
Register Transfer Level Information Flow Tracking
for Provably Secure Hardware Design

Armaiti Ardeshiricham, Wei Hu, Joshua Marxen and Ryan Kastner
Dept. of Computer Science and Engineering, University of California, San Diego

Abstract—Information Flow Tracking (IFT) provides a formal
methodology for modeling and reasoning about security proper-
ties related to integrity, confidentiality, and logical side channel.
Recently, IFT has been employed for secure hardware design and
verification. However, existing hardware IFT techniques either
require designers to rewrite their hardware specifications in a
new language or do not scale to large designs due to a low level of
abstraction. In this work, we propose Register Transfer Level IFT
(RTLIFT), which enables verification of security properties in an
early design phase, at a higher level of abstraction, and directly on
RTL code. The proposed method enables a precise understanding
of all logical flows through RTL design and allows various
tradeoffs in IFT precision. We show that RTLIFT achieves over
5× speedup in verification performance as compared to gate
level IFT while minimizing the required effort for the designer
to verify security properties on RTL designs.

I. INTRODUCTION

Despite decades of research on software and hardware
security, today’s computing technology remains vulnerable to
classic exploit techniques due to the fact that many funda-
mental computational models and traditional design flows do
not consider or prioritize security. In the realm of hardware,
security is rarely considered during design space exploration.
Security vulnerabilities can originate from design flaws, which
can be fully eliminated after a complete verification. Unfor-
tunately, this is impractical due to the scale of modern chips.
Furthermore, novel attack vectors like side-channel analysis
undermine classic assumptions about the accessibility of in-
ternal secret information outside of a computing system. In
addition, hardware designs often required incorporating third
party IP cores, which may contain undocumented malicious
design modifications known as backdoor.

Remedying these security vulnerabilities is best accom-
plished with a systemic solution. One such solution that
has shown promise is information flow tracking (IFT). IFT
models how labeled data moves through a system. It provides
an approach for verifying that systems adhere to security
policies, either by static verification during the design phase or
dynamical checking at runtime. Recent work has demonstrated
the effectiveness of hardware IFT in identifying and mitigating
hardware security vulnerabilities, such as timing channels
in cryptographic cores and caches, unintended interference
between IP components of different trust, and information
leakage through hardware Trojans [7]–[12].

Hardware IFT techniques have been deployed at different
levels of abstraction. At the gate level, all logical information
flows can be tracked by augmenting each logic primitive in
the synthesized design netlist with additional IFT logic. While
this simplifies IFT logic generation by breaking down complex

language structures to lower level logic constructs, this method
does not scale with design size since it relies on gate level
verification. Language level methods avoid this problem by
generating IFT logic at a higher level of abstraction. Previous
language level IFT techniques are accomplished via designing
type enforced HDL (Hardware Description Language). These
techniques require that designs be rewritten or annotated in a
new language in order to verify security properties, which can
be a challenging task for hardware designers.

The level of abstraction can also affect the precision of
the IFT logic. More specifically, the precision of IFT logic
is determined by both the precision of the label propagation
rules for logic operations and the granularity of the building
blocks over which IFT is deployed. Gate level IFT methods [7]
achieve increased precision by defining precise tracking rules
for a set of universal gates. On the other hand, gate level
methods apply IFT at a fine granularity, and thus cannot detect
higher-level dependencies (e.g., variable correlation due to
reconvergent fanout) between the signals in the design.

In this work, we propose a Register Transfer Level IFT
(RTLIFT) method, which allows a precise understanding of
all logical information flows through RTL code. By defining
precise label propagation rules for RTL expressions, we show
that our method can achieve a higher level of precision as
compared to gate level methods. Our IFT model is completely
described with standard RTL syntax and thus eliminates the
need for acquiring a new type-enforced language. Furthermore,
we discuss how RTLIFT allows for separation of implicit
and explicit flows, enabling various tradeoff of IFT precision,
which cannot be realized using existing IFT methods. Specif-
ically, this paper makes the following contributions:

• Proposing a method for precisely understanding all logi-
cal information flows through RTL design;

• Providing techniques that allow trading-off IFT precision
and security verification performance;

• Presenting experimental results to show the improvement
in IFT precision and security verification time.

