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Deeply buried within the jungle of Central America lie the remains of the ancient Maya

civilization. In order to reach these old ruins, archaeologists dig tunneling excavations spanning

tens of meters underground. Unfortunately, most of these excavations must be closed for

conservation purposes, and it is therefore crucial to document these �ndings as precisely as

possible. Many solutions exist to create a 3D scan of these environments, but most of them are

too costly, dif�cult to deploy, or do not provide real-time feedback.

A possible solution to create a 3D mapping system overcoming these problems is to use

Simultaneous Localization And Mapping (SLAM) algorithms, combined with low-cost sensors

and low-power hardware. However, the combined complexity of software design and hardware
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design represents an immense challenge to implement a system optimized for all requirements.

The vast pool of possible designs and the multiple, often con�icting objectives contribute to

produce design spaces too complex to be explored manually.

In this thesis, we explore the complexity of designing SLAM applications using various

types of hardware. First, we manually evaluate SLAM algorithms for 3D mapping, and speci�-

cally optimize one SLAM algorithm on an FPGA hardware. Then we expand our exploration to

a larger space of designs, and generalize this problem to the design of all complex applications

that require a lengthy evaluation time.

We develop several learning-based methods to help designers �nding the best combina-

tions of optimizations that maximize multiple objectives. By using a smart sampling algorithm,

and removing the need of selecting a speci�c regression model, we can help users largely

decrease the number of designs to evaluate before reaching an optimal architecture.
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Introduction

A Scanning System for Archaeology

When searching for the remains of the ancient Maya civilization in Mesoamerica, archae-

ologists dig narrow tunnels to excavate old structures that have been outgrown by the jungle over

the centuries. These excavations can reveal important information about the Maya culture, their

traditions and their rituals. Unfortunately, most excavations are temporary, as they expose fragile

structures to the outside, and need to be closed eventually. As a result, documenting these sites as

precisely as possible – and sometimes as fast as possible – is a crucial task. In order to document

these tunnels, we can design a system to collect three-dimensional data to save these environ-

ments as 3D models. However, the design of such a system is not trivial. It needs to be portable,

simple to use, low-power, accurate, fast, and it must �t within the budget of the excavation site.

An attractive solution to this problem is to leverage Simultaneous Localization And Mapping

(SLAM) algorithms [35]. This class of algorithms can be combined with inexpensive sensors to

build a digital model of a scene in real-time. But the large number of existing algorithms and sen-

sors leaves designers with a myriad of options (e.g., [61, 78, 65, 66, 67, 72, 58, 59, 39, 54, 82]...)

for which the in�uence on each optimization goal can be dif�cult to anticipate. Sometimes,

the relationship between design options and the objective result is fairly straightforward. For

example, when utilizing a lower-cost sensor, one can expect a lower overall accuracy compared

to more expensive hardware. That relationship can become more complicated very quickly.

Typically, a designer could choose a stereo camera as a scanning equipment to improve ease of

use and scanning speed when switching from outdoor environments to indoor. However, the loss
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of accuracy might actually slow down the user to avoid loss of tracking. This problem can be

solved by using an algorithm supporting fast recovery, but that algorithm might provide you with

a sparser 3D map, and increase the overall complexity of the system.

In this situation, a designer must carefully think about the impact of each design choice,

and eventually implement a small subset of all possible solutions. Testing these designs, evaluat-

ing the results, and re�ning the system is a very slow process, especially when creating a full

end-to-end solution targeting a very speci�c environment that cannot easily be reproduced in a

lab. We are now left with a question: how do we design such a complex system without having

to test all possible solutions, but still quickly converging toward an optimal system with respect

to multiple con�icting objectives?

System Design Optimization

The design of complex hardware and software systems is generally a long, iterative

process, in which one or multiple domain experts build and optimize different subsystems based

on their knowledge, and design methodologies. The �eld of software engineering has re�ned

design methodologies over the last few decades [69] with good results, but at the same time, the

software complexity has increased dramatically [70]. In 1983, Lampson [68] distinguishes the

design of computer systems from the design of algorithms, citing more complex requirements,

more internal structure, and a less clear measure of success for physical systems. However,

algorithms have become more complex over the years, and as a result, can be considered in

some cases as dif�cult to build as a hardware system. The �eld of computer vision is a good

example of how complex algorithms can become. Computer vision are often composed of

multiple submodules [49], and the methods of evaluation of such systems have not always been

clearly de�ned [49, 125, 124, 105], have continuously evolved, and continue to change regularly.

