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Abstract—De novo assembly is a widely used methodology in
bioinformatics. However, the conventional short-read based de
novo assembly is incapable of reliably reconstructing the large-
scale structures of human genomes. Recently, a novel optical
label based technology has enabled reliable large-scale de novo
assembly. Despite its advantage in large-scale genome analysis,
this new technology requires a more computationally intensive
alignment algorithm than its conventional counterpart. For ex-
ample, the run-time of reconstructing a human genome is on the
order of 10, 000 hours on a sequential CPU. Therefore, in order
to practically apply this new technology in genome research,
accelerated approaches are desirable. In this paper, we present
three different accelerated approaches, multi-core CPU, GPU and
FPGA. Against the sequential software baseline, our multi-core
CPU design achieved a 8.4× speedup while the GPU and FPGA
designs achieved 13.6× and 115× speedups respectively. We also
reveal the insights of the design space exploration of this new
assembly algorithm on these three different devices by comparing
the results.

I. INTRODUCTION

The ability to construct de novo assemblies is widely
pursued for medical and research purposes. These de novo
assemblies are especially invaluable in the studies of structural
variations of genomes [1]. However, the conventional short-
read technology based de novo assemblies provide structural
information only on a micro-scale (< 1, 000 bases per frag-
ment). They are not capable of reconstructing the large-scale
structures of human genomes [2]. This is due to the fact that
using the short-read based assembly leads to ambiguity when
these large-scale (> 100, 000 bases per fragment) genomes
have frequent structural repetitions (typical medium to large
genomes contain 40 - 85% repetitive sequences [3]).

In recent years, research has shown that a novel optical label
based technology is able to overcome this limitation of the
short-read technology [4]. This novel technology fluorescently
labels the DNA molecule strings at the locations where a
specific nucleobase combination appears (e.g. label wherever
the combination GCTCTTC appears, as demonstrated in Fig.
1(A)). Then the labeled DNA molecules are linearized by
being passed through a nanochannel device. These linearized
strings with labels are imaged by a CCD camera as demon-
strated in Fig. 1(B). In the image field, on each string, the
physical distances between every two labels are measured
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Fig. 1. Demonstration of the optical labeling process. (A) Fluorescent labels
attached to “GCTCTTC”. (B) The real image field of labeled DNA fragments
from a microscopy CCD camera. The strings are linearized DNA fragments.
The glowing dots are fluorescent labels. The numbers in kilo-bases(kb) are
examples of physical distance measurement between labels.

and collected. This process results in a uniquely identifiable
sequence-specific pattern of labels to be used for de novo
assembly. As opposed to the four letters, these arbitrary
physical distances are unlikely to contain structural repetitions.
Therefore, this optical method enables the reconstruction of
the large-scale genomes for modern bioinformatic studies. In
genomic studies, N50 is a widely used metric to measure the
ability of a technology to assemble large-scale structures. Re-
search results show that this novel optical assembly enhances
the N50 by two orders of magnitude compared to the short-
read assembly [2].

The task of the de novo assembly is reconstructing the
genome from a set of DNA fragments. The most computation-
ally intensive part of this task is the algorithm that aligns every
pair from the DNA fragment set. This pair-wise alignment
algorithm for the optical assembly is fundamentally different
from the short-read alignment. In the conventional short-
read based process, as depicted in Fig. 2(A), the alignment
algorithm is applied on the strings with “A”,“C”,“G” or “T”
DNA nucleobase letters. As opposed to the short-read letters,
the new optical method aligns the locations of the fluorescent
labels on the strings shown in Fig. 2(B). Aligning these
arbitrary numbers obtained from a human genome takes nearly
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Fig. 2. Comparison of the conventional and the novel de novo assembly
methods. (A) Alignment process in the conventional short-read based method.
(B) Alignment process in the novel optical label based method. Each dot
represents a fluorescent label.

10, 000 hours on a sequential CPU. Moreover, research [5] has
shown that the resolution of the optical label method can be
further enhanced by adding multiple types (colors) of labels.
Therefore, accelerating this alignment algorithm is desired not
only for the purpose of shortening the process time but also
for enabling this optical based technology in genome studies
that require high resolutions.

