
Spector: An OpenCL FPGA Benchmark Suite

Quentin Gautier, Alric Althoff, Pingfan Meng and Ryan Kastner
University of California, San Diego

Abstract—High-level synthesis tools allow programmers to
use OpenCL to create FPGA designs. Unfortunately, these tools
have a complex compilation process that can take several hours
to synthesize a single design. This creates a significant barrier
for design optimization since even experts typically need to test
many designs due to the non-obvious interactions between the
different optimizations. Thus, understanding the design space,
and guiding the optimization process is a crucial requirement for
enabling the widespread adoption of these high-level synthesis
tools. However this requires a significant amount of design space
data that is currently unavailable or difficult to generate. To
solve this problem, we present an OpenCL FPGA benchmark
suite. We outfitted each benchmark with a range of optimization
parameters (or knobs), compiled over 8300 unique designs using
the Altera OpenCL SDK, executed them on a Terasic DE5 board,
and recorded their corresponding performance and utilization
characteristics. We describe the resulting design spaces, and per-
form a statistical analysis of the optimization configurations which
provides valuable architecture insights to FPGA developers. We
make the benchmarks and results completely open-source to give
opportunities for the community to perform additional analyses
and provide a repository of well-documented designs for follow-on
research.

I. INTRODUCTION

FPGA design was traditionally relegated to only experi-
enced hardware designers, and required specifying the applica-
tion using low-level hardware design languages. This provides
opportunities to create highly specialized custom architectures;
yet it is time consuming as every minute detail must be
specified on a cycle-by-cycle basis. Recently, FPGA vendors
have released high-level synthesis tools centered around the
OpenCL programming model. The tools directly synthesize
OpenCL kernels to programmable logic creating a custom
hardware accelerator. They raise the level of abstraction of the
programming model and increase the designer’s productivity.
Furthermore, the tools manage the transfer of data between
the FPGA and the CPU host. This opens the door for more
programmers to easily utilize FPGAs.

OpenCL is a open standard that provides a framework for
programming heterogenous systems. The language extends C
with features that specify different levels of parallelism and
define a memory hierarchy. There exists OpenCL implementa-
tions for a variety of multicore CPUs, DSPs, and GPUs. More
recently, commercial tools like Xilinx SDAccel [1] and the
Altera OpenCL SDK [2] add FPGAs into the mix of supported
OpenCL devices. This greatly simplifies the integration of
FPGAs into heterogeneous systems, and provides a FPGA
design entry point for a larger audience of programmers.

The OpenCL FPGA design process starts with implement-
ing the application using OpenCL semantics. The designer
then typically employs some combination of well-known

optimizations (e.g. SIMD vectors, loop unrolling, etc.) and
settles on a small set of designs that are considered optimal
according to some metric of performance (resource utilization,
power, etc.). Most designers will need multiple attempts with
several optimization options to understand the design space.
Unfortunately, a major drawback of these OpenCL FPGA tools
is that the compilation time is long; it can take hours or even
days. This severely limits the ability to perform a large scale
design space exploration, and requires techniques to efficiently
guide the designer to a good solution.

In many applications, it is difficult to predict the perfor-
mance and area results, especially when optimization param-
eters interact with each other in unforeseen manners. As an
example, increasing the number of compute units duplicates
the OpenCL kernel, which should improve performance at the
expense of FPGA resources. However, this is not always true
as memory contention may limit the application’s performance.
Finding when this occurs requires a better understanding of the
memory access patterns and how other optimizations alter it.
Many other optimizations are also intertwined in non-intuitive
ways as we describe throughout the paper.

We propose an OpenCL FPGA benchmark suite. Each
benchmark is tunable by changing a set of knobs that modify
the resulting FPGA design. We compiled over 8000 designs
across 9 unique benchmarks using the Altera OpenCL SDK.
All of our results are openly available and easily accessible [3].
This provides large set of designs to enable research on system-
level synthesis for FPGAs. For example, researchers can use
our results to evaluate their methods for improving the process
of design space exploration. We provide our own analysis
of the data as an example use-case in Section V; there is
substantial follow-on work that can be done, and we encourage
other researchers to use and extend our results.

The major contributions are:

• Designing and releasing an OpenCL FPGA bench-
mark suite

• Creating an optimization space for each benchmark
and describing the parameters that define it.