The remainder of this paper is organized as follows: Sec-
tion II summarizes existing IFT methods and discusses how
our work differs from them. Section III deliberates the concept
of precise IFT and what RTLIFT aims to improve in this
work. Section IV describes the implementation details. The
experimental results are reported in Section V. We conclude
in Section VI.

II. RELATED WORK

Software-mediated IFT, e.g., LIFT [1] and RIFLE [2], use
dynamic binary translation to track flows during execution.

The overhead of these methods can be prohibitive, and thus
motivated the use of custom architectural modifications to
facilitate faster information flow tracking. Such schemes gen-
erally fall into one of two categories − integrated pervasive
processor modifications (e.g., Minos [3] and Raksha [4]) and
modular core additions or coprocessor support (e.g., Flexi-
taint [5] and Kannan et al. [6]).

Gate level information flow tracking (GLIFT) [7] performs
IFT analysis directly on the “original” hardware design. It
does this by creating a separate GLIFT analysis logic that
is derived from the original logic, but operates independently
from it. GLIFT tracks any arbitrary set of flows by labeling
different hardware variables as “tainted”, and tracking their
effect throughout the design. The GLIFT logic is generated
once, independent of the security property, and can be used
to verify any IFT property. GLIFT is primarily used at design
time for testing and verification [8].

Caisson and Sapper are hardware security design languages
that directly generate circuits that enforce the desired IFT
properties (e.g., separation and isolation). Both add a typing
system to a finite state machine (FSM) language which re-
quires that the designer assigns a security label to each register
and wire. Caisson [9] uses static types forcing it to conserva-
tively perform replication to restrict flows of information. This
can lead to significant increases in logic. Sapper [10] improves
Caisson by adding a dynamic type system. This reduces the
need for logic replication, but still requires that the designer
learn a new language. Sapper and Caisson enforce information
flow by restricting transitions between the states. Hence, the
user must redesign the hardware using a new language which
can be a nontrivial task.

VeriCoq-IFT [11] automatically converts designs from their
HDL representation to the Coq formal language, eliminating
the need to redesign the hardware. However, the user still
needs to annotate the generated Coq code in order to analyze
security properties. Furthermore, in all these three methods
the flow of information is tracked conservatively since the
label propagation rules are defined as updating label of the
output of any operation to the highest label of its inputs. As
we discuss in this work, this approach overestimates the flow
of information by ignoring the functionality of the operation
and the exact values of the operands.

SecVerilog [12] extends the Verilog language with an ex-
pressive type system. SecVerilog users are required to explic-
itly add a security label to each variable in the code. These
labels are a consequence of the security property that one
wishes to verify on the design. It uses a type system to ensure
that the specified information flow policy is upheld. Being
a thoroughly static tool, SecVerilog uses predicate analysis
in order to acquire the hardware state essential for precise
flow tracking. This complicates the labeling processing, and
inevitably the intricacy of precise predicate analysis leads to
loss of precision compared to simulation-based and dynamic
approaches [13]. Furthermore, the designer must specify many
of the flow rules when she adds labels to the variables. Ideally,
this process would be automated, e.g,. as done with GLIFT,
otherwise it impedes its use as a hardware security design tool.
Often there are many (potentially hundreds or thousands) of

IFT properties that one wishes to test or verify on a single
design. This would require the user to relabel the design
in order to prove each different property. For example, in
a cryptographic core proving that the secret key value does
not affect the timing of the output signals requires a different
labeling from proving that no inputs except the key and the
plain text can affect the value of the cipher text.

RTLIFT creates a new methodology that combines the
benefits of these previous approaches while eliminating their
drawbacks. RTLIFT works directly with existing HDL lan-
guages, and thus does not require a designer to learn a new
hardware security language. Much like GLIFT, it automatically
defines flow relation properties. Yet working at a higher
level of abstraction leads to many benefits including faster
verification time and more flexibility in defining different types
of flow relationships (e.g., implicit versus explicit).

III. BACKGROUND AND MOTIVATION

A. IFT Basics

Information flows from signal X to signal Y if and only
if a change in the value of X can influence the value of Y.
Information flow can model security properties related to both
confidentiality and integrity:

• Confidentiality: Assume that X is a secret value while
Y is publicly observable. In this case, an attacker can
extract sensitive information by observing and analyzing
the variations in signal Y. For example, Y could be the
“ready” output of a cryptographic core which in a secure
design should not depend on the value of the private
key stored in X; otherwise there is a timing side channel
which can be used to extract the secret key. In this case,
we want to insure the property that X does not flow to Y.

