Improving FPGA Accelerated Tracking with
Multiple Online Trained Classifiers

Matthew Jacobsen, Siddarth Sampangi, Yoav Freund, Ryan Kastner
Computer Science & Engineering
University of California, San Diego
{mdjacobs, ssampang, yfreund, kastner} @cs.ucsd.edu

Abstract—Robust real time tracking is a requirement for many
emerging applications. Many of these applications must track
objects even as their appearance changes. Training classifiers
online has become an effective approach for dealing with vari-
ability in object appearance. Classifiers can learn and adapt to
changes online at the cost of additional runtime computation. In
this paper, we propose a FPGA accelerated design of an online
boosting algorithm that uses multiple classifiers to track and
recover objects in real time. Our algorithm uses a novel method
for training and comparing pose-specific classifiers along with
adaptive tracking classifiers. Our FPGA accelerated design is able
to track at 60 frames per second while concurrently evaluating
11 classifiers. This represents a 30 x speed up over a CPU based
software implementation. It also demonstrates tracking accuracy
at state of the art levels on a standard set of videos.

I. INTRODUCTION

Robust visual object tracking has improved considerably
in recent years and is becoming a widely used enabling
technology. It empowers a host of applications in fields such
as: human computer interaction [1], autonomous vehicles [2],
and video surveillance [3]. Yet it is still an especially difficult
task for computers as objects change in appearance over
time. Rotation, scaling, and using lighting insensitive color
space transformations can compensate for some changes in
appearance. But rotations out of plane, occlusions, and object
deformation still present a problem for most algorithms.

Algorithms that learn an appearance model online have
proven effective for robust tracking [4], [S]. Instead of training
offline with large volumes of examples, the approach is to train
online using a modest number of examples gathered at runtime.
This approach has the benefit of training with examples that
match the current appearance. But it requires additional online
computation which can affect runtime performance.

Boosting for feature selection has been used with great
success for detection [6] and tracking [4]. Boosting is the
process of combining many weak classifiers into a single
strong classifier that performs better in aggregate. Training
examples are used in an iterative process to identify the most
discriminative weak classifiers. In the tracking context, weak
classifiers are image features. Online boosting for tracking is
an adaptation of boosting that fits the online training approach.
Appearance model features are boosted to generate a classifier
that can detect an object as it currently appears. As the
object’s appearance changes, new examples are gathered, and
the classifier is updated accordingly.

Our contributions in this paper deal with online boosting
for tracking. Tracking has three main components: an appear-

ance model which identifies the object, a dynamics model
which governs how the object moves, and a search strategy
which defines where to look for the object. We address the
challenge of tracking visibly changing objects through im-
provements in the appearance model. This work is based on our
previous work in FPGA accelerated online boosting [7]. We
improve upon the single online boosted tracker approach by
using multiple classifiers learned at runtime. These classifiers
are trained to recognize specific poses of a target which
helps maintain location accuracy. To use multiple trackers
effectively, we present a novel method for comparing classifier
scores. Lastly, we accelerate our algorithm using a FPGA.
The additional computation power from the FPGA allows the
algorithm to evaluate and train up to 11 different classifiers
each frame at 60 frames per second (FPS). Compared to the
original algorithm, our work shows not only improvements in
runtime performance, but in tracking accuracy as well. The
contributions of this paper are:

e An algorithm for learning a pool of pose-specific
classifiers at runtime.

e A method for comparing multiple classifier scores.

e A FPGA-CPU design and implementation of our al-
gorithm for robust tracking.

The rest of the paper is organized as follows. We discuss
related work next. The algorithm is described in Section III.
The FPGA design is presented in Section IV. This is followed
by experimental results in Section V and conclusions.

II. RELATED WORK

Research in object tracking frequently takes one of two
directions. Research in tracking algorithms and features often
leads to improvements in accuracy. While research in hardware
acceleration often leads to improvements in runtime perfor-
mance. In our work, we provide an algorithm and FPGA
accelerated design that leads to improvements in both.