• Performing a comprehensive set of end-to-end syn-
thesis experiments, the result of which is over twenty
thousands hours of compilation time.

• Providing a statistical analysis on the results to give
insights on OpenCL FPGA design space exploration.

The remainder of the paper is organized as follows. In
Section II, we motivate the need for this research, and dis-
cuss related work. In Section III we detail our benchmark
design process and talk about how we obtained the results.
In Section IV we describe the benchmarks, detail the tunable
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Fig. 1. Our workflow to generate each benchmark and then generate the design space results as presented in Section III.

knobs and their effect on the architectures, and present their
design spaces. We give a statistical analysis of some of the
results in Section V and conclude in Section VI.

II. MOTIVATION

There are substantial number of application case studies for
parallel computing, heterogeneous computing, and hardware
design. One can start with reference designs from hardware
vendors such as Intel, NVIDIA, Altera, and Xilinx. Unfor-
tunately, these are often scattered across different websites,
use different target compute platforms (CPU, GPU, FPGA),
and they lack a common lingua franca in terms of opti-
mization parameters. This makes them difficult to provide a
fair comparison across the different applications. This is the
general motivation for benchmark suites – they provide highly
available, well documented, representative set of applications
that can assess the effectiveness of different design strategies
and optimizations.

Several open-source benchmarks for parallel applications
currently exist. Many of these, e.g., the HPEC challenge
benchmark suite [4] or Rodinia [5], focus on GPUs and
multicore CPUs. FPGAs have a different compute model.
Thus, while some of the applications in these benchmarks
suites are applicable to studying the OpenCL to FPGA design
flow, they require modifications to be useful. Several of our
benchmarks are found in these existing benchmark suites.
There are also a number of FPGA specific benchmarks suites.
These generally target different parts of the design flow. For
example, the applications in ERCBench [6] are written in
Verilog and useful for studying RTL optimizations or as a
comparison point for hardware/software partitioning. Titan [7]
uses a customized workflow to create benchmarks to study
FPGA architecture and CAD tools. The OpenCL dwarfs [8],
[9] contain several OpenCL programs that have been optimized
for FPGA. Unfortunately, they usually have a fixed architecture
with little to no optimization parameters.

We seek to extend these benchmark suites by leveraging
the existing OpenCL benchmarks and reference programs, and
outfitting them with multiple optimization parameters. Each of
these designs can be compiled with a commercial program or
open-source tool to generate thousands of unique configura-
tions. We make open-source our results that we obtained from
the Altera software, and encourage the community to compile
our benchmarks with different tools. One of our motivating
factors in creating this benchmark suite was the lack of a com-
mon set of designs and optimization parameters for comparing
different design space exploration (DSE) techniques. Machine
learning techniques for DSE in particular can benefit from a
large set of designs, e.g., [10] and [11] use machine learning

TABLE I. NUMBER OF SUCCESSFULLY COMPILED DESIGNS.

BFS 507 Histogram 894 Normal estimation 696
DCT 211 Matrix Multiply 1180 Sobel filter 1381
FIR filter 1173 Merge sort 1532 SPMV 740

approaches to explore design spaces and predict the set of
Pareto designs without having to compile the entire space.
These techniques could directly leverage our results to verify
and perhaps improve their models. And in general, we believe
that open repository of OpenCL FPGA designs will benefit
this and other areas of research.

III. METHODOLOGY

We designed nine benchmarks that cover a wide range
of applications. We selected benchmarks that are recurrent
in FPGA accelerated applications (FIR filter, matrix multiply,
etc.), but we also included code with more specific purpose to
cover potential real-world programs (like histogram calculation
and 3D normal estimation). These benchmarks come from
various places: some were written directly without example
source code, others come from GPU examples, and some come
from FPGA optimized examples. In all cases, we started from
programs that contained little to no optimization parameters,
thus requiring us to define the optimization space.