• Integrity: Assume that X is an untrusted value while Y
is trusted. In this scenario, we wish to insure that an
attacker cannot gain unauthorized access through Y by
modifying the value of X. For example, X may be an
openly accessible memory location and we wish to insure
that it cannot be used to influence the results of a system
control register. Thus, we want to insure again that X
cannot flow to Y.

Hardware information flow tracking generally works by
adding a security label to each signal, and using that to track
the influence of flow (or taint) of a set of signals throughout the
circuit. The initial taint is set based upon the desired security
property, and IFT techniques are used to test or verify whether
that taint can move to an unwanted part of the system as
specified by the security property.

IFT can be done with various levels of precision. One
approach marks the output of each operation as tainted when
any of its inputs is tainted. While simple, this method is overly
conservative and can inaccurately report existence of flow in
certain cases (i.e., false positives). This inaccuracy is due to
the fact that based on the functionality of the operation, a
single untainted input can dominate the output, yielding an
untainted output while other inputs are tainted. To avoid this
imprecision, the tracking rules need to take into account both
the type of the operation and the exact state of the hardware.

To clarify this idea, consider the expression out =
secret & 0x0F, where sensitive information is stored in
an 8-bit variable secret and we want to determine if the
information from secret flows to the variable out. The
most conservative and least precise approach would mark all
bits of out as tainted since secret is tainted. A more
precise strategy gives us slightly different answer: the secret
information only flows to the four least significant bits of out,
and the other bits should not be marked as tainted since their
values are zero regardless of the value of secret. To achieve
this level of precision, separate tracking rules for different
operations shall be defined as we discuss in Section IV-A.

B. IFT Precision-Complexity Trade-offs

Precise tracking rules impose more complexity, and hence it
might be desirable to deliberately add some false positives to
the IFT logic by taking a rather conservative approach. In large
designs it might be beneficial to use imprecise and efficient
approaches to track the flow through complex arithmetic op-
erations, while preserving the precision for logical operations
such as AND, OR, XOR, etc. As opposed to the gate level
where the difference between logical and arithmetic operations
is lost, considering the high level description of the design,
one can define the tracking rules for various operations with
different levels of precision and more flexibility.

The notion of taking various levels of precision based on
the functionality becomes more important when extended to
the different information flow paths in the design: the data
flow and the control flow. The data flow represents how the
information explicitly flows, while the control flow shows all
the paths that might be traversed and hence contains informa-
tion regarding the implicit flow. For example, in a conditional
statement the flow from the right hand side expression to the
left hand side variable is explicit and the logic implementing it
is within the data path. However, the value of the left hand side
variable is also implicitly affected by the conditional variable
which is represented in the control path. Implicit and explicit
flows are not distinguishable in the gate level netlist. However,
we can differentiate between them at the language level. We
exploit this idea in order to adjust the complexity of the
tracking logic based on the verification objective. Specifically,
when searching for timing flows, which are caused by implicit
flow, keeping the tracking logic associated with the data path
imprecise, − hence reducing the logic complexity − and
implementing the control flow’s tracking logic precisely, we
can realize a smaller tracking logic which does not impose
additional false positives for tracking the implicit flow.

C. IFT Precision

In this section we discuss how generating the IFT logic at a
higher level of abstraction can improve its precision level. Gate
level IFT techniques necessitate synthesizing the design to its
gate level netlist before generating the IFT logic. Resource
sharing done by the synthesis tool introduces reconvergent
paths to the netlist which are not present at the language level.
Reconvergent paths lead to false positives in the tracking logic
since the tracking rules cannot easily take into account the
exact relationship between multiple inputs of an operation. To

A= 1 B= 1
S= 1

1 0

Y=1

 AND_2
 GLIFT

 AND_2
 GLIFT

 OR_2
 GLIFT

INV_1
GLIFT

o2=0

 (a)

A=1
At=0

S=1
St=1

o1=1 ot1=1

B=1
Bt=0

o2t=1

Y=1 Yt=1

 Mux 2:1
 RTL IFT

A=1
At=0 B=1

Bt=0

Y=1 Yt=0

Y = S ? B : A;
Yt = (S ? Bt : At) | (St & ((At | Bt)| (A^B));

