaluation
of sensors and mapping approaches for disasters in tunnels. Journal of Field Robotics,
33(8):1037–1057, 2016.

[72] R. Li, J. Liu, L. Zhang, and Y. Hang. Lidar/mems imu integrated navigation (slam) method
for a small uav in indoor environments. In 2014 DGON Inertial Sensors and Systems
(ISS), pages 1–15, September 2014.

[73] Dong Liu and Benjamin Carrion Schafer. Efficient and reliable high-level synthesis design
space explorer for fpgas. In Field Programmable Logic and Applications (FPL), 2016
26th International Conference on, pages 1–8. IEEE, 2016.

[74] Hung-Yi Liu and L. P. Carloni. On learning-based methods for design-space explo-
ration with high-level synthesis. In Design Automation Conference (DAC), 2013 50th
ACM/EDAC/IEEE, DAC ’13, pages 1–7, New York, NY, USA, May 2013. ACM.

[75] G. Mariani, G. Palermo, V. Zaccaria, and C. Silvano. Desperate++: An enhanced design
space exploration framework using predictive simulation scheduling. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 34(2):293–306, February
2015.

[76] A. Masiero, F. Fissore, A. Guarnieri, M. Piragnolo, and A. Vettore. Comparison of Low
Cost Photogrammetric Survey with Tls and Leica Pegasus Backpack 3d Modelss. ISPRS -
International Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, pages 147–153, November 2017.

[77] P. Meng, A. Althoff, Q. Gautier, and R. Kastner. Adaptive threshold non-pareto elimina-
tion: Re-thinking machine learning for system level design space exploration on fpgas. In
2016 Design, Automation Test in Europe Conference Exhibition (DATE), pages 918–923,
March 2016.

[78] Johannes Meyer, Paul Schnitzspan, Stefan Kohlbrecher, Karen Petersen, Mykhaylo An-
driluka, Oliver Schwahn, Uwe Klingauf, Stefan Roth, Bernt Schiele, and Oskar von
Stryk. A semantic world model for urban search and rescue based on heterogeneous
sensors. In Javier Ruiz-del Solar, Eric Chown, and Paul G. Plöger, editors, RoboCup 2010:
Robot Soccer World Cup XIV, pages 180–193, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg.

147

[79] Grigorios Mingas, Emmanouil Tsardoulias, and Loukas Petrou. An fpga implementation
of the smg-slam algorithm. Microprocess. Microsyst., 36(3):190–204, May 2012.

[80] Vipul Kumar Mishra and Anirban Sengupta. Mo-pse: Adaptive multi-objective par-
ticle swarm optimization based design space exploration in architectural synthesis for
application specific processor design. Advances in Engineering Software, 67:111–124,
2014.

[81] Caitlin T. Mueller and John A. Ochsendorf. Combining structural performance and
designer preferences in evolutionary design space exploration. Automation in Construction,
52:70–82, 2015.

[82] R. Mur-Artal and J. D. Tards. Orb-slam2: An open-source slam system for monocular,
stereo, and rgb-d cameras. IEEE Transactions on Robotics, 33(5):1255–1262, October
2017.

[83] K. E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz. Titan: Enabling large and com-
plex benchmarks in academic cad. In 2013 23rd International Conference on Field
programmable Logic and Applications, pages 1–8, September 2013.

[84] V. Nair, Z. Yu, T. Menzies, N. Siegmund, and S. Apel. Finding faster configurations using
flash. IEEE Transactions on Software Engineering, pages 1–1, 2018.

[85] L. Nardi, B. Bodin, S. Saeedi, E. Vespa, A. J. Davison, and P. H. J. Kelly. Algorithmic
performance-accuracy trade-off in 3d vision applications using hypermapper. In 2017
IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pages 1434–1443, May 2017.

[86] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi,
J. Shotton, S. Hodges, and A. Fitzgibbon. Kinectfusion: Real-time dense surface mapping
and tracking. In 2011 10th IEEE International Symposium on Mixed and Augmented
Reality, pages 127–136, October 2011.

[87] Matthias Niessner, Michael Zollhöfer, Shahram Izadi, and Marc Stamminger. Real-time
3d reconstruction at scale using voxel hashing. ACM Trans. Graph., 32(6):169:1–169:11,
November 2013.