From an algorithmic perspective, our design uses an online
boosting approach for the appearance model similar to that
employed by Viola [8]. It builds on the work of Babenko [5]
by using classifiers trained at runtime. Several other algorithms
use this adaptive approach [4], [9], [10] including the well
known Predator algorithm by Kalal [11]. These algorithms
attempt to learn a representation of the target object using a
single classifier over time. This can be a successful approach
for certain classes of objects that have a limited number
of visual representations. For deformable objects or objects
that can vary substantially in appearance, many classifiers

Algorithm 1 Classifier Tracking Algorithm

Algorithm 2 Main Tracking Algorithm

Input: New image frame at time ¢
1: Select a set of samples, cropped from frame,
X° = {als > |i(2) — ;1)
: Calculate Haar feature values, f (), for x € X°
: Use classifier, H(z) = > . T (), to classify samples X*
: Set new location lt = l(argmaxzexs H(x
: Select positive and negative samples sets from frame,
X1 = {afr > [1(x) — 14|}
Xo = {zlg < |li(z) = li_1 [l < ar}
6: Train classifier on positive and negative sets,
H = Train(Xl, Xo)

[V R NIV]

do not have the expressiveness to learn all representations.
Our approach is unlike other adaptive appearance algorithms
because we employ multiple classifiers to handle changes in
appearance. Our tracking classifiers adapt to a short term
appearance history. Our pose-specific classifiers detect previ-
ous representations with high discriminative capability. Both
classifiers are used to track objects as they move and change
in appearance. This approach requires incorporating multiple
classifier predictions into a single algorithmic prediction.

From a hardware perspective, our work with online boost-
ing is similar to that contributed by Lo [12]. Lo proposes a
method for accelerating boosted training for Viola-Jones style
detectors. They achieve a 14 x speed up over a CPU. But their
work is aimed at accelerating traditional offline boosting. Other
FPGA tracking accelerated work in the field focuses mostly
on accelerating classifier evaluation [13] or search methods
[14]. Most are standalone designs that do not improve upon
the accuracy of the algorithms they accelerate. Moreover, to
our knowledge, no other work accelerates online training using
dedicated hardware.

III. ALGORITHM

Our algorithm uses multiple concurrent classifiers each
frame and merges their outputs to select a new location.These
classifiers follow an online boosting algorithm proposed by
Babenko [5].

A. Classifier Algorithm

Babenko’s algorithm is an online boosting algorithm for
tracking which uses Multiple Instance Learning [15]. It was
selected because of its adaptive appearance model. It uses a
first order dynamics model for motion and uniform search
strategy. The algorithm consists of two steps: find the new
target location, then update the trained classifier. For each
frame, the first step evaluates windows in a region surrounding
the last known target location (radius s). Evaluation yields a
new location. Then the region surrounding the new location is
used to to select positive and negative training examples (radii
q and q/). These examples are used to incrementally train the
classifier for the next frame. This tracking flow is illustrated
in Algorithm 1.

The algorithm uses a boosted collection of Haar-like fea-
tures for the appearance model. A Haar-like feature is a
collection of two to six weighted rectangular regions defined
within a window. The rectangles define regions of the window
over which to sum pixel values. The rectangles need not be

Input: New image frame at time ¢
1: Evaluate all classifiers at location
{x', x2 x* XP"Ol} = Evaluateng 72,73, Pool)
2: Calculate majority, 7 = Majority(X-, X2 X3)
3: Calculate pose-specific classifier pool maximum,
TPool = AIGMAX ¢ x Poot (Kurtosis(z) x Score(x))
4: Use maximum as location, [* = l(argmaxI*TYI; l Score(x))
5: Identify pool classifiers with detections, OO
D = {p € Pool|ValidDetection(p)}
6: Update least used priority queue, Q = UpdateQueue(Q, D)
7. Start training a new pose-specific classifier if possible,
8: if Stable(X"', X2, X?) and Pyey == none then
9: Prew = min(Q)
10: Pool =

Pool U Py e
11: else if not Detected Enough(Prew) then
12: Pool = Pool \ Ppew
13: Prew = none
14: end if

15: Train classifiers, Train(T*, T2, T3, D)

adjacent. We refer to these features simply as Haar features in
the rest of this paper.

Boosting is an approach which combines several weak clas-
sifiers, h, into a strong classifier, H by iteratively maximizing
the log likelihood of the strong classifier log L(H_1 + h).
At each iteration, k, the existing strong classifier is combined
with the next weak classifier, h, that maximizes this quantity
over the training data.