New benchmarks and metrics are still being developed, based on the ever-changing requirements

of the �eld [17].
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In parallel to the evolution of software algorithms, hardware design has also become

more complex. With Moore's law approaching to an end [112], the hardware architecture of

processors needs to be revised to keep improving performance. At the same time, Graphics

Processing Units (GPU) have become increasingly popular, �rst driven by the video games

market, then by scienti�c computing and machine learning training. More recently, there has

been a trend toward custom hardware design [7], either through Application-Speci�c Integrated

Circuits (ASIC) or Field-Programmable Gate Arrays (FPGA), in order to push the performance

of algorithms without compromising power consumption. Hardware design has also become

more approachable by a larger set of programmers, thanks to the High-Level Synthesis (HLS)

tools [8]. With this growing diversity of available hardware and software tools, more designers

conceive systems simultaneously on hardware and software [32].

The ever growing complexity of hardware and software design has led to an optimization

problem. Each component of a system can potentially be tuned and adjusted, which leads the

entire system to produce a different result. Depending on the size and complexity of the design,

the behavior of these parameters is not always easy to predict, and multiple parameters can

interact in very unpredictable ways. Additionally, the requirements of a system can be con�icting,

such that improving one objective tends to deteriorate a second objective (e.g., accuracy vs.

performance). A large system can comprise of hundreds of parameters with thousands or millions

of possible combinations. The problem of �nding the most optimal designs among all possible

combinations is called the design space exploration problem. Design space exploration has been

studied, and several solutions have been proposed over the years [10, 96, 60, 114, 20, 50, 101, 77].

Certain solutions are based on systems that can be evaluated quickly (i.e., sub-second evaluation),

however most hardware design problems can take hours or days to evaluate, and certain software

algorithm suffer from similar issues. Other solutions either require speci�c knowledge of the

system, or require �ne-tuning of hyperparameters.
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Dissertation Outline

In this dissertation, we study the problems and tradeoffs involved in the design of com-

plex SLAM applications, then expand these problems to the design of hardware-accelerated

applications. We provide solutions to accelerate and automate this process through design space

exploration techniques. Speci�cally, we show thatlearning-based design space exploration

tools can automatically �nd the most optimized software and hardware designs on multi-

ple objectives, with minimal inputs from designers, no training, and only a small amount

of design evaluations.

First, we manually implement several solutions to build a tunnel mapping system for

archaeology, and evaluate them one by one. Then, we focus on solutions that can potentially

reduce the power footprint of the system, by implementing a 3D scanning algorithm on FPGA.

When creating an architecture for FPGA, the implementation can take multiple hours to obtain a

�nal design. Yet the number of optimization parameters is still very large, and a domain expert

must carefully analyze all the possible options to pick the most optimal ones. We analyze these

design spaces to better understand the impact of various design parameters. Following this

application-speci�c analysis, we generalize the problem to other types of applications by creating

benchmarks to explore various FPGA design spaces. We then focus on improving design space

exploration tools targeted at FPGA hardware, and �nally conceive a general-purpose design

space exploration framework for optimizing multi-objective applications.

This thesis is organized as follows:

Chapter 1 presents our system design and evaluation to map tunneling excavations

in archaeological sites. We manually choose a set of sensors and algorithms that �t low-cost

requirements, and measure the accuracy of different solutions to better understand the tradeoffs

of each design choice.

Chapter 2 focuses on reducing the power utilization of mapping algorithms by imple-

menting multiple FPGA architectures. In this chapter, we manually tune the algorithms, but
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also provide very parameterized designs that we analyze to better understand the in�uence of

parameters over optimization goals.

Chapter 3 generalizes the FPGA design problem by creating a large set of applications,

each heavily parameterized. We construct several design spaces that contains thousands of

unique architectures. We provide an analysis of certain spaces to show that intelligent algorithms

are necessary to ef�ciently �nd the optimal sets of parameters.