[88] J. Nikolic, J. Rehder, M. Burri, P. Gohl, S. Leutenegger, P. T. Furgale, and R. Siegwart. A
synchronized visual-inertial sensor system with fpga pre-processing for accurate real-time
slam. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pages
431–437, May 2014.

[89] Erica Nocerino, Fabio Menna, Fabio Remondino, Isabella Toschi, and Pablo Rodrguez-
Gonzlvez. Investigation of indoor and outdoor performance of two portable mobile
mapping systems. In Fabio Remondino and Mark R. Shortis, editors, Videometrics, Range
Imaging, and Applications XIV, volume 10332, pages 10332 – 10332 – 15. SPIE, June
2017.

148

[90] Anton Obukhov and Alexander Kharlamov. Discrete cosine transform for 8x8 blocks with
cuda, 2008.

[91] G. Palermo, C. Silvano, and V. Zaccaria. Discrete particle swarm optimization for multi-
objective design space exploration. In 2008 11th EUROMICRO Conference on Digital
System Design Architectures, Methods and Tools, pages 641–644, September 2008.

[92] G. Palermo, C. Silvano, and V. Zaccaria. Respir: A response surface-based pareto iterative
refinement for application-specific design space exploration. TCAD, pages 1816–1829,
2009.

[93] Maurizio Palesi and Tony Givargis. Multi-objective design space exploration using genetic
algorithms. In Proceedings of the Tenth International Symposium on Hardware/Software
Codesign, CODES ’02, pages 67–72, New York, NY, USA, 2002. ACM.

[94] Czyzak Piotr and Jaszkiewicz Adrezej. Pareto simulated annealinga metaheuristic tech-
nique for multiple-objective combinatorial optimization. Journal of Multi-Criteria Deci-
sion Analysis, 7(1):34–47, 1998.

[95] Piyush Rai, Avishek Saha, Hal Daumé III, and Suresh Venkatasubramanian. Domain
adaptation meets active learning. In Proceedings of the NAACL HLT 2010 Workshop
on Active Learning for Natural Language Processing, pages 27–32. Association for
Computational Linguistics, 2010.

[96] Rajkumar Roy, Srichand Hinduja, and Roberto Teti. Recent advances in engineering
design optimisation: Challenges and future trends. CIRP Annals, 57(2):697–715, 2008.

[97] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library (pcl). In 2011 IEEE
International Conference on Robotics and Automation, pages 1–4, Shanghai, China, May
2011.

[98] B. C. Schafer and A. Mahapatra. S2cbench: Synthesizable systemc benchmark suite for
high-level synthesis. IEEE Embedded Systems Letters, 6(3):53–56, September 2014.

[99] Benjamin Carrion Schafer. Probabilistic multiknob high-level synthesis design space
exploration acceleration. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 35(3):394–406, 2016.

[100] Benjamin Carrion Schafer. Parallel high-level synthesis design space exploration for
behavioral ips of exact latencies. ACM Trans. Des. Autom. Electron. Syst., 22(4), May
2017.

[101] Bernhard Schätz, Sebastian Voss, and Sergey Zverlov. Automating design-space ex-
ploration: Optimal deployment of automotive sw-components in an iso26262 context.
In Proceedings of the 52Nd Annual Design Automation Conference, DAC ’15, pages
99:1–99:6, New York, NY, USA, 2015. ACM.

149

[102] Burr Settles. Active Learning. Synthesis Lectures on Artificial Intelligence and Machine
Learning, 6(1):1–114, 2012.

[103] Biruk G. Sileshi, Juan Oliver, R. Toledo, Jose Gonçalves, and Pedro Costa. Particle
filter slam on fpga: A case study on robot@factory competition. In Luı́s Paulo Reis,
António Paulo Moreira, Pedro U. Lima, Luis Montano, and Victor Muñoz-Martinez,
editors, Robot 2015: Second Iberian Robotics Conference, pages 411–423, Cham, 2016.
Springer International Publishing.

[104] Randall C. Smith and Peter Cheeseman. On the representation and estimation of spatial
uncertainty. The International Journal of Robotics Research, 5(4):56–68, 1986.

[105] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for
the evaluation of rgb-d slam systems. In 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 573–580, October 2012.

[106] Keisuke Tateno, Federico Tombari, Iro Laina, and Nassir Navab. Cnn-slam: Real-
time dense monocular slam with learned depth prediction. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017.