For each benchmark, we proceeded as illustrated in
Figure 1. First we created or obtained code that was partially
or fully optimized for FPGA. It is important to note that
we were not trying to reach a single “most optimal” design,
but instead defining an optimization space that covers a wide
range of optimizations. We studied which types of optimization
would be relevant for each benchmark. Then we added several
optimization knobs, which are values that we can tune at
compile-time. These knobs can enable or disable code, or
affect an optimization parameter (e.g., unrolling factor). We
compiled several sample designs to ensure that the knobs we
had chosen would have some impact on the timing and area.
Each benchmark has a set of scripts to generate hundreds of
unique designs, with all the possible combinations of knob
values. In most cases we restricted the values of the knobs to
a subset of the options (e.g., powers of two). We also removed
values that were likely to use more resources than available,
and filtered out further using pre-place-and-route estimations.
All the benchmarks were written using standard OpenCL code
with a C++ host program that can run and measure the time of
execution. The OpenCL code works with the Altera SDK for
FPGA, and can also be executed on GPU and CPU. Although
we have not tested the programs with other commercial or
open-source OpenCL-to-FPGA pipelines, we expect that little
to no modifications are required to ensure compatibility.
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Fig. 2. BFS design spaces for dense and sparse inputs. We plot the inverse
logic utilization against the throughput such that higher values are better. The
Pareto designs are shown in red triangles.

Each design was then individually compiled using the
Altera OpenCL SDK v14.1, with a compile time typically
requiring 1 to 4 hours on a modern server, and occasionally
taking more than 5 hours per design. In total we successfully
compiled more than 8300 designs (see Table I), plus many
more that went through almost the entire compilation process
but failed due to device resource limits. We executed the
successful designs on a Terasic DE5 board with a Stratix V
FPGA to measure the running time for a fixed input. Some
applications can behave differently given a different set of
input data however, and the optimizations to use in these cases
might vary. This is the case for algorithms like graph traversal
or sparse matrix multiplication, where the sparsity of the input
can have a significant impact on the design space. In both of
these benchmarks we ran the program with two sets of inputs.
We ran BFS with both a densely connected graph and one
with sparse edges. Sparse matrix-vector multiplication was run
with one matrix containing 0.5% of non-zero values and one
only 50% sparse. We extracted the running time and area data
(such as logic, block RAM, DSPs, etc.) for each run. The set
of design spaces that we present in Figures 2 to 8 shows the
logic utilization against the running time, as logic is usually the
most important resource and often the limiting factor. These
results are generated from the scripts plot_design_space.m
and plot_all_DS.m available in our repository.

IV. BENCHMARKS DESCRIPTION

Here we describe the benchmarks and the knobs that we
have chosen, so that the reader can interpret the design space
results based on the design choices. First we explain some
of the most common optimization types in OpenCL designs.
Then we explain each benchmark in more details, followed by
an overview of the shape of the design space.

Work-items: These are parallel threads with a common
context on GPU. On FPGA, they can be interpreted as multiple
iterations of an outer loop that is pipelined by the compiler.
Using only one can give more flexibility to the programmer
to control unrolling and pipelining, while using multiple can
enable optimizations such as SIMD. Work-groups: This de-
fines how many groups of work-items to use, each group
using a different context (no shared memory). This is useful to
enable the compute units optimization. Compute units: How
many duplicates of the kernel are created on the FPGA chip.
Compute units can run work-groups in parallel, however they
all access the external memory and thus might be limited by
the bandwidth. SIMD: Work-items can be processed simul-

taneously by increasing local area usage. It is only possible
when there is no branching. Unrolling: By explicitly unrolling
a loop, we can process multiple elements simultaneously by
using more area, usually storing data in more local registers.

A. Breadth-First Search (BFS)

This code is based on the BFS FPGA benchmark from
the OpenDwarfs project [8], [9], and originally based on the
BFS benchmark from the Rodinia Benchmark Suite [5]. It is
an iterative algorithm that simply traverses a graph starting at
a specified node by performing a breadth-first traversal, and
returns a depth value for each node. The algorithm iterates
over two OpenCL kernels until all the reachable nodes have
been visited. Each kernel launches work-items for each node
in the graph and uses binary masks to enable computation.
There are 6 knobs with varying values in these kernels.

• Unroll factor in kernel 1: Unrolls a loop to process
multiple edges simultaneously. We enable additional
code for edge cases only if the unroll factor is greater
than 1.

• Compute units in kernel 1 and 2, SIMD in kernel 2.
• Enable branch in kernel 1: Describes how to check

if a node was visited and how to update graph mask
values. Either enables the code from OpenDwarfs with
bitwise operators to avoid branching, or enables the
code from Rodinia with regular if statement.

• Mask type: Number of bits used to encode the values
of graph masks.