S=1

St=1

 (b)

Y = S ? B : A;
Yt = (S ? Bt : At) | (St & ((At | Bt)| (A^B));

 (c) (b)

Fig. 1: Different IFT logic for 2:1 mux. (a) Gate level structure
of a mux. (b) IFT logic generated using GLIFT. (c) Precise
IFT tracking logic for a 2:1 mux. RTLIFT can use either of
these (or more) as an IFT library element.

clarify the source of such imprecision, we deliberate the gate
level and high level tracking rules for a 2:1 multiplexer.

Fig. 1(a) shows the gate level structure of a multiplexer and
Fig. 1(b) represents its precise gate level tracking logic. Even
though the flow is precisely tracked through each single gate,
when combined together the multiplexer’s IFT logic contains
false positives. To examine when a false positive happens, we
analyze the case where both data inputs A and B are one,
and their security labels At and Bt are zero, indicating being
untainted. The control signal S and its security label St are
both equal to one, indicating being tainted. Analyzing the gate
level tracking logic, the output of both AND gates have high
security labels while only one of them is on. Consequently,
both inputs to the OR gate are tainted resulting in a tainted
output. Conceptually, the output of the OR gate is marked
as tainted because flipping the value of its high input will
change its result to zero. However, the missing part is that
this flip cannot happen unaccompanied by a flip on the other
input, which forces the final output to remain the same. This
imprecision, in the presence of precise tracking logic for all the
gates, occurs due to the reconvergence path at the input of the
OR gate. The false positives provoked by the reconvergnece
paths at the gate level can be avoided by generating the
tracking logic at a higher level as we can see in Fig. 1(c).

Reconvegence paths also exist at the language level, which
inevitably results in false positives. We can define precise
tracking rules for gates or language constructs; however, this
precision is based on the independency of the inputs. By
generating the tracking logic at a higher level of abstrac-
tion and hence utilizing higher level tracking rules, we can
overcome the dependency between the intermediate variables
which improves the precision level. Fundamentally, precise
information flow tracking is an undecidable problem as shown
by Denning and Denning [14]. Nonetheless, we improve IFT
precision level in two ways: First, we have precise tracking
rules specifically defined for each operation which take into
account the exact state of hardware; second, we avoid a large
class of false positives caused by the reconvergent paths in the
gate level netlist by analyzing the design from a higher level
of abstraction.

IV. IMPLEMENTATION

In this section we elaborate details of RTLIFT imple-
mentation. RTLIFT software receives a synthesizable Verilog
code along with flags specifying the precision level of the
data flow IFT logic and the control flow IFT logic, and

Flow Tracking
Libraries

(written in Verilog)

Control flow
precision flag

Verilog code AST

IFT-enhanced
Verilog code

Simulation/
verification

tool
Security
Properties

 RTLIFT SW
 (written in Python)

Explicit
IFT logic

extension

Implicit
IFT logic

extension

Library
extension

Data flow
precision flag

pass

Fail

Modify the original code

Remove IFT,
Fabricate

Fig. 2: RTLIFT overview
module and_IFT //conservative
(Z, Z_t, X, X_t, Y, Y_t);
parameter w1,w2,w3;
output [w1-1:0] Z, Z_t;
input [w2-1] X, X_t;
input [w3-1] Y, Y_t;
assign out = X & Y;
assign out_t = X_t | Y_t;
endmodule

module and_IFT //precise
(Z, Z_t, X, X_t, Y, Y_t);
parameter w1,w2,w3;
output [w1-1:0] Z, Z_t;
input [w2-1] X, X_t;
input [w3-1] Y, Y_t;
assign out = X & Y;
assign out_t = (X_t & Y_t) |

 (X & Y_t)|(Y & X_T);
endmodule

 (a) (b)

Fig. 3: Flow tracking libraries

generates functionally equivalent Verilog code instrumented
with information flow tracking logic. Since the generated code
is synthesizable, it can be analyzed by standard EDA test and
verification tools allowing us to leverage decades of research
on functional testing to assess security properties of hardware
designs. If the IFT-enhaced design passes the security proper-
ties the original code can be used for fabrication. Otherwise,
the original code should be modified and analyzed again.
Fig. 2 gives an overview of how the tool is used. RTLIFT is
realized through the following steps: Designing flow tracking
libraries; enhancing the combinational circuit with tracking
logic; enhancing the conditional statements with logic required
for tracking the implicit flow. We describe each of these steps
in the rest of this section.