In this paper, we present three acceleration approaches for
the optical labeled DNA fragment alignment using multi-
thread CPU, GPU and FPGA. These designs are compared
against a single thread sequential CPU implementation. The
major contributions are:
• The first attempt to accelerate the large-scale genome

assembly in hardware.
• An end-to-end FPGA accelerated implementation.
• A GPU accelerated implementation.
• A comparison and design space exploration of the multi-

core CPU, GPU and FPGA.
The rest of the paper is organized as follows. We discuss re-

lated work in Section II. We describe the alignment algorithm
in Section III. This is followed by descriptions of the acceler-
ated designs in Section IV. Experimental performance results
and comparison are provided in Section V. We conclude in
Section VI.

II. RELATED WORK

Multiple accelerated approaches for short-read assembly
have been proposed in recent years. Olson et al. have proposed
a multi-FPGA accelerated genome assembly for short-reads in
[6]. They accelerated the alignment algorithm on the FPGAs
for the reference guided genome assembly with 250× and
31× speedups reported against the software implementations
BFAST and Bowtie respectively. Varma et al. have presented
a FPGA accelerated de novo assembly for short-reads in [7].
They chose to accelerate a pre-processing algorithm on the
FPGA to reduce the short-read data for the CPU assembly al-
gorithm. They reported a 13× speedup over the software. They

also proposed an improved FPGA implementation exploiting
the hard embedded blocks such as BRAMs and DSPs in [8].
Attempts have also been made to accelerate genome assembly
on GPUs. Aji et al. have proposed a GPU accelerated approach
for short-read assembly in [9]. They reported a 9.6× speedup.
Liu et al. proposed a GPU accelerated DNA assembly tool -
SOAP3 [10] which achieves 20× speedup over Bowtie.

Although these approaches have improved the performance
of the short-read assembly significantly, they are limited to
micro-scale genomes. There is still no high performance
solution for large-scale genome structure analysis. Our imple-
mentations provide an accelerated solution for this large-scale
genome task.

Our implementations are fundamentally different from these
previous efforts because they employ the novel optical label
based genome assembly. In this paper, our accelerated designs
differ from the previous short-read approaches in two ways:
1) the data in the optical method requires more precision
bits than conventional four letters (A,C,G,T) do; 2) the phys-
ical label locations require a different alignment algorithm
[11] from the traditional Smith-Waterman. Most short-read
methods employed the traditional Smith-Waterman algorithm
which computes each score matrix element from its three
immediately adjacent elements. The algorithm in our optical
label based method computes each element from a 4×4 area as
demonstrated in Fig. 3. These differences not only increase the
computational intensity but also require a different hardware
parallel strategy from the ones proposed in these previous
short-read based works. To the best of our knowledge, our
implementations are the first attempt to accelerate the large-
scale genome assembly using GPUs and FPGAs.

III. ALGORITHM

The accelerated alignment algorithm is a Dynamic Pro-
gramming method specifically modified for the optical DNA
analysis, proposed by Valouev [11]. The algorithm aligns two
arrays X and Y of optical label positions by computing a
likelihood score matrix and finding the maximum within this
matrix. Each score represents the likelihood of a possible
alignment between X and Y . Assuming the sizes of the input
arrays are M and N , the algorithm computes a M ×N score
matrix as depicted in Fig. 3. The computation of each element
in the matrix requires local scores. The black square in the
figure shows an example of a local score. Those elements near
the edges, shown as the grey regions in the figure, also require
boundary scores. Thus, the alignment algorithm consists of
three steps: 1) compute the boundary scores as described in
Algorithm 1; 2) compute the local scores as described in
Algorithm 2; 3) find the best score and its correspondent (i, j)
in the score matrix as shown in lines 10 - 12 of Algorithm 2. If
the best score passes the threshold, then we find an alignment
between X and Y with Xj aligned to Yi using a trace-back
operation. In our hardware accelerated approaches, we keep
the trace-back operation on the host PC. We therefore only
describe the best score computation in detail as follows.
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Fig. 3. Visualized pair-wise alignment process. The 2D array represents the
likelihood score matrix. Each (i, j) element in the matrix is a likelihood score
for aligning Xj with Yi. The top, bottom, left and right grey regions represent
the boundary score computations. The black square and the shaded area
displays one iteration of the dynamic programming process. The computations
for the black square have data dependencies to the shaded area. The arrows
show that this computation is iterated to fill the entire matrix.