[107] D. T. Tertei, J. Piat, and M. Devy. Fpga design and implementation of a matrix multiplier
based accelerator for 3d ekf slam. In 2014 International Conference on ReConFigurable
Computing and FPGAs (ReConFig14), pages 1–6, December 2014.

[108] William R. Thompson. On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

[109] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), 58(1):267–288, 1996.

[110] D. Tong, S. Zhou, and V. K. Prasanna. High-throughput online hash table on fpga. In 2015
IEEE International Parallel and Distributed Processing Symposium Workshop, pages
105–112, May 2015.

[111] O. Ulusel, C. Picardo, C. B. Harris, S. Reda, and R. I. Bahar. Hardware acceleration of
feature detection and description algorithms on low-power embedded platforms. In 2016
26th International Conference on Field Programmable Logic and Applications (FPL),
pages 1–9, August 2016.

[112] M Mitchell Waldrop. The chips are down for moores law. Nature News, 530(7589):144,
2016.

[113] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou. Dlau: A scalable deep learning
accelerator unit on fpga. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 36(3):513–517, March 2017.

150

[114] Long Wang, Tong-guang Wang, and Yuan Luo. Improved non-dominated sorting genetic
algorithm (nsga)-ii in multi-objective optimization studies of wind turbine blades. Applied
Mathematics and Mechanics, 32(6):739–748, June 2011.

[115] S. Wang, Y. Liang, and Wei Zhang. Flexcl: An analytical performance model for
opencl workloads on flexible fpgas. In 2017 54th ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 1–6, June 2017.

[116] Ying Wang, Jie Xu, Yinhe Han, Huawei Li, and Xiaowei Li. Deepburning: Automatic
generation of fpga-based learning accelerators for the neural network family. In Proceed-
ings of the 53rd Annual Design Automation Conference, DAC ’16, pages 110:1–110:6,
New York, NY, USA, 2016. ACM.

[117] Z Wang, B He, W Zhang, and S Jiang. A performance analysis framework for optimizing
opencl applications on fpgas. 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 114–125, 2016.

[118] Thomas Whelan, Stefan Leutenegger, R Salas-Moreno, Ben Glocker, and Andrew Davison.
Elasticfusion: Dense slam without a pose graph, 2015.

[119] Chang Xu, Gai Liu, Ritchie Zhao, Stephen Yang, Guojie Luo, and Zhiru Zhang. A
parallel bandit-based approach for autotuning fpga compilation. In Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA
’17, pages 157–166, New York, NY, USA, 2017. ACM.

[120] Naci Yastikli. Documentation of cultural heritage using digital photogrammetry and laser
scanning. Journal of Cultural Heritage, 8(4):423–427, 2007.

[121] Kai Yu, Jinbo Bi, and Volker Tresp. Active learning via transductive experimental design.
In Proceedings of the 23rd international conference on Machine learning, pages 1081–
1088. ACM, 2006.

[122] S. Zennaro, M. Munaro, S. Milani, P. Zanuttigh, A. Bernardi, S. Ghidoni, and E. Menegatti.
Performance evaluation of the 1st and 2nd generation kinect for multimedia applications.
In 2015 IEEE International Conference on Multimedia and Expo (ICME), pages 1–6, June
2015.

[123] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. Optimiz-
ing fpga-based accelerator design for deep convolutional neural networks. In Proceedings
of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
FPGA ’15, pages 161–170, New York, NY, USA, 2015. ACM.

[124] Hui Zhang, Jason E. Fritts, and Sally A. Goldman. Image segmentation evaluation: A
survey of unsupervised methods. Comput. Vis. Image Underst., 110(2):260–280, May
2008.

[125] Yu Jin Zhang. A survey on evaluation methods for image segmentation. Pattern recogni-
tion, 29(8):1335–1346, 1996.

151

[126] G. Zhong, A. Prakash, S. Wang, Y. Liang, T. Mitra, and S. Niar. Design space exploration
of fpga-based accelerators with multi-level parallelism. In Design, Automation Test in
Europe Conference Exhibition (DATE), 2017, pages 1141–1146, March 2017.

[127] Guanwen Zhong, Alok Prakash, Yun Liang, Tulika Mitra, and Smail Niar. Lin-analyzer:
A high-level performance analysis tool for fpga-based accelerators. In Proceedings of
the 53rd Annual Design Automation Conference, DAC ’16, New York, NY, USA, 2016.
ACM.