A. Flow Tracking Libraries

For tracking the flow of information through an RTL code,
each operation should be instrumented so it can operate both
on the Boolean values and security labels of the operands.
Hence, for each operation OP such that Z = X OP Y is a
valid statement in Verilog, we have defined a module OP_IFT
which receives inputs X and Y along with their security labels
X_t and Y_t, and generates the output Z along with its
security label Z_t. These modules are predefined and given
to the RTLIFT software as an input file called “flow tracking
libraries”, as shown in Fig. 2. These libraries serve two
goals: first, improving IFT precision by enabling operation-
specific label propagation as opposed to the tracking rules
in Caisson [9], Sapper [10] and VeriCoq-IFT [11]; second,
automating the computation of security labels in contrast to
the approach taken in SecVerilog [12].

We have defined two different sets of libraries, each of
which calculating Z_t output with a different level of preci-
sion. In the conservative library, the label propagation rules
overestimate the existence of flow by marking the output
of each operation as tainted when any of its inputs are

input [7:0] a,b,c;
output [8:0] o;
assign o = a + b&c;

input [7:0] a,b,c;
input [7:0] a_t,b_t,c_t;
output [8:0] o;
output [8:0] o_t;
wire [7:0] temp, temp_t;
and_IFT #(8,8,8) and1

(temp, temp_t, b, b_t, c, c_t);
add_IFT #(9,8,8) add1

(o, o_t, temp, temp_t, a, a_t);

 (a)

 (b) (c)

=

o +

a

b c

&

Fig. 4: Explicit flow tracking. (a) sample Verilog code. (b)
Data Flow Graph of the code. (c) IFT-enhanced Verilog code.

tainted, yielding a small tracking logic modeled with an OR
expression. In the precise library, the label propagation rules
are designed to minimize the number of false positives through
each operation in exchange for a more complex tracking logic.
The user selects which library should be used by specifying
the precision flag for the data path logic. Other libraries
with various precision-complexity balances can be added if
required. Fig. 3(a) and (b) shows the IFT-enhanced modules
for the AND operation available in the conservative and
precise libraries respectively. In Section V we explain the
design of IFT-enhanced modules for arithmetic operations in
more detail.

B. Tracking Explicit Flows

Flow tracking starts by extending each bit of data, i.e., wires
and registers in a given Verilog code, with a label that carries
out information regarding the security properties of the data
(Lines 1-3 in Algorithm 1). In this work, we consider a single
bit label, where a high value indicates either secret or untrusted
value, depending on whether we want to verify confidentiality
or integrity IFT properties. To obtain a smaller IFT logic and
further speed up the verification, it is possible to make a label
for a multi-bit variable; this is the power of the library based
approach.

After extending the variables with security labels, we re-
place every HDL operation with an IFT-enhanced operation
as described earlier. To do so, we examine the node of
each assignment statement via in-order traversal. The data
flow graph is acquired using Yosys Verilog frontend [17] to
transform Verilog code to its Abstract Syntax Tree (AST)
representation. For each operation, a module from the available
libraries is instantiated (Lines 4-13 in Algorithm 1). This
process is shown for a simple code in Fig. 4. For sequential
circuits modeled as always blocks in Verilog language, the
same approach is taken by calculating the flow of the right
hand side expression outside the always block and updating
the label of the left hand side variable using the original always
block structure.