At initialization, a pool of M Haar features are gener-
ated with random rectangle coordinates and weights. During
training, K of these features are selected and are used as
weak classifiers, h(x), to form the strong classifier, H(x) =
> hi(z). Each weak classifier consists of a Haar feature and
four additional parameters: w1, 01, o, 0o. These parameters
quantify the distribution of Haar scores, f(x), for positive
and negative examples respectively. They are updated during
training using examples collected from the current frame. At
runtime, each weak classifier calculates the score of a sample
window, z, using the log odds ratio:

h(z) = 5—(f(z) = ho)* — log(—=)
210'0 i fo (1)
o (@))+ o).

This formula results in higher scores the closer a sample’s
feature value is to the positive mean and the further it is from
the negative mean.

Each classifier employed by our algorithm uses a modified
version of this tracking algorithm. To improve tracking effi-
cacy, we change the classifier’s scoring function to only use
the positive example distribution:

5 (flz) = m)*. @

Positive training examples gathered across frames will likely
have a similar distribution because they are all sampled from
the target’s location. However, negative examples are drawn
from multiple different locations in a frame and across frames.
A single normal distribution will model this distribution poorly

—————,

Score

B %0 5o 760 %0 B 30
Frame number

Fig. 1: Classifier scores during target appearance changes. Changes produce
sharp drops in score and spikes in variance. At frame 180 the tracked hand
changes as the hand closes. After a period of adaptation, tracking becomes
stable again until frame 340 when the hand opens back up.

and distort scores. In practice, we confirmed that using our
scoring function produced more reliable, more stable scores.
This does not mean negative examples are ignored. Negative
examples are still used during classifier training.

Each classifier is also modified to calculate normalized
cross-correlation scores for each window, in addition to Haar
feature based scores. The normalized cross-correlation is com-
puted between a pixel template captured at runtime and each
frame window in the search region. Both Haar and normalized
cross-correlation are used as independent methods of locating
the target object within the search region.

Lastly, each classifier calculates the mean and variance
of scores across all windows in the search region. It also
returns the 128 highest scoring locations detected in each
frame, instead of just the maximum location.

B. Main Algorithm

Our algorithm is both motivated and enabled by FPGA
acceleration. FPGA acceleration provides runtime resources
beyond a typical CPU based implementation. These additional
resources can be used to track multiple independent targets
through simple replication. They can also be used to improve
tracking a single target. However, combining the results of
multiple classifiers is not straightforward. Our algorithm uses
multiple classifiers per target in two different ways. It uses
three adaptive classifiers for a single target, and trains pose-
specific classifiers to be evaluated concurrently each frame.
This flow is described in Algorithm 2.

Our algorithm uses three adaptive classifiers with a ma-
jority aggregation function. These classifiers are evaluated
and trained every frame. The majority location is the new
target location. Any adaptive tracking classifier that drifts over
a threshold distance away from this location is re-centered
on the majority location. Using multiple classifiers improves
robustness because each classifier is able to track a different
part of the target, at a different scale, with different features.
We found using the majority provided better results over
using the maximum because spurious, high scoring, incorrect
maximal locations from a single classifier do not influence the
majority location.

1.05

Score

Fig. 2: Plot of a classifier’s score over the X and Y dimensions. This example
shows a sharp peak and the next highest peak at least d pixels away. The
variance normalized difference between these two peaks is the kurtosis. Large
differences between peaks indicates high confidence in the global maximum.

Before using multiple classifiers, we attempted to mitigate
target loss by using more features with a single tracker. This
approach showed improvement, but did not reduce drift or
target loss by any significant amount. The number of features
that can fit in a fixed sized sliding window are limited. Adding
additional features per classifier has a diminishing margin of
return but reduces runtime performance linearly.

Our algorithm also learns pose-specific classifiers at run-
time and evaluates them concurrently with the adaptive track-
ing classifiers. Pose-specific classifiers are trained to detect
a specific representation of the target. The intuition is that a
single tracking classifier cannot effectively learn every rep-
resentation of an object (imagine a vehicle from different
angles or a human hand performing gestures). Individual
classifiers can however learn a specific object pose with high
discriminative ability. If such poses are revisited in future
frames, trained pose-specific classifiers can be used to recover
from tracking drift or even complete target loss.

Unlike the adaptive tracking classifiers, pose-specific clas-
sifiers are trained only when the target appears in the same
pose. We take an active learning approach to detect these situa-
tions. For each frame, if the pose-specific classifier’s maximum
scored location and a normalized cross-correlation maximum
location agree, the detection is valid and the classifier is
trained. Otherwise, no training takes place. Valid detections are
used as potential new target locations. The normalized cross-
correlation is performed using a template acquired on the first
frame of training.