When Xj is aligned to Yi, the leftmost ends of X and
Y may create an offset. Large offsets produce unwanted
gaps in the DNA assembly. A valid alignment should have
minimum offset. Therefore, we compute a boundary score to
represent this offset. The computation of the boundary scores
is described in Algorithm 1. In the algorithm, to compute a
boundary score element located at (i, j), we firstly compute its
leftmost offset Lxi,j or Lyi,j as shown in lines 12 - 20. Then
we compute an “end” likelihood and several mixed likelihoods
as shown in lines 21 - 30. We choose the maximum among
these likelihoods to be the boundary score for this position.
This process is iterated, as shown in lines 4 and 11, to produce
the boundary scores for the top 4 rows and the leftmost 4
columns of the score matrix. An identical boundary score
algorithm is also applied on the rightmost offsets of the input
arrays to fill the bottom 4 rows and the rightmost 4 columns of
the score matrix. These boundary score locations are visualized
in Fig. 3.

Besides the offsets on the ends, when evaluating the like-
lihood of the alignment between Xj and Yi, we also need
to consider how well their neighboring elements align. We
compute a local score to represent this. In Algorithm 2, to
compute each local score scorei,j , we generate 16 score
candidates correspondent to its upper-left 4×4 neighbors (refer
to Algorithm 2 lines 5 - 7). Each of the 16 candidates is
computed by adding a local likelihood to its correspondent
previous score from the 4× 4 area (the shaded area in Fig.3).
The score in scorei,j is updated with the maximum among all
these 4× 4 candidates. This process is iterated M ×N times
to generate the complete score matrix as shown in lines 3 and
4. Then we find the highest score within the matrix (lines 10
- 12), which represents the best alignment for X and Y . This
highest score is used in the post processes to complete the
genome reconstruction.

The likelihood functions in Algorithm 1 and 2 are de-

Algorithm 1 The Boundary Score Algorithm
Input: Two arrays of optical label locations X , Y ; Sizes of the input arrays

1 :M , 1 : N
1: Likelihoodlocal(x, y,m, n) local likelihood function
2: Likelihoodend(x,m, n) end likelihood function
3: Likelihoodmix(x, y,m, n)= Likelihoodend((x + y)/2,m, n) +

Likelihoodlocal(x, y, 1, 1) − Likelihoodlocal((x + y)/2, (x +
y)/2, 1, 1) mixed local and end likelihood function

4: for i = 1 to N do
5: Lxi,j = 0, Lyi,j = 0
6: if i ≤ 4 then
7: jmax =M
8: else
9: jmax = 4

10: end if
11: for j = 1 to jmax do
12: if Xj < Yi then
13: while Yi − YLyi,j > Xj do
14: Lyi,j ++
15: end while
16: else
17: while Xj −XLxi,j

> Yi do
18: Lxi,j ++
19: end while
20: end if
21: scorei,j = Likelihoodend(min(Xj , Yi), j + 1 −

max(1, Lxi,j), i+ 1−max(1, Lyi,j))
22: if Xj < Yi then
23: for k = Lyi,j to i− 1 do
24: scorei,j = max(scorei,j , Likelihoodmix(Xj , Yi −

Yk, j, i− k))
25: end for
26: else
27: for k = Lxi,j to j − 1 do
28: scorei,j = max(scorei,j , Likelihoodmix(Xj −

Xk, Yi, j − k, i))
29: end for
30: end if
31: end for
32: end for
Output: Score matrix score[1 : N ][1 : M ] filled with boundary scores in

the top 4 rows and leftmost 4 columns

Algorithm 2 The Dynamic Programming Score Algorithm
Input: Two arrays of optical label locations X , Y ; Sizes of the input arrays

1 :M , 1 : N ; Score matrix score[1 :M ][1 : N ] with boundary scores
filled

1: Likelihoodlocal(x, y,m, n) local likelihood score function
2: scorebest = −∞
3: for i = 1 to N do
4: for j = 1 to M do
5: for g = max(1, i− 4) to i− 1 do
6: for h = max(1, j − 4) to j − 1 do
7: scorei,j = max(scorei,j , Ag,h +

Likelihoodlocal(xj − xh, yi − yg , j − h, i− g))
8: end for
9: end for

10: if scorei,j > scorebest then
11: scorebest = scorei,j , jbest = j, ibest = i
12: end if
13: end for
14: end for
Output: Best score scorebest; The X and Y indices of the best score jbest

and ibest

rived from an error model proposed in [11]. The functions
Likelihoodlocal(x, y,m, n) and Likelihoodend(x,m, n) are
computed as shown in Equations 3 and 4 respectively. The
Likelihoodlocal(x, y,m, n) function consists of two terms:



the bias value BXY (provided in Equation 1); the maximum
between the penalty value (provided in Equation 2) and a
constant POutlierPenalty . The values of the constants used
in Equations 1 - 4 are empirically tuned to suit the optical
experiment [11]. Changing these values does not influence the
computing speed of the algorithm. Therefore, without the loss
of generality, in our implementations, we tuned these constants
to suit our experiment input data - a synthetic human genome.
These constant values are listed in Table I.

