Examining the Consequences of High-Level
Synthesis Optimizations on Power Side-Channel

Lu Zhang*, Wei Hu*, Armaiti Ardeshiricham®, Yu Tai*, Jeremy BlackstoneT, Dejun Mu* and Ryan Kastner®
* Northwestern Polytechnical University, Xi’an, Shaanxi, 710072, China
Email: {willvsnick, taiyu}@mail.nwpu.edu.cn, {weihu, mudejun} @nwpu.edu.cn
t University of California, San Diego, La Jolla, CA 92093
Email: {aardeshi, jblackst, kastner} @ucsd.edu

Abstract—High-level synthesis (HLS) allows hardware design-
ers to think algorithmically and not worry about low-level, cycle-
by-cycle details. This provides the ability to quickly explore
the architectural design space and tradeoff between resource
utilization and performance. Unfortunately, security evaluation is
not a standard part of the HLS design flow. In this work, we aim
to understand the effects of HLS optimizations on power side-
channel leakage. We use Xilinx Vivado HLS to develop different
AES cores, implement them on a Spartan 6 FPGA, and collect
power traces. We evaluate the designs with respect to resource
utilization, performance, and information leakage through power
consumption. Furthermore, we analyze the information leakage
of some common hand-written register transfer level (RTL)
crypto cores. We describe an evaluation procedure for power
side-channel leakage and use it to make recommendations about
how to design more secure architectures.

I. INTRODUCTION

High-level synthesis (HLS) allows a designer to quickly
restructure their code or instruct the tool to perform automatic
architectural optimizations like data partitioning, pipelining,
and unrolling [1]. This enables her to rapidly generate different
architectures and explore a large design space [2]. This, along
with the availability of mature commercial HLS tools, has lead
to wider adoption of HLS in the hardware design process.

Cryptographic algorithms are commonly implemented in
hardware to improve throughput and power consumption [3].
This has naturally prompted studies on how different cryp-
tographic algorithms and architectures compare with respect
to performance, power consumption, and resource usage [4].
Many cryptographic cores map naturally into HLS languages
making it an attractive approach for designing cryptographic
hardware. And while it is easy to measure the performance,
power, and resource usage, there is not a standard, built-in way
to determine the security of a particular design. But it is im-
portant to understand how these HLS optimizations effect the
design’s security alongside the traditional power, performance,
and resource usage metrics. This is especially important in
the cryptographic domain where there are significant security
concerns related to side-channel leakage [5].

Power side-channels are one of the most exploited security
vulnerabilities for cryptographic hardware. This has been
studied for decades, and it is well-known that an attacker can
extract confidential information using a (often very simple) sta-
tistical analysis of the computation’s power consumption [6].

As a consequence, there have been large number of defenses
against these power side-channel attacks including masking
and hiding [7] [8]. As these defenses get implemented, the
attacks become more sophisticated. This presents a game of
“cat and mouse” where designers attempt to mitigate the
vulnerabilities using more sophisticated defenses at the same
time that attackers perform more complex attacks. HLS allows
one to quickly generate different architectures and employ
various defenses. However, this requires an understanding of
the trade-offs when developing cryptographic systems using
HLS tools. This is the question that we aim to understand:
how do we effectively leverage HLS to create fast, small, and
secure cryptographic hardware?

This work aims to better understand the implications of
HLS optimizations on the power side-channel. To do this,
we build a standard measurement framework for testing the
vulnerability of a particular design. Then, we use HLS to
design a number of different S-Box architectures using the
Vivado HLS tool. The most common power side-channel
attacks focus on the power leakage from the S-box [9]. Thus,
the S-box provides a natural starting point for understanding
the effects of HLS optimizations, and we focus on S-box
optimizations throughout this work.

The first issue we tackle is whether different HLS opti-
mizations change the power side-channel leakage. This answer
is not surprising — yes, they do. The second issue is to
understand why the HLS optimization affects the security
of the cryptographic design. The third is comparing HLS
designs with well-known RTL-based cryptographic designs
and determining any differences between these architectures
generated using design entry at different levels of abstraction.

Our contributions are:

e Providing a framework to evaluate power side-channel
leakage as a security metric when performing HLS;

o Demonstrating the best design tradeoffs by performing
design space exploration across various S-box architec-
tures and providing insightful guidance to designers;

o Comparing the resource utilization, performance, and
side-channel leakage between well-known RTL-based
and HLS-based architectures.