Creating a pose-specific classifier risks training on some-
thing other than the target. This can happen when the current
location has drifted or the target is lost. The algorithm cannot
detect drift or loss without supervision or feedback. Instead it
waits until the tracking classifiers are temporarily stable. Stable
simply means the target is currently being tracked (moving or
not) with high confidence. Our algorithm identifies these times
using the current score, average score and variance. Times of
instability are punctuated by large drops in score, followed
by a period of adaptation characterized by high variance (see
Figure 1). Constant training makes it impossible to learn a
consistent mean, so a decaying average mean is maintained,
along with its variance. When the current score is above the
mean and the variance has decreased below a threshold, the
tracking classifiers are considered temporarily stable.

EVALUATE

FIFO UPDATE FIFO| TRAIN

IMAGE, SCORES & CLASSIFIER CLASSIFIER
TEMPLATE, NORMALIZED PARAMETERS FEATURE IDS
HAAR CROSS CORRELATION
PARAMETERS,
& CLASSIFIER , ,
PARAMETERS
4{ MAIN STATE MACHINE ‘
FPGA 4+
PCI EXPRESS

LINK
v

PC
SEND THREAD RECV THREAD

Fig. 3: FPGA-CPU high level architecture. The FPGA design is composed of
a three stage pipeline: Evaluate, Update, and Train. The pipeline is controlled
by a state machine that also interfaces with software running on the host PC.

Only one pose-specific classifier is trained at a time. It
is given a fixed number of frames within which it must be
trained a minimum number of times. If the pose does not exist
long enough, the classifier will not meet the minimum training
threshold and it is discarded. If it does meet the threshold, it
is kept and added to a pool of concurrently evaluated pose-
specific classifiers. Each frame, all classifiers in the pool are
evaluated at the current location.

Each additional pose-specific classifier consumes runtime
resources. For a given performance level, only a fixed number
can be evaluated at a time. But video sequences may produce
an unbounded number of new pose-specific classifiers. We
therefore, employ a least used eviction model to limit the
number of classifiers evaluated each frame. The most used
classifiers are prioritized highest in a queue. The lowest in this
queue is replaced when a new classifier starts training. Detec-
tions by a classifier increases its queue priority independent of
other classifier detections.

Lastly, evaluating multiple pose-specific classifiers requires
an aggregation function when multiple valid detections occur.
Our algorithm uses the maximum classifier score multiplied
by its kurtosis. The kurtosis provides a measure of the score
distribution’s “peakedness”. The algorithm calculates kurtosis
over the distribution as:

max{h(z)} — max{h(x)|d > ||l(z) — Z*H}

Oh(x)

3)

This calculates the difference between the global maximum
score and a local maximum score, normalized by the standard
deviation of all scores, 0y(;). The local maximum score is
the largest score at least d pixels away from the location
of the global maximum [*. The d pixel radius is selected
to separate independent peaks. A small difference between
maximums suggests low confidence in the global maximum
location, as the next highest peak is also a good candidate.
Figure 2 illustrates this measurement graphically with a high
confidence example.

IV. FPGA-CPU DESIGN

The FPGA-CPU design is a partitioned application that
accelerates boosted classifier evaluation and classifier training.
The tracking application runs in software on the CPU. How-
ever, all of the feature extraction, evaluation, and training take

place on the FPGA. Mostly image cropping, rendering, and
various bookkeeping tasks run on the CPU.

Each video frame is processed by the algorithm in two
passes. The first pass performs the target search by evaluating
classifiers in a sliding window fashion over a region of the
frame. This search limits evaluation to windows within a
runtime specified radius of the last known location. The search
is a dense evaluation of all possible (overlapping) windows,
at a single scale. After the search identifies the new target
location, the classifiers are retrained. This takes place during
the second pass. Training examples are sampled from the
current frame at the newly identified target location. All
windows in a small radius at the new location are used as
positive examples. Negative examples are sparsely sampled
from an annular region surrounding the new location. This
process is described in more detail in previous work [7].

The high level architecture of this design is illustrated in
Figure 3. The CPU communicates with the FPGA over a PCle
link using the RIFFA framework [16]. CPU software invokes
the TP cores on the FPGA with input data and receives the
response as output. The FPGA design consists primarily of
a three stage pipeline. The Evaluate stage evaluates trained
classifiers on the video frame. The Update stage uses the
output of the Evaluate stage to update classifier parameters.
These updated parameters provide the basis for a new classifier.
The Train stage selects which features, and thus which updated
parameters, are part of the new classifier.