biasXY = [max(0, x− δ) +max(0, x− δ)] ∗B +B
′

(1)

pen = C − (x− y)2

V ∗ (x+ y)
− Pmiss ∗ (m+ n)

−[max(0, x− δ) +max(0, x− δ)] ∗R
(2)

Likelihoodlocal(x, y,m, n) = biasXY +max(pen, P ) (3)

Likelihoodend(x,m, n) = 2 ∗max(0, x− δ) ∗Bend +B
′

end

−Pmiss ∗ (m+ n− 2)
(4)

IV. ACCELERATED DESIGNS

The algorithm consists of three levels of possible paral-
lelism: 1) align multiple pairs in parallel; 2) compute multiple
rows and columns of the score matrix in parallel; 3) compute
the 16 score candidates for each score element in parallel. The
input DNA fragment pool typically has 100, 000− 1, 000, 000
arrays. A typical input array length is 15 - 100. In our
accelerated designs, we mapped these computational patterns
to the particular architectural features of each hardware. In the
following sections, we describe these designs in detail.

A. Multi-core CPU

In the CPU design, we parallelized the algorithm by insert-
ing OpenMP directives. The performance is highly correlated
with the granularity of the iterations in the algorithm. We
evaluated the fine-grained strategy which processes multiple
rows and columns in parallel on the multiple CPU cores. The
evaluation results indicated that it is expensive to synchronize
and exchange fine-grained data among the cores. The multi-
core CPU is more suitable for the coarse-grained parallelism.
Therefore, we chose to align multiple pairs in parallel on the
multi-core CPU.

We divided the total workload into several sets of align-
ment tasks and assigned each of the sets to a CPU core
as demonstrated in Fig. 4. When one CPU core finishes its
current alignment workload, it can start aligning another pair
immediately without synchronizing with the other CPU cores.
Therefore, all the CPU cores are completely occupied during
this process to maximize the throughput.
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Fig. 4. Multi-core CPU accelerated design. Assume there are S pairs of
optical arrays to be aligned and the CPU has T cores.

B. GPU

The GPU design consists of three CUDA kernels, invoked
from a C++ host code. The CUDA kernels accelerate the entire
alignment algorithm to keep the intermediate data on the GPU
during the process. The C++ host program only sends the
input DNA arrays to the first kernel and receives the output
maximum score from the third kernel.

There are multiple options for CUDA kernel design based
on different levels of granularity. We firstly evaluated the
coarse-grained only strategy on the GPU. The evaluation
shows that coarse-grained parallelism is significantly bounded
by a low GPU occupancy. Therefore, to fully utilize the GPU
parallel computing power, we added fine-grained parallelism
in our design. The GPU design computes multiple rows and
columns in fine-grained parallel within each GPU thread-
block. The design also utilizes multiple thread-blocks to align
multiple pairs in coarse-grained parallel. Computing the 16
candidates in parallel is not efficient on the GPU since it
requires a 16-element reduction process which creates idle
threads frequently.

We partitioned the algorithm into three CUDA kernels 1)
boundary score kernel; 2) dynamic programming kernel; 3)
maximum score search kernel. We chose this kernel parti-
tioning because these parallelized computations require GPU
global synchronization after 1) and 2).

In the boundary score kernel design, we fully parallelized
the computations due to the data independency. The GPU
thread arrangement is: assigning the boundary score compu-
tation for each element (lines 12 - 30 in Algorithm 1) to one
GPU thread; assigning the boundary score computations of
each alignment to one GPU thread-block. With this design, we
maximized the GPU parallel resource occupancy. Moreover,
since this design assigns all the computations of an alignment
to the same thread-block, we were able to store the intermedi-
ate data in the shared memory to minimize the memory access
delay in the computations.