Our experimental results show that HLS tools can quickly

create architectures that have different vulnerabilities with
respect to side-channel attacks. For example, using LUT

Resource Specification
ROM_1P_LUTRAM
ROM_2P_LUTRAM

ROM_1P_BRAM
ROM_2P_BRAM

uint8_t SubBytes(uint8_t index)
static const uint8_t shox[] = {
0x63, 0x7c, 0x77, ... , Oxab, 076, H
Plaintext [

Ox8c, Oxal, 0x89, ... , 0xbb, 0x16;}

150

100

50

Leakage Detection °
50

100
12

SAKURA-G

1

ROM_nP_BRAM
MUX

#pragma HLS resource variable = shox core=ROM_1P_BRM
return sbox[index]; }

1. Create HLS source code, and
add tunable resource parameters

2. Generating corresponding
HLS-based benchmarks

Fig. 1.

3. Implement each design on reference architecture
and extract resource parameters from map report

High-speed Oscilloscope 08
PXle-5186 06

ISE DESIGN SUITE de el A 04

02

o
5. Launch side-channel
security evaluation

4. Run each design and
collect power traces

The workflow to design each benchmark and perform the security evaluation. First, we create the benchmark using HLS or an existing RTL

implementation. We evaluate only architectural changes related to the S-box, and therefore, we create a test harness focused on gathering the power consumption
only in that module. The S-box architectures are synthesized to FPGA and executed with different power traces collected with an oscilloscope.

memory for the S-box generally show vulnerabilities to first-
order side-channel attacks while designs generated using block
RAM have stronger resistance to power analysis attacks.

II. POWER SIDE-CHANNEL EVALUATION
A. Evaluation Workflow

Our overall workflow is shown in Figure 1. The goal is to
create different architectures, collect consistent power traces,
and evaluate each architecture’s resilience to power side-
channel attacks. First, we create a C code reference design for
subbyte module. Second, this C codes are modified manually
to create HLS-readable codes by changing the tunable resource
optimization knob. Third, Vivado HLS tool generates RTL
from the input HLS code. After this point, the process is the
same for both the RTL benchmarks and the HLS benchmarks.
Afterwards, we extract the corresponding module from HLS
and implant it into the reference architecture in Figure 1 Part
3. Then these benchmarks are synthesized and implemented
using ISE Design Suite v14.7 in turn to obtain resource
utilization and performance information respectively. Finally,
we run these benchmarks on the SAKURA-G board and collect
traces for further security evaluation.

As we only focus on the effects of architectural changes
to the S-box, a reference architecture is provided for ease
of comparison between different implementations. Figure 1
Part 3 demonstrates the specific details of this reference
architecture. For simplicity, we have removed all external
circuit (e.g., mix-column, shift-row, etc. for AES) that might
bring significant and undesired noise in power side-channel.
For all benchmarks, we implement each design by replacing
the corresponding non-linear sub-module. As the reference
architecture use a state register to store the intermediate value
so the Hamming Distance between value updates in this
register can describe the real power consumption precisely.

We designed ten benchmarks which originate from two
different sources. The RTL-based set is from currently avail-
able open-source benchmarks for side-channel analysis [10].
While we generate the HLS benchmarks by applying resource
optimization in Xilinx Vivado HLS tool. We perform different
modifications to get a range of architecturally unique designs.
One method implements the S-box as a lookup table using
LUT memories, which uses FPGA LUTSs to store the entries
of the S-box. Another option is to use FPGA block RAM
memories (i.e., BlockRAM); these memories are configurable

as single-port or dual-port instance. Adding ports increases the
throughput while requiring more resources. Another technique
is to store the S-box entries into the FPGA fabric as constants
and use a multiplexor to decide between them (MUX).

B. Evaluation Metrics

Side-Channel leakage evaluation aims to categorize an im-
plementation based upon its vulnerability to attack. For first-
order leakage detection, non-specific t-test is considered to be
the most common assessment for early security assessment.
The basic idea of non-specific t-test is to check if two datasets
have an identical mean and variance. In such a test, two
datasets (D1 and D-) are available. Data in D, is collected
by feeding identical plaintext to the encryption module for
m times. While Data in D, is measured by sequentially
feeding various plaintexts n times. Yet, the key for D; and
D> is a constant value. A Welch’s t-test [11] is performed for
evaluation by computing the following equation.