A. Evaluate stage

The Evaluate stage is responsible for extracting Haar
features, calculating classifier scores and normalized cross
correlation on windows within the frame. The architecture of
this stage is illustrated in Figure 4. Input frame pixels, an
image template, and other parameters are supplied via the PCle
link. Parameters and template pixels are stored in Block RAM
(BRAM). Frame pixels are processed as they are streamed
through the data path.

Input frame pixels are first rescaled to fit within a fixed
size window in a sliding window pipeline. In our previous
work accelerating online boosting for tracking, we used a
20x20 pixel window of registers. This size was selected based
on numerous other publications using similar sized sliding
window designs. In practice however, we found that many of
the targets we tracked required considerable down sampling
to fit in these dimensions. This resulted in loss of texture and
detail in the image. Because Haar features work best with high
frequency texture and sharp edges, this introduced a source
of error for our calculations. We expect this is a common
source of error for many sliding window designs, yet it is
often unaddressed in the literature. In this work we use a
45x45 pixel window, backed by BRAM. Experiments with
the two sizes confirmed an improvement in tracking accuracy
with the larger window size. Using BRAM instead of registers
requires multiple BRAM modules to maintain parallel access
to the window data. However an equivalent sized register
backed window would exceed the look up table (LUT) capacity
of most commercially available FPGAs. This is due to the
quadratic growth of register and MUX usage with size.

CLASSIFIER PARAMETER DATA

HAAR PARAMETER DATA

INTEGRAL IMAGE SLIDING WINDOW

INTEGRAL — —S WINDOW
IMAGE BRAMS
Y
WINDOW ANNULAR (ALID?
POSITION ~| REGION FILTER \
IMAGE e WINDOW
DATA SCALER —> —> BRAM

IMAGE SLIDING WINDOW

TEMPLATE DATA

-
TEMPLATE *
BRAM

MIN QUEUE

SCORES

SCORING

CALCULATE HAAR

= —-B—-C+,
H=Wx(D-B-C+A) oo TREE V,r:ﬁ\,:‘ ‘%E HAAR MEAN & VARIANCE
= -}
] -}- HAAR VALUES
D -}-
[|
MULTIPLY ADDER TREE
— ||
-}-
T
-}- MIN QUEUE

NORMALIZED

— CORRELATION
- -}
||

CORRELATE ADDER TREE

Fig. 4: Evaluate stage architecture. Input pixels are scaled and then converted into integral image format. Two parallel sliding window pipelines calculate Haar
and NCC values. Haar values are scored according to weak classifier parameters. The score mean and variance are calculated incrementally. Both the scores and
NCC values are added to a priority queue. The priority queue captures the top 128 maximum values across the frame. These values are outputted as the result.

The image scaler uses bilinear interpolation to scale. Four
weighted pixels are used to generate a single output pixel.
This provides arbitrary precision output scaling. The scaled
pixel data is converted into integral image format and both
streams are passed to parallel sliding window buffers. During
conversion, only the least significant 19 bits of each integral
image pixel are retained. This does not affect Haar feature
calculation as higher order bits will be subtracted away during
calculation. The two sliding window buffers move in unison
to maintain the same window position across the frame. The
image sliding window provides data for normalized cross cor-
relation (NCC) calculation. The integral image sliding window
does the same for Haar feature extraction and classifier scoring.
An annular region filter determines if the current window is
within a circular radius or annual region, for both calculations.

The sliding window buffers provide a new column of 45
pixels every cycle. For both calculation data paths, each new
column of pixel data is buffered into a BRAM with a 45 pixel
wide data port. After 45 cycles, an entire window has been
buffered. Each subsequent cycle provides a new column of
pixels and results in a new window. Column data is stored in
circular manner in the window BRAM:s.

For each newly buffered window, the NCC calculation
processes the 45 saved columns, one column per cycle. It
squares the column data and cross correlates it with a column
of template pixel data. Template data has the same dimensions
as a window and is accessed from a separate BRAM. This
is done with 45 parallel modules. The results are summed in
adder trees and then added to separate running sums. It requires
45 cycles to access all columns of the data and process a single
window. The NCC values are then streamed to a priority queue.