The pseudo code of the dynamic programming kernel is
described in Listing 1. We parallelized the score element
computations using N × 4 threads in each thread-block. The
candidate score computation for each matrix column requires
4 previous columns as described in line 7 of Algorithm
2. Parallelizing this part of the algorithm is a challenging
task due to this data dependency. We overcame this issue
by dynamically assigning the columns of the score matrix
to 4 groups of threads. As described in Listing 1, we used
threadIdx.y to partition N × 4 threads into 4 groups. They
form a software pipeline. Each thread group is only responsible



TABLE I
CONSTANT VALUES FOR SCORE FUNCTIONS

Constant C V δ B B
′

Pmiss R P Bend B
′
end

Value 3.6505 0.0449 0.0010 −0.0705 0.9144 1.5083 −0.0931 −8.1114 0.0226 0.3992

for a specific candidate computation (leftmost, 2nd left, 2nd
right or rightmost). By increasing col id, we stream the
columns of the score matrix into this pipeline.

The example in Fig. 5 shows a snapshot of this soft-
ware pipeline when the GPU is processing columns 8, 9,
10 and 11. These columns are assigned to the different
stages (thread groups) of the pipeline: column 11 to group
threadIdx.y = 0; column 10 to threadIdx.y = 1; column
9 to threadIdx.y = 2; column 8 to threadIdx.y = 3. The
computations in the pipeline stages threadIdx.y = 0− 3 are
leftmost candidates, 2nd left candidates, 2nd right candidates
and rightmost candidates respectively, as shown in the shaded
blocks in Fig. 5. In the snapshot, these computations all require
the data from column 7 which has already been computed in
the previous col id iteration (refer to the “for” loop in Listing
1). Once the computations in the snapshot are finished, the
data in column 8 is then ready. With the data from column 8,
the pipeline streams a new column (column 12 in the snapshot)
by increasing the iteration index col id. These 4 thread groups
execute different instructions to implement the 4 stages of
the pipeline. In order to fit this design on the GPU SIMD
architecture, we ensured the threads of each GPU warp to
execute the same instruction by extending N to a multiple of
32. Once the dynamic programming kernel finishes computing
the score matrix, the third kernel (an efficient M×N -element
reduction kernel) searches the matrix to find scorebest, ibest
and jbest.

C. FPGA

The FPGA also accelerates the entire algorithm while a host
PC program is responsible for sending the input and receiving
the output. Our final implementation is in Register-transfer
level (RTL). Our design space exploration was performed
using High-Level Synthesis (HLS) .

The FPGA is a customizable architecture. There are two
techniques to implement parallelism on the FPGA: 1) replicate
a logic module to create actual parallel data paths; 2) pipeline
the architecture to process the multiple data concurrently in
a streaming fashion. To achieve a high performance, our
FPGA design utilizes a combination of these two techniques.
However, different combinations of these two techniques result
in very different performances. In our development process,
this required us to explore multiple designs to find the optimal
combination.

RTL design requires a significant amount of effort. HLS
effectively reduces this effort. Therefore, we evaluated the
different designs by using Vivado HLS. The possible replicated
parallel data paths and pipelines we explored are depicted
in Fig. 6. Shown in Fig. 7, the evaluation indicates that the
strategy with the highest throughput is the combination of

Listing 1. Pseudo Code for Dynamic Programming GPU Kernel
/ / gr idDim . x=number o f a l i g n m e n t s
/ / blockDim . x=N , blockDim . y=4

g l o b a l void p a r 4 c o l k e r n e l ( /∗ i n p u t / o u t p u t
a r g u m e n t s ∗ / )

{
i n t a l i g n o f f s e t =M∗N∗b l o c k I d x . x ;
/ / sh are d mem d e l e c r a t i o n
/ / move i n p u t X , Y a r r a y s from g l o b a l memory t o s har ed

memory
f o r ( i n t c o l i d =0; c o l i d<M; c o l i d ++)
{

i f ( t h r e a d I d x . y ==0)
{

/ / u se f e e d b a c k s c o r e t o compute t h e l e f t m o s t
c a n d i d a t e s and f i n d t h e max f o r c o l i d +3

}
e l s e i f ( t h r e a d I d x . y ==1)
{

/ / u se f e e d b a c k s c o r e t o compute t h e 2nd l e f t
c a n d i d a t e s and f i n d t h e max f o r c o l i d +2

}
e l s e i f ( t h r e a d I d x . y ==2)
{

/ / u se f e e d b a c k s c o r e t o compute t h e 2nd r i g h t
c a n d i d a t e s and f i n d t h e max f o r c o l i d +1