Design space: (Figure 2) The design space for the dense
input is clearly divided along the timing axis. The left cluster
represents the designs where the branching code is disabled.
The more optimized branching code gets better performance
as we increase the unrolling factor. The discontinuity between
the middle and right clusters is caused by a jump in the knob
values. The impact of the unrolling factor is however limited
by the number of edges to process per node. This limitation is
reflected in the sparse input design space that is more uniform.

B. Discrete Cosine Transform (DCT)

This algorithm is based on the NVIDIA CUDA imple-
mentation of a 2D 8x8 DCT [12]. The program divides the
input signal into 8x8 blocks loaded into shared memory, then
processed by calculating DCT for rows then columns with
precalculated coefficients. Some knobs enable multiple blocks
to be loaded in shared memory, and multiple rows and columns
to be processed simultaneously. Each work-group processes
one 8x8 block, and within the group each work-item processes
one row and column. This can be altered by 9 tunable knobs:

• SIMD and Compute units.
• Block size: Number of rows/columns to process per

work-item.
• Block dim. X and Block dim. Y: Number of blocks

per work-group in X or Y direction.
• Manual SIMD type: Using OpenCL vector types,

each work-item processes either multiple consecutive
rows/columns, or processes multiple rows/columns
from different blocks.
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Fig. 3. DCT and FIR filter design spaces.

TABLE II. FIR FILTER PARETO OPTIMAL DESIGNS.

Coef. shift 8 8 1 8 1 1 8 1 8 1 8 1
Num. parallel 1 2 2 1 1 4 2 2 2 2 1 1
Unroll inner 32 32 32 32 32 1 2 2 1 1 2 2
Unroll outer 2 1 1 1 1 1 1 1 1 1 1 1
Work-items = Work-groups = SIMD = Compute units = 1
Time (ms) 0.70 0.71 0.78 1.08 1.14 80.73 85.35 94.93 151.9 159.9 190.1 192.2
Logic 52% 50% 50% 36% 34% 34% 34% 33% 32% 31% 31% 30%

• Manual SIMD: Number of rows/columns for one
work-item to process using SIMD vector types.

• Unroll factor: Unroll factor for the loops launching
8-point DCT on rows and columns.

• DCT unroll: Either use the loop version of 8-point
DCT, or the manually unrolled 8-point DCT.

Design space: (Figure 3) The designs are clearly divided
into clusters along the logic utilization axis. These clusters
can be mostly explained by the block size, manual SIMD and
compute units knobs that have a similar impact on logic. The
combination of these knobs increases by steps, creating the
clustering of the design space.

C. Finite Impulse Response (FIR) Filter

This benchmark is based on the Altera OpenCL design
example of a Time-Domain FIR Filter, itself based on the
HPEC Challenge Benchmark suite [4]. This code implements
a complex single-precision floating point filter, where multiple
filters are applied to a stream of input data using a sliding
window. After a block of input data has been processed, it
loads the next filter’s coefficients while still shifting the sliding
window to avoid too much branching complexity. The kernel
is originally a single work-item task, but it has been extended
to use multiple work-items. There are 8 tunable knobs:

• Coefficient shift: Number of filter coefficients to load
at each loading iteration.

• Num. parallel: Number of FIR computations to per-
form in a single iteration. This extends the size of the
sliding window.

• Unroll inner: Unroll factor for the FIR computation
loop (for each coefficient).

• Unroll outer: Unroll factor for the main loop (for each
input value).

• Work-items Number of work-items. This divides the
input data into multiple blocks, each work-item works
on one block.

• Work-groups: Number of work groups, same conse-
quences as work-items, but also enable compute units.
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Fig. 4. Histogram and Matrix multiplication design spaces.

• SIMD and Compute units.

Design space: (Figure 3) The FIR filter benchmark has
this particularity to present a small group of outlier results that
turn out to be the most efficient designs. Unsurprisingly, the
values of the knobs correspond to the original code from Altera
that is thoroughly optimized for FPGA. It’s a single work-
item sliding window with a fully unrolled filter computation,
loading 8 complex numbers when loading a new filter (8x2x32
bits = 512 bits, the external memory width). The difference
with the original is the unrolling or sliding window size that
are bigger, allowing two elements per iteration to be processed.
This is possible because we use a smaller filter size than
the original. As we follow the Pareto front toward less logic
utilization (Table II), we simply unroll less the computation,
and decrease the sliding window size. From this design space
we can also learn that, even though not Pareto optimal, the
next most efficient designs come from using pipelining with
multiple work-items. It is less efficient due to accesses to non-
contiguous portions of the external memory.