E(dl,dg) _ Hdy — HMdy

))
(e g

ﬁ+ﬁ
m n

(D

where d; € D; and dy € D, and ji and 6 represent the sample
mean and sample variance respectively. It is noteworthy that,
from the prospective of practice, the null hypothesis of non-
specific t-test could be rejected with sufficient evidence only
when the result value |t| > 4.5. Therefore, the existence of a
leakage could be detected and verified.

Among all non-profiled side-channel methods, Correlation
Power Analysis (CPA) is considered as the most efficient
and optimal attacking method against first-order side-channel
leakage [12]. In order to quantify the security of a specific
design, we apply the Measurementsto-Disclosure (MTD) as
the metric for comparison. In such an attack, randomly gen-
erated plaintexts are chosen and fed to the encryption module
continuously. While the encryption key has to be constant for
all the measurement. During encryption, real power traces are
recorded and then correlate to consumption predicted by power
model. Such comparison can be fairly performed by means of
Pearson’s Correlation Coefficient for each key hypothesis k,
using Equation (2).

cou()

plr,hg) = M @

where 1 and h; denote the real recorded measurement and
hypothetical power consumption respectively. While the co-
variance and standard deviation are denoted as cov and &
respectively. In a successful case, the key hypothesis k.
corresponding to the correct guess will lead to a significant p,
(pc € (—1,1)) value by a large amount than a wrong guess.

III. PRACTICAL EVALUATION

In this section, we provide an evaluation of different bench-
marks using a testing framework that includes the same test
harness, SAKURA board, oscilloscope, evaluation and attack
(see Section II-A). We perform a design space exploration
of the different architectures with respect to throughput, re-
source utilization, and power side-channel resilience in Sec-
tion III-A. To determine the security of the design, we evaluate
each benchmark using first-order leakage detection from Sec-
tion III-B and first-order CPA attack from Section III-C.

A. Design Space Analysis

Table I describes the different benchmarks. Our goal is
to evaluate the spectrum of architectural choices for the S-
box. These include benchmarks taken from existing RTL
implementations (the first four labeled “RTL”) and HLS-based
benchmarks (the last six labeled “HLS”). The first column of
Table I describes the major details of the architecture, the
second column gives the throughput, column three reports
the resource usage (Slices/LUTs/BRAM), and column four
presents metrics related to its vulnerability to power side-
channel attack — “Leakage” is related to the t-test and denotes
whether the design shows a difference in the t-test results; a
secure design has NO leakage. MTD denotes the number of
traces required to recover the correct key (lower is better). We
use a maximum of 100,000 traces for this attack.

TABLE I
THROUGHPUT, RESOURCE USAGE, AND POWER SIDE-CHANNEL LEAKAGE
OF DIFFERENT S-BOX ARCHITECTURES. WE EVALUATE TWO METRICS FOR
SECURITY — USING THE T-TEST (YES MEANS LIKELY LEAKAGE) AND THE
NUMBER OF MEASUREMENTS TO DISCLOSURE (MTD) USING CPA.

Benchmarks Throughput Resource Leakage & MTD
LUT(RTL) 8bits/cycle 8/32/0 YES/133
COMP(RTL) 8bits/cycle 23/54/0 YES/293
PPRMI(RTL) 8bits/cycle 99/216/0 YES/55
PPRM3(RTL) 8bits/cycle 26/53/0 YES/163
MUX(HLS) 8bits/cycle 9/9/0 YES/340
LUTRAMIP(HLS) 8bits/cycle 12/32/0 YES/165
LUTRAM2P(HLS) 16bits/cycle 88/179/0 YES/294
BlockRAM1P(HLS) 8bits/cycle 0/0/1 YES/100,000+
BlockRAM2P(HLS) 16bits/cycle 0/0/1 YES/100,000+
BlockRAMnP(HLS) 128bits/cycle 0/0/8 NO/100,000+

The results from Table I clearly show that first-order leakage
(t-test results) widely exists in both RTL-based or HLS-based
designs. This is especially true for the benchmarks imple-
mented using slices and LUTs. While those that solely use
BRAMS (BlockRAMI1P, BlockRAM?2P, and BlockRAMnP)
cannot be successfully attacked using CPA despite the fact
that both BlockRAM1P and BlockRAM?2P show leakage vul-
nerability from the t-test. BlockRAMnP benchmark does not

have leakage according to the t-test and is not successfully
attackable using CPA, which indicates that it is the most secure
design amongst these benchmarks.