}
e l s e i f ( t h r e a d I d x . y ==3)
{

/ / u se f e e d b a c k s c o r e t o compute t h e r i g h t m o s t
c a n d i d a t e s and f i n d t h e max f o r c o l i d

/ / o u t p u t t h e s c o r e f o r c o l i d
/ / f e e d b a c k s c o r e [ t h r e a d I d x . x ]= s c o r e f o r c o l i d

}
s y n c t h r e a d s ( ) ;

}
}

replicating candidate modules, replicating the row module,
pipelining the architecture to stream multiple columns and
replicating the overall module. Besides the throughput, this
strategy requires the least FPGA input/ouput bandwidth since
it only inputs and outputs the data for two pairs of DNA
fragments concurrently. Thus, we selected this strategy. How-
ever, the FPGA designs using HLS are resource inefficient
compared to the ones using RTL design. We implemented the
selected strategy in RTL to achieve a better resource efficiency.

Our RTL FPGA design consists of two modules: 1) bound-
ary score module and 2) dynamic programming and maximum
score module. To achieve a high throughput, we fully pipelined
the FPGA architecture to output a new likelihood score every
clock cycle. The two modules are able to run concurrently in
a streaming fashion.

The architecture of the boundary score module is described
in Fig. 8. In this figure, we demonstrate the boundary score
module by only showing an example computing the scores
at the 4th top row. The other rows and columns are identical
to this example. We replicated this architecture 16 times to
process the top 4 rows, bottom 4 rows, left 4 columns and
right 4 columns of boundary scores in parallel. This boundary
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score module is fully pipelined and consists of control logic
(the black blocks in the figure), arithmetic units (the grey
blocks), muxer and a shifting register for X . The control logic
and arithmetic units correspond to Algorithm 1. The shifting
register is for accessing XLxi,j and Xk as shown in lines 17
and 28.

The design of the dynamic programming module is de-
scribed in Fig. 9. This architecture consists of 5 major pipeline
stages as shown in Fig. 9. Stage 0 computes 16 (4 × 4)
Likelihoodlocal functions in parallel. These Likelihoodlocal
modules are fully pipelined. Stages 1 - 4 compute the maxi-
mums of the leftmost, second left, second right and rightmost
columns of candidates, respectively.

We replicated the described architecture 5 times to process
5 rows of scores in parallel. After the last column of the
current 5 rows, the next 5 rows will enter this architecture to
continuously fill the pipeline. The output of all the rows are
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cand. = candidate score module
align. = overall alignment module

2
1

2.5

8.6

31.9 32.3

Fig. 7. FPGA design space exploration using HLS. 6 different designs that
fit Xilinx VC707 FPGA (Design A - F). Throughput for each design is
normalized to the slowest design.

passed to a pipeline maximum module to find scorebest, ibest
and jbest. We chose to process 5 rows in parallel to match the
throughput of the boundary score module. The two modules
are thus able to run in a streaming fashion without idling.

As depicted in Fig. 9, the results of Stage 0 are delayed
by the registers to feed Stages 2 - 4 at the correct cycles.
Shown in the figure, the computation for score[i][j + 3] is
at Stage 1; score[i][j + 2] is at Stage 2; score[i][j + 1] is at
Stage 3; score[i][j] is at Stage 4. These stages are all using
score[i−1 : i+3][j−1]. score[i−1 : i−4][j−1] are the scores
created and stored in the BRAMs during the computation of
the previous 5 rows. score[i : i + 3][j − 1] are created from
the previous cycle as a feedback loop. Therefore, in order to
keep the pipeline outputting new data every cycle with the
constraint of this feedback loop, we designed a combinational
logic to compute the 4 parallel additions and the “Max 5 to
1” operation within one clock cycle.

We used fixed point numbers and arithmetic in the FPGA
design. Due to the data range, we used 26 bits for the scores
and 18 bits for the input arrays, both with 10 decimal bits.
In the score functions, we implemented the divisions using
lookup tables.

In order to fully utilize the Virtex 7 FPGA resource, we
replicated the overall alignment architecture in the RTL design
5 times to align 5 pairs of DNA molecules concurrently. In the
HLS design, we were only able to replicate this architecture
2 times. We enhanced the resource efficiency by more than
200% using the RTL design.