[128] Huizhong Zhou, Benjamin Ummenhofer, and Thomas Brox. Deeptam: Deep tracking and
mapping. In The European Conference on Computer Vision (ECCV), September 2018.

[129] Robert Zlot, Michael Bosse, Kelly Greenop, Zbigniew Jarzab, Emily Juckes, and Jonathan
Roberts. Efficiently capturing large, complex cultural heritage sites with a handheld
mobile 3d laser mapping system. Journal of Cultural Heritage, 15(6):670–678, 2014.

[130] Marcela Zuluaga, Andreas Krause, Peter Milder, and Markus Püschel. ”smart” design
space sampling to predict pareto-optimal solutions. In Proceedings of the 13th ACM
SIGPLAN/SIGBED International Conference on Languages, Compilers, Tools and Theory
for Embedded Systems, LCTES ’12, pages 119–128, New York, NY, USA, 2012. ACM.

[131] Marcela Zuluaga, Andreas Krause, and Markus Püschel. ε-pal: An active learning
approach to the multi-objective optimization problem. J. Mach. Learn. Res., 17(1):3619–
3650, January 2016.

[132] Marcela Zuluaga, Guillaume Sergent, Andreas Krause, and Markus Püschel. Active
learning for multi-objective optimization. In Proceedings of the 30th International
Conference on Machine Learning, pages 462–470, 2013.

152

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Low-Cost 3D Scanning Systems for Cultural Heritage Documentation
	Introduction
	Background
	LiDAR
	Photogrammetry
	Simultaneous Localization And Mapping

	Methodology Overview
	Data Collection Sites

	Data Acquisition
	Hardware Setup
	Software Setup
	Acquisition Methodology

	Data Processing
	Measuring point cloud difference

	Results
	Arroyo Tapiado Mud Caves
	El Zotz Archaeological Site

	Analysis and Discussion
	Sensors
	Algorithms
	Scanning Procedure

	Conclusion

	FPGA Architectures for Real-Time Dense SLAM
	Introduction
	Related Work
	FPGA Architectures for Kinect Fusion
	Dense SLAM Overview
	Iterative Closest Point (ICP) on FPGA
	Depth Fusion and Ray Casting
	Kinect Fusion Running Time

	FPGA Architectures for InfiniTAM
	Overview
	Depth Fusion
	Ray Casting
	Combining Depth Fusion and Ray Casting
	Iterative Closest Point (ICP)

	Experimental Results And Analysis
	Experimental Setup
	FPGA SoC Design
	PCIe FPGA Design
	Real-Time Experiments

	Conclusion

	Spector: An OpenCL FPGA Benchmark Suite
	Introduction
	Motivation
	Methodology
	Benchmarks Description
	Breadth-First Search (BFS)
	Discrete Cosine Transform (DCT)
	Finite Impulse Response (FIR) Filter
	Histogram
	Matrix Multiplication
	Merge Sort
	3D Normal Estimation
	Sobel Filter
	Sparse Matrix-Vector Multiplication (SPMV)

	Design Space Analysis
	The Least Absolute Shrinkage and Selection Operator (LASSO)
	Gini Coefficient
	Example observations

	Conclusion

	FPGA Design Space Exploration With Hint Data
	Introduction
	Design Space Exploration (DSE) for FPGAs
	Definitions
	Methods

	ATNE Sampling
	Initial Sampling
	Regression Model
	Design Elimination
	Active Sampling

	Hint Data Overview
	Exploiting Hint Data
	Directly Using Hint Data
	Improving initialization
	Improving Elimination With Hint Data

	Experimental Setup
	Algorithms
	Hyperparameters
	Benchmarks
	Hint data
	Metrics

	Results
	Directly using hint data
	TED Only
	ATNE
	ATNE with low alpha

	Conclusion

	Sherlock: A Multi-Objective Design Space Exploration Framework
	Introduction
	Related Work
	The Sherlock Algorithm
	Scope and Definitions
	Active Learning
	Surrogate Model

	Model Selection
	Algorithm

	Results
	Experimental Setup
	Dataset
	Active Learning Results
	Model Selection Results
	Software Dataset

	Conclusion

	Conclusion
	Bibliography