Chapter 4 improves existing machine learning frameworks that perform design space

exploration. This chapter focuses on FPGA designs, and devises a technique that can leverage

data from GPU designs to help prune the search of optimal points within the design spaces.

Chapter 5 presents the design of an active learning framework that focuses on quickly

�nding Pareto optimal designs for any system design. The framework is capable of converging

rapidly toward optimal solutions without making any assumptions on the type of system, and can

choose the best prior to build a good regression model. It does not need expert input, or training

over similar applications. We demonstrate the use of this framework on FPGA design problems,

but also on a computer vision software application.
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Chapter 1

Low-Cost 3D Scanning Systems for
Cultural Heritage Documentation

1.1 Introduction

Most of the remains of the ancient Maya civilization are currently buried under the dense

jungle of Central America. A myriad of temples, platforms, burial chambers, and other structures

lie underground. Their excavation can provide invaluable information about the ancient Maya

culture and lifestyle. In this region, a common excavation strategy is to dig tunnels leading

to major parts of these structures for observation and analysis. Unfortunately, not all of these

tunnels can be kept open to avoid the degradation of the exposed structures. Moreover, even the

open portions of the excavations are located in a remote area – and sometimes on arduous terrain

–, making it dif�cult to access for most people. This leads to the crucial work of documenting the

excavation for historical records, off-site analysis, and public outreach.

Digital documentation of cultural heritage is becoming commonplace at archaeological

sites where high-resolution, remotely-sensed data provide a more accurate record than traditional

analog recording of excavation contexts, architecture, and ancient monuments (e.g. [41]). The

collection of this data can come at great �nancial cost, as with terrestrial LiDAR (light detection

and ranging) systems, or be time consuming during post-processing, as with photogrammetry. In

some archaeological contexts these are not effective solutions for documenting cultural heritage.

Landscapes with extensive damage from looting and other destructive activities require too much
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�eld time for sensitive, expensive instruments and a lack of real-time results can leave doubt

about whether the sensors effectively documented the targets.

Large-scale aerial LiDAR acquisitions in Belize [23] and Guatemala [19] reveal thou-

sands of previously undetected structures created by the ancient Maya civilization (1000 BCE–

1519 CE), but also illuminates the extent to which unchecked, illicit looting has damaged this

landscape. Ground-truthing of aerial LiDAR data would bene�t from the ability to simulta-

neously acquire 3D documentation of looted contexts to more accurately quantify damage in

cultural heritage management assessments. The recent wanton destruction of archaeological

sites, like Palmyra, by the Islamic State of Iraq and Syria (ISIS) presents an extreme case of a

high-risk zone where recovery efforts could have bene�ted from a real-time, rapid documentation

system to provide damage assessment estimates. Unfortunately, such incidents are not unique,

and archaeology would bene�t from a rapid 3D scanning sensor to record damage and plan

recovery.

The recent growth of low-cost, consumer-grade depth sensors such as Microsoft Kinect

or Intel Realsense, has led to an increase of algorithms capable of using these sensors to create a

geometrical representation of the surrounding space. These methods have the bene�t of being

easy to deploy, fast to operate, and produce real-time results that can be visualized directly on

the �eld. The right combination of low-cost sensors and open-source algorithms can provide an

accessible scanning solution to untrained users, while being fast to deploy in situations where the

site must be closed shortly after being excavated, and inexpensive to replace in case of damages

due to dif�cult �eld conditions.

However, in order to build such a system, one must carefully choose between all available

options in terms of software and hardware, in order to maximize the accuracy of the result, and

maximize the usability of the entire system.

In this chapter, we evaluate multiple sensor options by selecting popular depth cameras

that can be used out-of-the-box without technical knowledge of the hardware. We have selected

several open-source Simultaneous Localization And Mapping (SLAM) algorithms, and con�g-
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ured them to work with our selected sensors without any major modi�cation. We have built a

prototype backpack system to test the various hardware/software combinations in the �eld.

While this new system is not as spatially accurate as more expensive or time-consuming

methods, we believe that there are suf�cient examples of extensively looted archaeological

landscapes and zones with high risk for cultural heritage destruction that a rapid, cost-effective

3D documentation system such as the one presented here would be an asset in cultural heritage

management. The system was tested in ancient Maya archaeological contexts and re�ned in mud

caves near the University of California, San Diego, where we developed the prototype.