D. Histogram

This code calculates the distribution histogram of unsigned
8-bits values by calculating the number of each of the 256
unique values. One OpenCL kernel counts the input values
into a local histogram. If multiple work-items are used, we
divide the input data and calculate multiple histograms that
can be combined either in shared memory, or through global
memory with a second kernel. The second kernel uses a single
work-item to sum them locally and output the result. The first
kernel can also process multiple values at the same time by
using several local histograms. There are 7 tunable knobs:

• Num. histograms: This is the number of local his-
tograms in the first kernel to compute simultaneously.

• Histogram size: Switches between local histogram
storage in registers or in block RAM.

• Work-items: This will create intermediate results that
need to be accumulated.

• Work-groups: If there are multiple work-groups, the
intermediate results have to be accumulated in a
second kernel (cannot use shared memory).

• Compute units.
• Accum. shared memory: Choose to accumulate the

intermediate results in shared memory if possible
(only one work-group), or in a second kernel.

• Unroll factor Unrolls the main loop over the input
values.
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Fig. 5. Merge sort and Normal estimation design spaces.

Design space: (Figure 4) This is one of the few design
spaces that appear relatively uniform. All the knobs seem
to have a similar impact on the variations between designs,
although a few design make the exception by using more logic.
These designs set the histogram size such that the compiler
will prefer to use registers instead of block RAMs, as they
are using only one local histogram. But as opposed to some
other uniform design spaces, the parameters cannot be linearly
modeled, as presented in Section V.

E. Matrix Multiplication

This code is based on an Altera OpenCL example. It
implements a simple matrix multiply C = A∗B with squared
floating-point matrices. The matrix C is divided into blocks,
each computed individually. The implementation includes sev-
eral knobs to change the size of the blocks and to process
multiple blocks at once. Each work-group takes care of one
block of C. Each work-item takes care of one element in a
block, including loading elements to local storage, multiplying
one row of block A by one column of block B, and copying
back to global storage. There are knobs that enable multiple
block processing for work-groups and work-items, either by
adding an inner loop, or by using OpenCL vector types for
SIMD computation. There are 9 tunable knobs in this code:

• Block dimension: Width of blocks.
• Sub-dimension X and Sub-dimension Y: How many

blocks of C in X or Y direction to process in one
work-group. This adds a for loop so that each work-
item processes this number of blocks.

• Manual SIMD X and Manual SIMD Y: How many
blocks of C in X or Y direction to process in one
work-group. This performs the inner matrix multiply
with OpenCL vector types.

• SIMD and Compute units
• Enable unroll: Enables or disables unrolling loop on

load and store operations.
• Unroll factor: Unroll factor for multiple loops.

Design space: (Figure 4) The matrix multiplication Pareto-
optimal designs are a good example of an almost linear
relationship between area and timing (in this optimization
space). By looking at the knob values along the Pareto front,
we can determine that it’s mostly a combination of block
dimension, manual SIMD X, SIMD, and unroll factor that
can vary the results and create the trade-off between speed
and area. The other knobs still have an impact on the design
space, but tend to have a single optimal value for both area and

timing. Typically, manual SIMD Y is not enabled in the optimal
designs, as the data are organized along the X direction.

F. Merge Sort

This program applies the Merge Sort algorithm using loops,
merging in local memory first, then in global memory:

1: for each chunk of size localsortsize do
2: copy the entire chunk into local memory
3: for localchunksize = 2 to localsortsize do
4: for each local chunk of the chunk do
5: merge two halves of local chunk
6: end for
7: swap input/output buffers
8: end for
9: end for

10: for chunksize from localsortsize to inputsize do
11: for each chunk of the input do
12: merge two halves of the chunk
13: end for
14: swap input/output buffers
15: end for

• Work-items: Each work-item processes a different
chunk in lines 4 and 11.

• Local sort size: Varies localsortsize.
• Local use pointer: Use pointers to swap buffers in

local memory. This can force the use of block RAMs
instead of registers.

• Specialized code: Enable a specialized code to merge
chunks of size 2.

• Work-groups: Each work-group runs the algorithm
on one portion of the input data. A second iteration
of the kernel is launched to merge the final output.