Concurrently, Haar feature values are computed in the
feature scoring computation data path. Six parallel modules
access Haar rectangle coordinates from independent window
data and parameter BRAMs. This allows a new Haar value to
be calculated each cycle with up to six rectangles per feature.
The Haar rectangles are weighted and summed via an adder
tree and the resultant Haar feature values are simultaneously
outputted and streamed to the Mean & Variance and the
Scoring module. The design supports up to 64 Haar features

during evaluation. We used 50 features in our experiments.
Therefore, it takes 50 cycles to calculate all the Haar features
for each window.

The Mean & Variance module calculates and outputs the
E(x) and E(x?) values for each Haar feature across all
windows. The Scoring module uses the Haar feature values
and classifier parameters to score each window according to
Equation 2. These window scores are then streamed to a
priority queue. Both modules use floating point operators to
preserve precision over the wide range of values each output
takes. The algorithm is sensitive to small changes in value. A
fixed point data path with sufficient accuracy to accommodate
output values would require an unreasonably large number of
bits.

The priority queues for both data paths are minimum
priority queues, 128 values deep. They keep the NCC and
score values in a partial sorted order. The minimum value is
always maintained. Values are paired with the window position
to which they correspond. New values are added to the queue
as they are generated. After the queue fills, the lowest value is
removed to make room for the next new value. At the end of
processing all windows, the queues hold the top 128 maximum
values. The queues are then drained and outputted in increasing
value order.

B. Update stage

The Update stage uses the the Haar feature means of the
positive and negative examples, calculated during the Evaluate
stage, to update the current classifier parameters. These new
parameters define the weak classifiers that can be boosted
during training into the next classifier. After each parameter
is updated, it is used to score the Haar feature values from the
Evaluate stage. This requires iterating over the Haar features
in feature major order instead of window major order as they
were generated. Scoring performs the same calculations as
in the Evaluate stage, but uses the updated parameters. The
parameters are outputted and the window scores are stored for
the Train stage. Figure 5 illustrates this process.

HAAR VALUES

HAAR MEAN

& VARIANCE L CLASSIFIER

f PARAMETERS

SCORING

UPDATE
CLASSIFIER PARAMS

CLASSIFIER
PARAMETER
DATA

SCORES

FEATURE
WEIGHTS
BRAM

FEATURE
LIKELIHOOD

CLASSIFIER FEATURE IDS

MIN

Fig. 5: Update state (top) and Train stage (bottom) architectures. The Update
stage updates classifier parameters using the positive and negative examples.
It also scores all examples using the updated parameters. The Train stage uses
the scored examples to iteratively select the best weak classifiers.

C. Train stage

The Train stage calculates the log likelihood of each
positive and negative example window using the scores from
the Update stage. Log likelihoods for each weak classifier
are summed over examples. Then the weak classifier which
contributes the minimum negative log likelihood across all
examples is added to the classifier. This is an iterative process
that evaluates 256 weak classifiers to select 50 for inclusion in
the classifier. The log likelihood calculation is performed by
16 parallel modules that operate on positive and negative ex-
amples. This parallelization factor was selected to balance the
runtime between stages. Floating point operators are used for
the exponentiation, logarithm, and division in this calculation.
After each iteration, the selected weak classifier id is outputted
and the intermediate classifier is updated. Figure 5 illustrates
the high level architecture. Further details on the Train and the
Update stages can be found in our previous work [7].

V. EXPERIMENTAL RESULTS

The FPGA-CPU design is implemented in Verilog on a
Xilinx Virtex 7 VC707 using Vivado 2013.3. It runs at a
frequency of 250 MHz. It is connected to a 4 core Intel i7
3.6 GHz system with 16 GB RAM via a x8 PCIe Gen 2 slot.
The portion of the algorithm running on the CPU is written
in C++. The software primarily renders video and performs
bookkeeping tasks. Multiple threads are used to coordinate
communication with the FPGA. The FPGA design resource
utilization is listed in Table I

A software-only implementation of our algorithm was also
written in C++ and run on the same computer. It is multi-
threaded with the OpenMP library and uses Intel Integrated
Primitives vector instructions. This highly optimized software-
only implementation can run a single tracker at 17 FPS. Our
algorithm uses three trackers along with up to 8 additional
classifiers each frame. When running the full algorithm, the
software-only implementation runs at 2 FPS. The FPGA-CPU
implementation runs the full algorithm with all trackers and
classifiers at 60 FPS. This represents a 30x speed up over the
software-only version.