1.2 Background

Our prototype is designed to ef�ciently document underground or other restricted spaces

such as those presented by damaged ancient architecture. There exist multiple ways of collecting

three-dimensional data to reconstruct an underground or indoor environment, that we can group

into three main categories: 1) scans using terrestrial LiDAR, 2) scans using photogrammetry, and

3) scans based on Simultaneous Localization And Mapping (SLAM) algorithms with lower-cost

sensors.

1.2.1 LiDAR

Terrestrial LiDAR scanners are high precision devices that can capture the geometry of

a space by sending lasers in a wide area around the scanner. These devices are often used for

cultural heritage documentation due to their very high accuracy. This type of documentation is

popular in Maya archaeology [41, 27], which means that there is good, high-resolution baseline

3D data to compare against other sensors and methods. While the 3D scans generally get

millimeter accuracy, the process of collecting the data over extensive excavation sections is very

long. Furthermore, the �nal result is obtained after a lengthy post-processing step that cannot be

performed directly in the �eld, preventing a quick visualization of the current scan. Finally, the

cost of high-quality laser scanners is often a barrier to large-scale deployment, or deployment
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in dif�cult environments (e.g., narrow, dusty tunnels) where the equipment is at risk of being

damaged.

1.2.2 Photogrammetry

“Structure-from-motion” photogrammetry is a general technique that uses computer

vision algorithms to reconstruct a 3D shape from a set of 2D pictures. It is a very accessible

solution to scan different types of environments; the user only needs a digital camera, and

potentially a good light source. This technique also provides good results for cultural heritage

documentation [120, 37]. The largest drawback is the computational time required to process the

data. Due to this limitation, it can be dif�cult to evaluate the results in the �eld. Additionally, the

computation time grows very rapidly with the number of photos, and that number grows quickly

with the size of the area to scan, which renders the scan of an entire excavation very dif�cult.

The sometimes-cramped conditions of archaeological contexts with fragile cultural heritage

monuments can also be a deterrent to photogrammetric methods that require the photographer to

be in close proximity to sensitive features for extended periods of time.

1.2.3 Simultaneous Localization And Mapping

Simultaneous Localization And Mapping (SLAM) algorithms are a class of algorithms

– �rst de�ned in 1986 [104] – focused on localizing an agent within an unknown environment

while simultaneously building a map of this environment [35]. The goal of SLAM is to provide

an update of the position and/or a map in real-time. The de�nition of real-time varies with the

application, but in our case, we target an update around the same speed as camera sensors, i.e.,

30 Hz. We are particularly interested in the use of visual SLAM algorithms, utilizing visual

sensors, but SLAM works with any number and combinations of sensors ([61, 78, 72, 39, 54, 82]).

In parallel with the development of SLAM algorithms, many low-cost visual and depth

sensors have been commercialized in the past few years. The Microsoft Kinect and the Intel

Realsense are two examples of such sensors, which combine an RGB camera with a depth sensor
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that provides geometrical information about the scene.

The combination of SLAM algorithms and low-cost sensors yields a good solution to the

problem of obtaining quick 3D scans of a scene. However, the quality of results is unknown and

can be dif�cult to assess for multiple reasons. First, there is a wide variety of SLAM algorithms

available, all using different methods to achieve the best quality of results. Second, each sensor

has its own speci�city, and speci�cally all sensors present a certain degree of noise that needs

to be mitigated by the algorithms. Finally, many algorithms are developed in a similar, well-lit

environment, but few are tested in the �eld where the condition are often less than ideal to

maintain a good quality of tracking. We tested our prototype in Guatemala where archaeological

excavations at a Classic Maya (250–1000 CE) site present a challenging environment due to the

lack of good lighting, and narrow tunnels without connecting loops.