• Compute units
• Unroll: Unroll factor for the loops copying data

from/to local memory.

Design space: (Figure 5) This design space is mainly
divided into 2 clusters, due to the compute units knob that can
take the value 1 or 2. In this case, using multiple compute
units has a large impact on the resource utilization, while
the other knobs have a much smaller impact on resources,
and are responsible for smaller variations within each cluster.
Interestingly, the fastest designs use only one compute unit,
but make use of the pipeline optimization from work-items.

G. 3D Normal Estimation

This code is inspired by an algorithm in the KinectFusion
code from the PCL library [13]. It estimates the 3D normals
for an organized 3D point cloud that comes from a depth map
(vertex map). We can quickly estimate the normals for all the
points by using the right and bottom neighbors on the 2D
map, then calculate the cross-product of the difference between
each neighbor and the current point, and normalize. If any of
the vertices is null, the normal is null. One kernel does the
entire computation using a small sliding window where the
right neighbor is shifted at each iteration to be reused in the
next iteration. As illustrated in Figure 6, a parameter can vary
the window size so that multiple inputs are processed in one
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Fig. 6. Estimating 3D normals from 3D vertices organized on a 2D map.
The top of the figure shows how the sliding window works in the algorithm.
The bottom illustrates how the sliding window can be tuned.

iteration. If multiple work-items are used, the input data are
cut into blocks of whole rows. There are 6 tunable knobs:

• Work-items, Work-groups and Compute units.
• Unroll factor 1: Unroll factor for the outer loop that

iterates over all the input data.
• Unroll factor 2: Unroll factor for the loop that iterates

over the elements within a sliding window.
• Window size: Size of the sliding window. ie. number

of consecutive elements to process in one iteration.

Design space: (Figure 5) Normal estimation is another
example of a fairly uniform design space. It is easier to create a
model of the knobs (see Section V), and it is a good example of
a optimization space where most parameters have an impact of
similar importance on both the timing and the area utilization.

H. Sobel Filter

This code applies a Sobel filter on an input RGB image,
based on the Altera OpenCL example.

1: for each block on the input image do
2: load pixel values from block in shared memory
3: for each pixel in local storage do
4: load the 8 pixels around from shared memory to

registers
5: convert pixels to grayscale
6: apply the 3x3 filter in X and Y
7: combine the X and Y results and apply threshold
8: save result in global storage
9: end for

10: end for

Work-group take care of blocks (line 1) and work-item
take care of pixels within the block (line 3). The knobs can
enable a sliding window within the blocks, SIMD computation,
or make a work-item perform multiple computations. With the
SIMD parameter, each work-item loads more pixels to registers
to apply multiple filters by using OpenCL vector types. The
sliding window parameter creates an inner loop (after line 3)
where each work-item processes one pixel (or multiple with
SIMD), then shifts the registers to load one new row or column
of data from the local storage. There are 8 knobs in this code:
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Fig. 7. Sobel filter design space.

• Block dimension X and Block dimension Y: Size of
each block in X or Y.

• Sub-dimension X and Sub-dimension Y: Local slid-
ing window size, moving in X or Y direction.

• Manual SIMD X and Manual SIMD Y: Number of
elements to process as SIMD in X or Y direction.

• SIMD and Compute units.

Design space: (Figure 7) The Sobel filter is another
example of a mostly uniform design space where all the knobs
seem to have a similar impact on the output variables. A more
detailed look at the knob values actually shows that along the
timing axis, the manual SIMD X knob is one of the most
important factors, and the most important on the Pareto front.
This is a case where manually designing SIMD computation is
better than using automatic SIMD, and this becomes apparent
from the analysis of an entire optimization space.

I. Sparse Matrix-Vector Multiplication (SPMV)

This code is also based on an OpenDwarfs benchmark. It
calculates Ax+y where the matrix A is sparse in CSR format
and the vectors x and y are dense. Each work-item processes
one row of A to multiply the non-zero elements by elements
of x. Two knobs control the number of elements processed
simultaneously by one work-item: one unrolls a loop, and the
other enables the use of OpenCL SIMD vector types to store
and multiply the data. There are 4 tunable knobs:

• Block dimension: Number of work-items per work-
group.

• Compute units.
• Unroll factor: This creates an inner loop over some

number of elements and unrolls it so that elements can
be processed simultaneously.