C. Tracking Implicit Flows
Merely tracking the explicit flow might inaccurately report

the absence of flow in conditional statements by ignoring
existence of implicit flows. To track these flows, for each
assignment we obtain a list of variables which affect the
execution of the statement. Having this list, we generate the
logic required for tracking the implicit flow as shown by
Algorithm 2. This logic can be generated with different levels
of precision specified by “flag im”. If we wish to employ

input : verilog code AST file, IFT libraries
input : flag im, flag ex
output: IFT instrumented verilog code

1 for each variable V [n : 0] do
2 define new variable V t[n : 0];
3 end
4 for each assignment Ai: V k ::= Exp(Xi, · · · , Xj) do
5 Traverse the DFG of Ai in order;
6 for each operation OP : Y p = Xm OP Xn ∈ Exp do
7 instantiate module

OP IFT (Xm, Xm t, Xn, Xn t, Y p, Y p t);
8 if (OP == DFG.root) then
9 V k ::= Y p ;

10 V k t ::= Y p t | Imp F low(Ai, flag im);
11 end
12 end
13 end

Algorithm 1: IFT Logic Generation

if(c)
O1 = e1;

else
O1 = e2;

if(c)
O1 = e1;
O1 = e1_t | (c_t &
((e1_t&e2_t)|(e1^e2)))

else
O1 = e2;
O1 = e2_t | (c_t &
((e1_t&e2_t)|(e1^e2)))

 (a)

 (c)

if(c)
O1 = e1;
O1_t = e1_t | c_t;

else
O1 = e2;
O2_t = e2_t | c_t;

 (b)

Fig. 5: Implicit flow tracking. (a) Verilog code. (b) Imprecise
IFT-extended Verilog code. (c) Precise IFT-extended Verilog
code. Highlighted parts show the tracking logic for implicit
flow tracking.

a conservative IFT approach, any use of tainted condition
should yield a tainted output (Lines 5-7 in Algorithm 2). While
this approach captures all possible flows of information, it
overestimates the actual flow. For a more precise flow tracking,
we need to traverse the control flow graph in order to figure
out what other outcomes are possible for the right hand side
of the assignment, assuming the conditions were flipped. Now
we can model each conditional statement with a multiplexer
and acquire the taint of the output using the high level flow
tracking rule for multiplexer (Lines 7-10 in Algorithm 2). To
better understand the idea, we analyze implicit flow tracking
through a simple code shown in Fig. 5(a). The highlighted
parts in Fig. 5(b) and (c) show the logic added to track the
implicit flow while e1_t and e2_t represent the explicit
flows from the right hand side expressions e1 and e2. As it
can be seen in Fig. 5(b), the imprecise approach marks the
output of a conditional statement as tainted if the condition is
tainted by employing an OR logic. Taking a precise approach,
information flows from the condition to the output only if the
tainted condition occurs when both inputs are tainted or they
have different Boolean values.

V. EXPERIMENTAL RESULTS

We have used RTLIFT to analyze security properties on
several benchmarks, and here we compare RTLIFT and GLIFT
in terms of required time for verifying security policies and
the precision of the generated IFT logic.

A. Security Proofs

1) Cryptographic Cores: Table I shows the required time
for proving IFT properties on cryptographic cores. As depicted
in Fig. 2, we have used RTLIFT to generate the IFT logic for
the design under test, which is then given to Quetsa Formal

input : assignment Ai: V k ::= Exp(Xi, · · · , Xj)
input : flag im, verilog code AST file
output: Verilog expression ImpFlow

1 Extract V k Conds by traversing CFG of Ai;
2 if (V k Conds==Null) then
3 ImpFlow ::= 0;
4 else
5 if (flag im==Imprecise) then
6 ImpFlow ::= ImpFlow | ci t; ∀ ci ∈ V k Conds
7 else
8 Extract OtherInps by traversing the CFG;
9 ImpFlow ::= Mux IFT (V k Conds,OtherInps);

10 end
11 end
12 return ImpFlow;

Algorithm 2: Implicit flow tracking logic generation

Verification tool. To inspect if information flows from input
X to output Y, we need to set X’s label high while all other
inputs’ labels are low, and observe Y ’s label which tells of
if information can flow from X to Y or if they are isolated
from each other. We have proved two properties on 32 bit and
128 bit RSA cores: 1) flow from the secret key to the cipher
text and 2) flow from secret key to “ready” signal. While the
former is expected as it is secured through encryption, the
latter reveals an unintended flow. Since the Boolean value
of the “ ready” signal is not affected by the key value, the
detected flow reveals a timing channel. The timeout is set for
one hour for this experiments.