Among all the LUT-based benchmarks, PPRM1 benchmark
has the highest resource overhead and the worst MTD per-
formance. While MUX benchmark has the lowest resource
overhead and the best MTD performance. However, this ob-
servation does not mean the lower number of LUT primitives
the more secure your system is. The side-channel security of
your design is quite related to their function. For example,
although LUTRAM?2P benchmark has higher resource utiliza-
tion, it shows better MTD performance among most LUT-
based benchmarks. That is because LUTRAM?2P benchmark
is implemented as ROM memory using Vivado HLS, which
is a fundamentally different implementation compared to the
other benchmarks. That is also the reason why LUTRAMI1P
benchmark has lower resource overhead but worse MTD
performance in comparison with LUTRAM?2P benchmark.
Overall, BlockRAM-based benchmarks show better through-
put and MTD performance than LUTRAM-based benchmarks.

B. Leakage Detectability Analysis

We implemented all the benchmarks depicted above on
SAKURA-G side-channel evaluation board featuring an Xilinx
Spartan6 LX75 FPGA. The implementation in Figure 1 Part 3
is considered as the reference architecture. Moreover, all the
implementations were served using 24MHz clock frequency.
In order to sample aligned power traces, reference design
will provide a control signal for measurement triggering. The
evaluation board is connected with Host PC through the USB
interface for data communication. Then we use a PXIe-5186
high-speed oscilloscope to record the traces at a sampling rate
of 1GS/s from measurement point J3 on the board.

In order to delve deeper into the security analysis, we
perform the non-specific t-testing as described in Section II-B
as the leakage detection distinguisher. This method could
identify stable first-order leakages using 100,000 traces. Fig-
ure 2 shows the leakage detection results of all HLS-based
benchmarks. From Figure 2, we are not surprised to see
that all LUT-based benchmarks show obvious side-channel
leakage. However, among all BlockRAM-based benchmarks,
BlockRAM2P benchmark shows much significant first-order
leakage than the other two. This indicates that dual access
in BlockRAM primitive will incur significant first-order side-
channel leakage. Note that we only show the leakage detection
results of HLS-based benchmarks here because all RTL-based
benchmarks lead to successful attack. Therefore, we show the
corresponding results in the following subsection.

C. Side-Channel Attack Analysis

For side-channel attack, we launch first-order non-profiled
CPA attack on these benchmarks with known random gen-
erated plaintexts and a fixed key. The practical attack was
performed following a divide-and-conquer approach where
each key byte is attacked in isolation. Our attack models the
dynamic consumption as HD(c; 11 € ¢;), where HD denotes

50 sof | —— LUTRAMIP sof [—— LuTRAMZP s0f [—— BlockRAM1P 50| |—— BlockRAM2P 501 [—— BlockRAMNP
[+ (] [+ [(] (4]
=1 =3 Al =3 =3 = =
Z 0 3 oA To—— S 3 oaﬁ*wm 3 OEW 3
> > I vV > > > >

-50 -50 -50 -50 -50 -50

0 200 400 600 0 200 400 600 0 200 400 600 0 200 400 600 0 200 400 600 0 200 400 600
Time[ns] Time[ns] Time[ns] Time[ns] Time[ns] Time[ns]

Fig. 2. First-order side-channel leakage detection results. The y-axis denotes the t-test result for that specific time. A large t value indicates a higher chance
for leakage detection. The red lines show the |¢| > 4.5, which is the widely used value to indicate that the t-test rejects the null hypothesis.

the Hamming Distance and ¢;;; and ¢; are the output and
intermediate input of subbyte module respectively. Then we
attempt to identify the correct key guess on a byte-by-byte
basis by applying Pearson’s correlation as a distinguisher.