• Manual SIMD width: This is the size of the OpenCL
vector type to use when processing elements. Elements
are loaded and multiplied in parallel using this type.

Design space: (Figure 8) This benchmark is dependent on
the type of input and behaves differently for more or less sparse
matrices. This is reflected in the design spaces, where the most
efficient designs for sparse matrices, and particularly the Pareto
optimal designs, tend to have smaller values for Unroll factor
and Manual SIMD width. When processing a denser matrix,
the best designs tend to have a higher value for these knobs,
as it allows simultaneous processing of elements in rows. For
sparse matrices, the pipelining provided by block dimension is
usually preferred to the SIMD and unroll optimizations.
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Fig. 8. SPMV design spaces for 0.5% sparse matrix and 50% sparse matrix.

V. DESIGN SPACE ANALYSIS

To demonstrate one potential use of our data, we perform
an example analysis to determine the viability of multiple
sparse linear regression to model design space performance
and area. In mathematical form we compute model coefficients
β in

f(x) = β0 +

n∑
i=1

xiβi +

m∑
i=n+1

m∑
j=i+1

xixjβi·m+j (1)

where x is a vector of design space knob values, n is the
number of design space knobs, and the number of entries in β
is m = n(n+1)/2. In the following sections, we use the term
“parameters” to refer to values of β and “realization” to refer
to a single design (a single point in the design space plots of
previous sections).

The purpose of this analysis is not to suggest that linear
regression is a good idea when seeking to model a design space
in general. Rather we observe that there are many cases where
simple linear models are effective, and equally many where
they are misleading and/or downright ridiculous. The lesson
here is that DSE research involving parametric models should
not overstate their generality, particularly where performance
is concerned.

A. The Least Absolute Shrinkage and Selection Operator
(LASSO)

The LASSO is a well-known statistical operator [14] useful
for variable selection and sparse modeling. While we present
its mathematical form in equation (2), LASSO is, in essence,
ordinary least squares regression with a penalty forcing small
variables toward zero. The operator parameter λ determines
“small”, and it is often—as it is in our case—selected via
cross-validation. A small value at βk indicates that variation
of the kth parameter does not produce significant variation
in the output. We prefer LASSO for this analysis because it
tends to produce simpler and more interpretable models. The
LASSO in mathematical form is

min
β
‖y −Xβ‖22 + λ‖x‖1 (2)

= min
β

n∑
i=1

(yi −
m∑
j=1

Xijβj)
2 + λ

m∑
i=1

|βi|

where Xij is the entry of the matrix X at row i and column
j. In the remainder of this section β refers to the vector
minimizing the LASSO for a λ minimizing the model mean
squared error.

TABLE III. LASSO r2 AND G(β) VALUES FOR LOGIC (`) AND TIMING
(t) ACROSS BENCHMARKS FOR COMPLETE AND NEAR-PARETO SPACES

Complete Space Within 0.1 of Pareto
Benchmark r2` G`(β) r2t Gt(β) r2` G`(β) r2t Gt(β)

BFS (Dense) 0.89 0.91 0.97 0.97 0.92 0.85 0.83 0.97
BFS (Sparse) 0.89 0.91 0.85 0.84 0.98 0.68 0.92 0.80
DCT 0.98 0.83 0.91 0.86 0.58 0.86 0.95 0.86
FIR 0.61 0.92 0.37 0.94 0.79 0.95 0.99 0.96
Histogram 0.73 0.90 0.04 0.80 -0.05 1.00 0.15 0.94
Matrix multiply 0.83 0.76 0.70 0.70 0.91 0.82 0.94 0.71
Normal estimation 0.90 0.81 0.91 0.57 0.98 0.72 0.98 0.69
Sobel 0.78 0.77 0.88 0.67 0.98 0.83 0.94 0.78
SPMV (Sparse) 0.88 0.93 0.29 0.71 0.90 0.89 0.24 0.93
SPMV (Dense) 0.88 0.93 0.24 0.82 0.90 0.94 0.68 0.80
Mergesort 0.91 0.89 0.43 0.68 0.95 0.92 0.74 0.81

Note: G(β) values for which the associated r2 < 0.7 are greyed out to
indicate that they should be disregarded

While LASSO explicitly determines coefficients for a linear
model, it is also useful for variable selection in nonlinear
systems [15]. In this situation we do not read very deeply
into β, but rather use it to detect when simple linear, perhaps
even obvious, relationships exist between parameters and the
realized design space. To summarize the LASSO results we
compute the coefficient of determination—also known as the
r2 value—independently for throughput and area, denoted
r2t and r2` respectively. r2 is a commonly used goodness-
of-fit measure indicating the amount of variance in the data
explained by the model. Alongside r2t,` we also compute
the Gini coefficient of β, Gt,`(β), as a measure of model
complexity. Note that if r2 is small then G(β) is a nearly
worthless quantity. We do, however, include values for all
design spaces in Table III for completeness.