Several studies actually compare and evaluate SLAM algorithms. Zennaro and col-

leagues [122] compared two low-cost depth cameras in terms of noise, and Krafts team [62]

evaluated these cameras on trajectory estimation. Huletski and colleagues [53] compared multi-

ple SLAM algorithms on a standard dataset. The common point of these studies is the use of

an indoor, of�ce-like environment. Though there has also been extensive evaluation of SLAM

in outdoor environments for autonomous driving [16]. Most of the evaluations are driven by

the availability of data, typically through standard benchmarks with provided ground truth (e.g.,

[105, 45]).

Other work studies the usage of various handheld or robot-mounted sensors for 3D

scanning of cultural heritage sites. Various studies present the evaluation of a handheld LiDAR

scanning system in different �eld environments ([129, 36, 33, 89]). This system constitutes an

improvement over larger terrestrial LiDARs in terms of usability, but remains a costly piece of

equipment along with closed-source, commercial software. Erica Nocerino [89] and Masiero

and colleagues [76] both evaluated a commercial backpack mapping system, providing a good

mobile sensing solution, but also containing costly sensors. We present a study of multiple

SLAM algorithms with multiple consumer-grade depth cameras, (see [71] for a similar study),

10



in a more constrained environment, and comparing more recent and complex SLAM algorithms.

1.3 Methodology Overview

In order to evaluate the digital reconstruction accuracy of SLAM algorithms, we collected

data by using multiple combinations of sensor hardware and application software. We performed

the data collection at different underground locations, each with its own unique conditions. In

addition to the SLAM data collection, we also gathered data from multiple LiDAR scans at

the same locations to provide a reference for the various 3D models. All the LiDAR scans

were taken with ample overlap to allow for a very precise manual alignment, thus providing

us with ground-truthed 3D models which can be compared against the results of the real-time

SLAM-based 3D scanning.

1.3.1 Data Collection Sites

We evaluated our prototype inside active excavation tunnels at the Maya archaeological

site of El Zotz, Guatemala. Most of our experiments were performed in the Pyramid of the

Wooden Lintel (Structure M7-1), an approximately 20-meter-tall structure that was extensively

looted in the 1970s before archaeologists began extending the existing tunnels in 2012 to salvage

information from the structure [40, 52]. This excavation is large enough to create a good test

environment, and has been thoroughly scanned by LiDAR. Furthermore, the looted section of

the tunnel can be considered representative of the types of contexts where our prototype scanner

would be most useful.

We performed a second set of experiments in the Arroyo Tapiado Mud Caves system [51]

located within the Anza-Borrego State Park near San Diego, California. These mud caves

provided a controlled environment in a local context where we could run multiple similar scans

without the constraints of an active excavation or the expense of working through developmental

trial and error in an international �eld context where some resources are limited. While these

natural caves are generally larger than a typical archaeological tunnel, they still present a similar
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setup in terms of scanning challenges. We particularly chose to operate our system in locations

with sharp turns to emulate the shape of excavations.

1.4 Data Acquisition

Our goal was to measure the performance of SLAM-based scanning techniques in a

realistic scenario. We made hardware and software decisions based on a set of requirements

aimed at providing archaeologists with a usable system in the �eld. These requirements consist

of designing a system that is lightweight, simple, usable by a single non-technical user, and is

easily manipulated inside a tight and dark tunnel environment. In addition, the system must

provide its own power, be self-contained (no external connection), and can be transported to and

operated in a dif�cult environment (hot, humid, dusty, etc.). We also wanted to build a device

based on readily available and low-cost components and materials, and design software tools

that are open-source.

Our prototype consists of a backpack containing a laptop, and an external tablet with a

light panel and 3D sensors. The backpack system is presented in Figure 1.1 and described in

detail below. The laptop is the most expensive component, in order to run the real-time software

needed for the scanning.

1.4.1 Hardware Setup

The �rst part of our scanning device consists of a backpack modi�ed with a solid frame

that can handle a large laptop while keeping a good air�ow to prevent overheating. In the same

backpack, we keep several lithium polymer (LiPo) batteries to let the computer run for several

hours, and provide power to the sensors and lights. The second part of the device is a custom

frame supporting a tablet facing the user, a light panel facing forward, and a mount for a 3D

sensor facing forward. The frame possesses handles for better manipulation in dif�cult areas,

and to give the user �exibility to scan at different angles. The tablet provides feedback from

the laptop, and can display the status of the scanning operation. The light panel is designed
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