Furthermore, we have used the tool to check confidentiality
properties on a number of trust-HUB AES benchmarks that
contain hardware Trojans which leaks the secret key to an
output other that the cipher text. IFT techniques can be used
to detect hardware Trojans that cause unintended flows of
information [15]. Specifically, in a cryptographic core infor-
mation from the secret key should only flow to the cipher
text, and its flow to any other output is undesirable. Hence,
we have used the tool to specify if there is a flow from the
secret key to any output besides the cipher text. Our method is
capable of detecting such hardware Trojans while considerably
reducing the verification time compared to GLIFT (taken from
reference [15]), as reported in Table I.

2) WISHBONE: IFT can be used to detect timing flows in
SoC benchmarks [16]. Here, we have used RTLIFT to inspect
timing flows between cores that are connected together via
the WISHBONE bus architecture. WISHBONE is a relatively
simple protocol developed by the Opencores community [18],
and allows multiple devices to interact with each other by shar-
ing a bus. The transaction starts by a master core requesting
access from a device by asserting its “cyc” signal. If the slave
device is idle, access is granted to the master by setting its
“ack” signal. We want to indicate if a certain master’s “ack”
signal is affected by the requests coming from other masters.
To test this, we assume one of the master cores, m1, to be
untrusted by setting its “cyc t” signal high. Next, we observe
“ack t” signal from one of the trusted masters, m2. “ack t”
being high indicates a timing flow since we have not marked
data values as tainted and m1 requests are affecting the time
that m2 can start and finish its computation. This timing flow
is a threat to system integrity since it can violate the real-time

TABLE I: Verification Time.
Benchamrk property RTLIFT GLIFT
32bit RSA Key flows to cipher text 02:38 10:08
32bit RSA Key flows to ready 02:14 10:17
128bit RSA Key flows to cipher text 9:43 timeout
128bit RSA Key flows to ready 9:36 timeout
AES T100 Key leaks to output 01:05 06:48
AES T1000 Key leaks to output 01:06 6:49
AES T1100 Key leaks to output 01:07 6:46
AES T1200 Key leaks to output 01:06 6:50

constraint of the master cores.
We generated both the conservative and precise IFT logic

for comparison. As discussed throughout the paper, the con-
servative IFT overestimates the existence of information flow
resulting in false positives. Our approach is to start the
verification process by the conservative IFT which is smaller in
terms of area. If isolation can be proved using the conservative
IFT, there is no need to verify the properties on the precise
version. However, if flow is detected using the conservative
approach, we need to repeat the experiments using the precise
IFT to avoid getting false positives.

For the original WISHBONE architecture with round robin
arbiter, both conservative and precise IFT indicate existence of
flow. Next, we have modified WISHBONE arbiter to enforce
timing isolation. In our first model, we have implemented a
TDMA arbiter. Here, the conservative IFT can prove timing
isolation, eliminating the need to test the precise IFT. In our
second model, we have divided the masters to two groups
with time multiplexed access between the groups and round
robin within each group. In this scenario, the conservative IFT
reports existence of flow between the two groups, while using
the precise IFT we can prove isolation. This final example
shows the importance of precision of IFT logic for reducing
false positives.

B. Precision Analysis

We have compared the precision and complexity of the
IFT logic generated by RTLIFT and GLIFT for data path
operations addition and multiplication, and control path logic
modeled as case statements in Verilog language. The precision
is measured by comparing the number of tainted outputs
during simulation for 220 random input samples. As shown
by table II, high level tracking rules result in less tainted
flow. False positive percentage is reported as the ratio of the
difference in the number of tainted flows to the total number
of simulations. The complexity is reported as IFT logic area,
which gives a first order estimate on testing and verification
time.

We briefly explain how IFT-enhanced addition and multi-
plication operations are designed for the flow tracking library
which is given to RTLIFT as an input file. First we have
designed a full adder which receives three inputs A, B and Cin
along with their labels A_t, B_t and Cin_t and generates
outputs Sum and Co along with their labels Sum_t and Co_t.
To find Boolean expression describing Sum_t and Co_t, we
need to consider Boolean expressions of Sum and Co and
find the circumstances under which the output can be flipped.
Based on the Boolean equation Sum = A ⊕ B ⊕ Cin, the
output Sum is tainted when any of the inputs are tainted since
each input to an XOR operation can control the output. The

TABLE II: Precision & complexity of RTLIFT vs. GLIFT.
Operation RTLIFT GLIFT

#tainted flows Area #tainted flows Area %FP
8-bit adder 8477103 271 8535900 222 5.6%
16-bit adder 16441632 603 16524855 556 7.9 %
32-bit adder 32385907 1215 32549597 1243 15.6%