V. RESULTS AND COMPARISON

We tested the multi-core CPU design on a 3.1GHz Intel
Xeon E5 CPU with 8 cores. The CPU design was compiled
with O3 GCC optimizations. The GPU design was tested on a
Nvidia Tesla K20 Kepler card. The FPGA design was imple-
mented and tested on a Xilinx VC707 FPGA development
board. The input data used in our experiments is a set of
synthetic human genome sequences.



llhlocal

×16 
(4×4)

…

Y
[i]

Y
[i-2]

Y
[i-3]

Y
[i-4]

Y_next
[i]

Y_next
[i-2]

Y_next
[i-3]

Y_next
[i-4]

Y
[i-1]

Y_next
[i-1]

fro
m

 
Y B

R
A

M

-

-

-

-

+
Max 
5 to 

1+

+

+

X 
[j+2]

X 
[j+3]

X 
[j+1]

X 
[j]

X 
[j-1]

-
-

-2000
is bnd?

bnd score

previous scores 
from BRAM or 

feedback

score[i-1][j-1]
score[i-2][j-1]
score[i-3][j-1]
score[i-4][j-1]

L4,4

L3,4

L2,4

L4,4

+
Max 
5 to 

1+

+

+

previous scores 
from BRAM or 

feedback

score[i-1][j-1]
score[i-2][j-1]
score[i-3][j-1]
score[i-4][j-1]

+
Max 
5 to 

1+

+

+

previous scores 
from BRAM or 

feedback

score[i-1][j-1]
score[i-2][j-1]
score[i-3][j-1]
score[i-4][j-1]

+
Max 
5 to 

1+

+

+

previous scores 
from BRAM or 

feedback

score[i-1][j-1]
score[i-2][j-1]
score[i-3][j-1]
score[i-4][j-1]

score[i][j-1]

store  in BRAM
for next 5 rows

connect to 
feedback

b
est sco

re

pipelined 
Max 

Reg×4

Reg×4

Reg×4

Reg×4

Reg×4 Reg×4

- -

… … Replicate ×5

from X BRAM

Stage1:
max of 

leftmost
score[i][j+3] 

Stage2:
max of 
2nd left

score[i][j+2] 

Stage3:
max of 

2nd right
score[i][j+1] 

Stage4:
max of 

rightmost
score[i][j] 

L4,3

L3,3

L2,3

L1,3

L4,2

L3,2

L2,2

L1,2

L4,1

L3,1

L2,1

L1,1

sc
o

re
[i

+1
][

j-
1

] 
~ 

sc
o

re
[i

+4
][

j-
1

] 
fr

o
m

 1
 –

4
 

re
p

lic
at

io
n

s

Stage0:
Likelihood 

scores
score[i][j+4] 

llhlocal

Fig. 9. FPGA dynamic programming module with three levels of concurrency. First, the 16 (4 × 4) Likelihoodlocal functions are computed concurrently
with 16 parallel llhlocal modules. Second, this architecture is fully pipelined. score[i][j +3], score[i][j +2], score[i][j +1] and score[i][j] are processed
concurrently in the different stages of the pipeline. Third, the architecture is replicated to process 5 rows in parallel.

X[j]>Y[4]?
Y[4]

X[j]
X Shifting Buffer

(10 Regs)

Y[1], Y[2], Y[3] Y[4]-Y[3]<X[j]?
Y[4]-Y[2]<X[j]?
Y[4]-Y[1]<X[j]?

Lxi,j= Lxi,j+1
X[j]-X[Lxi,j]

<Y[4]?

Lyi,j

llhend

Lxi,j

llhmix

Max(Lxi,j,
Lyi,j)

Min(X[j],Y[4])

j=j+1

k<Max(Lxi,j,Lyi,j)?k=k+1

1
2
3

X[k]

Maxmix

Y[k]

X[j], Y[4]

llhend>Maxmix?

Boundary
Score

j

k

X array (BRAM)

llhmix>Maxmix?

Fig. 8. FPGA boundary score module. The control logic corresponds to
Algorithm 1. A shifting register storing 10 elements of X is used for accessing
XLxi,j

and Xk efficiently. llhend and llhmix represent the likelihood score
modules for Likelihoodend and Likelihoodmix.

A. Experimental Results

Fig. 10 presents the performance of our implementations.
The baseline is a highly optimized C++ program without
any parallelism. The average time for aligning two optical
labeled molecules is 42.486µs in the baseline implementation.
The run-times for the boundary score, dynamic programming
and maximum score operations are 9.351µs, 30.594µs and
2.541µs respectively.