To evaluate the accuracy of the FPGA design, we tested the
implementation using a set of standard tracking videos from

TABLE I: FPGA design resource and VC707 utilization.

Slice Reg. | Slice LUT | BRAM | DSP4S8E
181541 135169 520 320
30% 45% 50% 11%

recent publications [5], [10], [17]. Tracker error is measured
in terms of distance (in pixels) between the center pixel and
a manually determined ground truth. The average pixel error
for the entire sequence is provided in parentheses. We compare
our algorithm against that proposed by Babenko (MILTrack) as
well as several other state of the art algorithms. Figures 6[a-f]
show the error plots.

The plots show that our algorithm performs very well on
the Occluded Face, David, and Coke Can video sequences. The
Occluded Face sequences track a face while it is repeatedly oc-
cluded and revealed. During occlusion, the tracking classifiers
inevitably update to track features on the occluding surface.
Each time the face is revealed, these classifiers drift off the
face. The error plot shows this behavior is consistent across all
the tracking algorithms. However, our pose-specific classifiers
detect the face location as soon as it is revealed and quickly
re-centers the tracker.

In the David video sequence, the target is again a face.
But this face rotates in and out of plane and the scene lighting
changes considerably. Additionally, eyeglasses are present at
the beginning of the sequence and are later removed. Again,
the tracking classifiers perform well but are prone to drift
and loss. Many different poses of the face are learned during
the sequence. This helps recover from loss several times, as
illustrated by the sharp drops in error.

The Coke Can video tracks a hand held can of soda as it
is spun, rotated, moved between different lighting conditions,
and behind house plants. The rigid shape of the can provides
a good tracking feature for all the algorithms. Pose-specific
classifiers quickly learn the few poses the target can take and
provide quick recovery after occlusion or temporary changes in
appearance. This recovery improves the accuracy considerably
over the MILTrack algorithm.

In the Tiger2 video sequence, the performance is about
the same as the MILTrack algorithm. This sequence tracks a
stuffed animal tiger as it’s moved in and around plant foliage.
The target is occluded quite a bit of the time by different
plant leaves and the motion is fast and erratic. As a result, no
pose-specific classifiers are given the opportunity to train. Even
when the training threshold is reduced, the plant occlusion
makes it extremely difficult to detect similar poses in the
sequence. Thus, the performance of our algorithm is on par
with MILTrack.

The Sylvester sequence exhibits target loss during tracking
and highlights a weakness in our algorithm. The Sylvester
sequence tracks a stuffed cat as it is articulated and flown
around a room. The scene is cluttered and has extremely high
lighting variation. The motion is rapid, but there is occasionally
enough stability for pose-specific classifiers to train. This
provides recovery several times in the sequence. However
the back and forth motion challenges the tracking classifiers.
The majority aggregation function for the tracking classifiers
suppresses spurious high scoring incorrect detections. But this

Occluded Face 2

David Indoor

120 Occluded Face 1 120 160
— = = 0B (44.4) = = = O0AB (22.8) - = = OAB (51.5)
“““ Frag (6.8) i ; "1 Frag (46.2) 140 " Frag (46.4)
100F |~ — SemiBoost (10.4) H 00F |~ ~ semiBoost (325)| = -~ SemiBoost (40.5)
— ’ MILTrack (19.6) 120 = MILTrack (21.9)
MILTrack (30) 1 Ours (14.8) m— Qurs (12.5)
- — urs o - -
g ® = Ours (12.5) K v g e — % 10
8 I [2
o 60 ~anoviNYy, ;4 60 . T g
S ;8 ! S
8 g i g 60
S 40 S 40 I g
N 40
20 20 A 20
;
0) e WY = ne S) o , . . v ole ™ 2 . S 4 A
0 100 200 300 400 500 600 700 800 900 0 400 500 600 700 800 0 50 100 150 200 250 300 350 400 450
Frame Frame Frame
1401 [= = = 0AB (29.9) Syester Coke Gan 140 Tiger2 "= = 5a (36.2)
L Frag (11.8) 1201 [= = 0AB (24.4) [Frag (33.3)
120(|~ — Semiboost (18.7) [Frag (59.1) = 120 - __~ SemiBoost (59.5)
MiLTrack (11.1) 100 SemiBoost (13.2) | ., Ty MILTrack (17.6)
e Ours (19.1) ' = MILTrack (20.6) [~ " - A \ = Ours (19.9)
& 10 - _ — Ours (11.3) __ 100 ! . !
e 3 % 2 P! . B I
g 5 g 8 ' : KR
E G 6o E @
c -
-% S - S 60
g] E 3
S 3 40 : 3 .
et
20 N\, 20
W\ / A N
i ER A= = L4 0 L L . , 0 i h L L I I I
0 200 400 600 800 1000 1200 0 50 100 150 200 250 300 0 50 100 150 200 250 300 350
Frame Frame Frame