8-bit multiplier 15029971 847 15310281 1759 26.7%
16-bit multiplier 31816947 2078 32200870? 7647 36.6%

4-way case 849874 70 883810 54 3.2%
8-way case 869915 226 958070 129 8.4%
16-way case 869799 199 997874 289 12.2%

Co output is high when more than two inputs are high. Hence
the value of Co can be changed if we have control over more
than one of the inputs, or we have control over only one input
but the other two inputs are not equal. Next, we have employed
the IF-enhanced full adder to design a ripple carry adder, and
then an IFT-enhance multiplier is built from the adder. As it
can be seen from table II, generating IFT logic at a higher
level of abstraction can reduce false positives rate for both
data path and control path unit.

VI. CONCLUSION

This paper presents RTLIFT for precisely measuring all
digital flows through RTL designs in order to formally prove
security properties related to integrity, confidentiality and logic
side channels. RTLIFT can be directly applied on HDL codes
and easily integrated into the hardware design flow through
automated IFT logic augmentation. Furthermore, it enables
designers to tradeoff between the complexity and precision
of the IFT logic for data path elements and control path
logic separately allowing for fast property-specific verification.
Experimental results show that generating the IFT logic at a
higher level of abstraction can increase the IFT precision and
improve the performance of security verification.

REFERENCES

[1] Qin, Feng, et al. “Lift: A low-overhead practical information flow tracking system
for detecting security attacks.” MICRO, 39th Annual International Symposium
on.IEEE, 2006.

[2] Vachharajani, Neil, et al. “RIFLE: An architectural framework for user-centric
information-flow security.” MICRO, 37th International Symposium. IEEE, 2004.

[3] Crandall JR, Chong FT. “Minos: Control data attack prevention orthogonal to
memory model.” MICRO, 37th International Symposium. IEEE, 2004.

[4] Dalton, Michael, et al. “Raksha: a flexible information flow architecture for
software security.” ACM SIGARCH Computer Architecture News. ACM, 2007.

[5] Venkataramani, Guru, et al. “Flexitaint: A programmable accelerator for dynamic
taint propagation.” High Performance Computer Architecture, HPCA, IEEE 14th
International Symposium on., 2008.

[6] Kannan H, Dalton M, Kozyrakis C. “Decoupling dynamic information flow
tracking with a dedicated coprocessor.” Dependable Systems & Networks, DSN.
IEEE/IFIP International Conference on., 2009.

[7] Tiwari, Mohit, et al. “Complete information flow tracking from the gates up.” ACM
Sigplan Notices. ACM, 2009.

[8] Tiwari, Mohit, et al. “Crafting a usable microkernel, processor, and I/O system
with strict and provable information flow security.” Computer Architecture (ISCA),
38th Annual International Symposium on. IEEE, 2011.

[9] Li, Xun, et al. “Caisson: a hardware description language for secure information
flow.” ACM SIGPLAN Notices,2011.

[10] Li, Xun, et al. “Sapper: A language for hardware-level security policy enforce-
ment.” ACM SIGARCH Computer Architecture News., 2014.

[11] Bidmeshki, Mohammad-Mahdi, and Yiorgos Makris. ”Toward automatic proof
generation for information flow policies in third-party hardware IP.” Hardware
Oriented Security and Trust (HOST), International Symposium on. IEEE, 2015.

[12] Zhang, Danfeng, et al. “A Hardware Design Language for Timing-Sensitive
Information-Flow Security.” ASPLOS. 2015.

[13] SecVerilog documentation: http://www.cs.cornell.edu/projects/secverilog/
[14] Denning, Dorothy E. et al.,“Certification of programs for secure information flow.”

Communications of the ACM,1977.
[15] Hu, Wei, et al. “Detecting Hardware Trojans with Gate-Level Information-Flow

Tracking.” Computer 49.8 (2016): 32-40.
[16] Oberg, Jason. (2014). “Testing Hardware Security Properties and Identifying

Timing Channels.” UC San Diego: Computer science.
[17] Yosys Open Synthesis Suite: http://www.clifford.at/yosys/
[18] http://opencores.org/projects