The OpenMP parallelized C++ program consumes 5.04µs

aligning a pair of molecules on an 8 core CPU with hyper-
thread technology on each core. The performance of this
multi-core implementation achieves a 8.4× speedup which is
proportional to the number of cores. The extra 0.4× speedup
is contributed by hyper-thread.

Our GPU implementation was written using the Nvidia
CUDA 5.5 SDK. We manually tuned our CUDA program
to achieve a 100% computing resource occupancy on the
Nvidia K20 GPU. The GPU runs at a base frequency of
706 MHz and has 2496 CUDA cores. The performance of
the GPU design is at 3.116µs per alignment with a 13.6×
speedup against the baseline. The run-time for the boundary
score, dynamic programming and maximum score kernels
are 0.940µs, 1.484µs and 0.494µs respectively. The data
transferring time between the host memory and GPU memory
is 0.198µs.

The FPGA design was built using Xilinx ISE 14.7 in Ver-
ilog. The FPGA design was implemented on a Xilinx Virtex 7
VC707 board receiving input and sending output using RIFFA
[12] (configured as a x8 Gen 2 PCIe connection to the PC).
Our FPGA experimental result shows a throughput at 2.7
million pairs of molecules per second or equivalently 0.367µs
per alignment. Thus, the FPGA implementation achieves a
115× speedup against the baseline. Our FPGA implementation
runs at a frequency of 125 MHz. Table II lists the resource
utilization of the entire design including the PCIe communica-
tion logic. Based on the resource utilization result, we estimate
that more replications are able to fit on a VC709 FPGA board
to align 8 pairs in parallel and result in a 184× speedup over
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TABLE II
FPGA DESIGN RESOURCE UTILIZATION ON VC707

Slice Reg. Slice LUT. BRAM DSP48E
150412 251979 159 2280
24% 82% 15% 81%

the baseline. Since we used fixed-point number representation
in the FPGA design, compared to the baseline floating-point
design, we observed a 0.019% error which is negligible in real
applications.

B. Hardware Comparison

Although the multi-core CPU has the highest operating
frequency among the three hardware, it achieves the lowest
speedup. This is due to the fact that the multi-core CPU has
very limited parallel computing resources: 8 cores with hyper-
thread. These cores are not closely coupled in the architecture.
Frequently synchronizing these cores for fine-grained parallel
computations becomes significantly expensive. Therefore, we
were only able to utilize these cores to align multiple molecule
pairs in a coarse-grained parallel fashion.

The GPU, as opposed to the multi-core CPU, has a SIMD
architecture that supports fine-grained parallelism. We there-
fore observed a higher speedup on the GPU. However, the
control dominated boundary score computations introduce a
significant amount of diverse instructions which harm the
parallelism in the SIMD architecture. The GPU accelerates
the dynamic programming algorithm by 20× while it only
accelerates the boundary score algorithm by 10×.

On the FPGA architecture, the customized logic avoids the
diverse instruction issue in the boundary score algorithm. In
the dynamic programming module, the pipeline on the FPGA
is spatial. The data is transferred from one logic to the next
logic using on-chip registers. In opposition, in the GPU design,
we implemented a similar optimization using warps (different
threadIdx.y) as shown in Listing 1 and Fig. 5. Each GPU
warp represents a logic module on the FPGA. Unlike the
spatial pipeline, the GPU warps are scheduled temporally. The
data is not transferred spatially between warps. In contrast,

the warps read or write the data on the shared memory.
Although these warps are designed to be processed efficiently
on the GPU, the FPGA spatial pipeline still outperforms
the GPU warps without the overhead from scheduling and
memory access. Moreover, the boundary score module stores
its output in the low latency BRAM on the FPGA. The
dynamic programming module can then access these boundary
scores within one clock cycle. As opposed to the FPGA, the
GPU dynamic programming kernel reads the boundary scores
from the high latency global memory. For these reasons, the
FPGA implementation achieves the highest performance.

VI. CONCLUSION

In this paper, we have addressed the necessity to accelerate
the optical label based DNA assembly. We have presented
three different accelerated approaches: a multi-core CPU im-
plementation, a GPU implementation and a FPGA implemen-
tation. The speedups over the sequential CPU baseline are
8.4×, 13.6× and 115× for the multi-core CPU, GPU and
FPGA respectively. Using spatial pipelines, the FPGA design
has been customized to suit the algorithm more efficiently than
the other two hardware. We estimate the design is scalable to
process more alignments in parallel on a larger FPGA device.
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