11 T

LuT
CoMP]
PPRM1
PPRM3
MUX b
LUTRAM1P
——— LUTRAM2P
08 BlockRAMLP | |
BlockRAM2P
BlockRAMNP |

0.9

o
3
T

Correlation
o
&

o
o

0.4

0.3

0.2

0.1

Number of Traces

Fig. 3. Single key byte result of a first-order CPA on reference architecture.

Figure 3 shows the correlations values for the benchmarks
across a single key byte. As shown in Table I, all of the
RTL-based benchmarks can be attack using less than 1000
traces. However, the HLS-based benchmarks implemented
using BlockRAMs show more resistance against first-order
side-channel attacks; the correct key is not recoverable after
100,000 traces. To some extent, lower correlation here indi-
cates that the specific benchmark has more security robust-
ness. From experimental results, BlockRAM-based designs are
secure in terms of first-order side-channel attack. Therefore,
in order to hack these BlockRAM-based benchmarks, more
complex higher-order power model or more advanced profiling
attacking technique have to be established and tested.

IV. CONCLUSION

In this paper, we investigated the effects of architectural
optimizations on power side-channel leakage. We developed
a workflow to properly gather power traces. We generated
a set of representative benchmarks that employ different S-
box architectural optimizations. We provide a comparison
between these different architectures in terms of “traditional”

design metrics of performance and resource usage alongside
the security metric related to power side-channel leakage.
This enables us to explore the design space and provide
concrete recommendations on architectures that are efficient
with respect to performance, resource usage, and security.
Future work will delve more architectural optimizations.

ACKNOWLEDGMENT

This project is partly supported by NSF of China, National
Cryptography Fund of China and Innovation Fund of Shenzhen
Research Committee under grant 61672433, MMJJ20170210,
201703063000517. This project is partly supported under NSF
grants CNS-1563767, CNS-1527631, and CNS-1718586 and
SRC contract 2017-TS-2770.

REFERENCES

[11 G. Martin and G. Smith, “High-level synthesis: Past, present, and future,”
IEEE Design & Test of Computers, vol. 26, no. 4, pp. 18-25, 2009.

P. Meng, A. Althoff, Q. Gautier, and R. Kastner, “Adaptive threshold
non-pareto elimination: Re-thinking machine learning for system level
design space exploration on fpgas,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2016, 2016, pp. 918-923.

P. Hamalainen, T. Alho, M. Hannikainen, and T. D. Hamalainen, “Design
and implementation of low-area and low-power aes encryption hardware
core,” in Digital System Design: Architectures, Methods and Tools, 2006.
DSD 2006. 9th EUROMICRO Conference on, 2006, pp. 577-583.

E. Homsirikamol and K. Gaj, “Can high-level synthesis compete against
a hand-written code in the cryptographic domain? a case study,” in
ReConFigurable Computing and FPGAs (ReConFig), 2014 International
Conference on, 2014, pp. 1-8.

S. Mangard, E. Oswald, and T. Popp, Power analysis attacks: Revealing
the secrets of smart cards. Springer, 2007, vol. 31.

S. B. Ors, F. Gurkaynak, E. Oswald, and B. Preneel, “Power-analysis
attack on an asic aes implementation,” in Information Technology:
Coding and Computing, 2004. Proceedings. ITCC 2004. International
Conference on, vol. 2, 2004, pp. 546-552.

S. Mangard, N. Pramstaller, and E. Oswald, “Successfully attacking
masked aes hardware implementations,” in International Workshop on
Cryptographic Hardware and Embedded Systems, 2005, pp. 157-171.
W. Puech, M. Chaumont, and O. Strauss, “A reversible data hiding
method for encrypted images,” in Electronic Imaging, no. 6819, 2008,
p. 68191E.

E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen, “A side-
channel analysis resistant description of the aes s-box,” in International
Workshop on Fast Software Encryption, 2005, pp. 413-423.

S. Morioka and A. Satoh, “An optimized s-box circuit architecture for
low power aes design,” in International Workshop on Cryptographic
Hardware and Embedded Systems, 2002, pp. 172—186.

G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi, “A testing methodology for
side-channel resistance validation,” in NIST non-invasive attack testing
workshop, 2011, pp. 158-172.

J. Doget, E. Prouff, M. Rivain, and F.-X. Standaert, “Univariate side
channel attacks and leakage modeling,” in Journal of Cryptographic
Engineering, vol. 1, no. 2, 2011, pp. 123-144.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