Fig. 6: Location errors on video sequence from several tracking publications. Error is the difference between predicted tracking location and the ground truth,
in pixels. Average pixel error over the entire sequence is shown in parentheses. Algorithms compared include: Online Adaboost (OAB) [4], FragTrack (Frag)
[10], Semi-supervised Online Boosting (SemiBoost) [9], and MILBoost Tracker (MILTrack) [5]. Video sources are: Occluded Face 1 [10], Occluded Face 2 [5],

David Indoor [17], Sylvester [17], Coke Can [5], and Tiger2 [5].

can impose a lag when reacting to motion as the majority of
the classifiers must agree to the change. In this video sequence,
this lag results in drift and then loss. It should be noted, that
a pose-specific classifier recovers from the target loss before
the end of the sequence.

Across all but one of the video sequences, our algorithm
performs equal to or significantly better in terms of average ac-
curacy. These sequences come from several different tracking
publications. They were selected based on the availability of
results from existing algorithms, not based on the performance
of our algorithm. They are difficult sequences representative
of many appearance changing scenarios.

VI.

We have provided a FPGA-CPU accelerated design for
tracking objects through appearance changes, using multiple
online boosted classifiers. The design accelerates our algorithm
for learning a pool of pose-specific and tracking classifiers
at runtime. It also employs a novel method for comparing
multiple classifier scores using a kurtosis of the score dis-
tributions. Compared to a multi-threaded software-only CPU
based implementation, it boasts a 30 x speed up. Our algorithm
performs at state of the art levels and shows an improvement
in accuracy over existing tracking algorithms.

CONCLUSION

REFERENCES
(1]

G. R. Bradski, “Computer vision face tracking for use in a perceptual
user interface,” Intel Technology Journal, 1998.

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

S. Avidan, “Support vector tracking,” IEEE Trans. Pattern Anal. Mach.
Intell, vol. 26, no. 8, pp. 1064-1072, 2004.

D. Snow, M. J. Jones, and P. Viola, “Detecting pedestrians using patterns
of motion and appearance,” in ICCV, 2003.

H. Grabner, M. Grabner, and H. Bischof, “Real-time tracking via on-
line boosting.” in BMVC, vol. 1, no. 5, 2006, p. 6.

B. Babenko, M.-H. Yang, and S. Belongie, “Robust object tracking with
online multiple instance learning,” TPAMI, 2011.

P. A. Viola and M. J. Jones, “Robust real-time face detection,” in ICCV,
2001, p. 747.

M. Jacobsen, P. Meng, S. Sampangi, and R. Kastner, “Fpga accelerated
online boosting for multi-target tracking,” in FCCM, 2014.

P. A. Viola, J. C. Platt, and C. Zhang, “Multiple instance boosting for
object detection,” in NIPS, 2005.

H. Grabner, C. Leistner, and H. Bischof, “Semi-supervised on-line
boosting for robust tracking,” in Computer Vision—-ECCV, 2008.

A. Adam, E. Rivlin, and I. Shimshoni, “Robust fragments-based track-
ing using the integral histogram,” in CVPR, 2006.

Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-learning-detection,”
PAMI, 2012.

C. Lo and P. Chow, “A high-performance architecture for training viola-
jones object detectors,” in FPT. IEEE, 2012.

M. Arias-Estrada and E. Rodriguez-Palacios, “An fpga co-processor for
real-time visual tracking,” in FPL, 2002.

J. U. Cho, S. H. Jin, X. Dai Pham, J. W. Jeon, J. E. Byun, and H. Kang,
“A real-time object tracking system using a particle filter,” in Intelligent
Robots and Systems, 2006.

T. G. Dietterich, R. H. Lathrop, and T. Lozano-Perez, “Solving the
multiple instance problem with axis-parallel rectangles,” A, 1997.

M. Jacobsen and R. Kastner, “Riffa 2.0: A reusable integration frame-
work for fpga accelerators,” in FPL, 2013.

D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental learning
for robust visual tracking,” IJCV, 2008.