B. Gini Coefficient

The Gini coefficient [16] G is a statistic frequently used
to measure economic inequality. G takes values in the range
[0, 1]. If G(v) = 1 − ε for a particular vector v and small ε,
then there are a few elements of the set that are very large
relative to others. If G(v) = ε then all vector elements have
values that are close to each other.

Equation (3) describing G is calculated using equation (3)
with bias correction from [17]

G(x) =
n

n− 1
·
∑n
i=1(2i− n− 1)xi
n
∑n
i=1 xi

(3)

where x is sorted beforehand. G(β) indicates whether variation
in the realized design space can be accounted for by a few
parameters.

C. Example observations

To give the reader some idea of the sort of descriptive
statistical information that can be gained from these data, we
will consider only the the r2 and Gini values from Table III for
the Histogram and Normal estimation design spaces. A purely
visual inspection of the design space graph, (see Figure 5 and 4
resp.) might suggest that there is a “grid-like” quality to the
relationship between knobs and the realized design space. We
demonstrate that this is not necessarily the case.
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Fig. 9. In the above figure we have sorted the ground truth designs and plotted
them alongside the LASSO model predictions. The worst designs begin on the
left and progress toward the best designs on the right. The Histogram model
predicts performance very poorly, and while the logic utilization model appears
to follow rather closely for mediocre designs, the most efficient designs are
poorly modeled. The opposite is true for Normal estimation: Near-Pareto
designs are modeled more accurately than the remainder of the space.

Histogram: Considering the complete Histogram design
space, r2` = 0.73 where r2` indicates goodness-of-fit on the
logic axis. This means that there is a 1 − r2 fraction of the
total variance unaccounted for by the model, so 0.73 indicates
a reasonable—but not excellent—fit for the LASSO model.
G`(β) = 0.9 tells us that the LASSO model, with learned
parameter vector β, has a few dominant parameters, while the
remainder have negligible influence over logic utilization. On
the other hand, r2t = 0.04 means that the performance of
the design is not well represented as a linear model of the
input parameters. For this reason Gt(β) should not be taken
seriously as an indicator of parameter dominance. Examining
these values for the subset of designs within 0.1 of the Pareto
front tells a different story. r2 for both logic and performance
are extremely low. While r2t increased—meaning the design
space becomes more amenable to linear modeling nearer to the
Pareto front—logic utilization becomes far less explainable by
our model.

Normal estimation: In sharp contrast to the Histogram
design space, Normal estimation is very well modelled. r2
for logic and performance both increase towards the Pareto
front. Gini coefficients are split, timing becoming more at-
tributable to a subset of parameters, while logic becomes
less so. Altogether this implies that the model parameters
are of the same order of magnitude in importance and have
proportional (or inversely proportional) relationships to the
resulting performance and area.

While these two design spaces are extreme examples on
the spectrum of nonlinearity they demonstrate that inspection
alone is insufficient to determine the knob-to-design mapping.
Figure 9 shows the model predictions alongside the true
performance and area results. This example analysis shows that
researchers should be very cautious with parametric models
in DSE. Even very general techniques such as Gaussian
process regression (see [10]) have hyperparameters that must
be carefully tuned.

VI. CONCLUSION

We have presented a set of OpenCL benchmarks targeted
specifically at FPGA design space exploration for high-level
synthesis. We hope that by releasing these benchmarks and
our results to the community, we can expand our knowledge

on how to improve design choices. We have analyzed the
results to show that the variations between designs can be
affected not only by individual parameters, but also by com-
plex interactions between these parameters that are difficult
to model mathematically. Yet we have barely scratched the
surface of the information that we can gather from these data,
and we hope that it will provide opportunities for everyone in
the future, and particularly the machine learning community.
People can also contribute by compiling these benchmarks on
various toolchains, and we plan to expand our work to cover
even more optimization types and values.
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