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Abstract—High-level synthesis tools aim to make FPGA programming
easier by raising the level of programming abstraction. Yet in order to
get an efficient hardware design from HLS tools, the designer must know
how to write HLS code that results in an efficient low level hardware ar-
chitecture. Unfortunately, this requires substantial hardware knowledge,
which limits wide adoption of HLS tools outside of hardware designers.
In this work, we develop an approach based upon parameterizable
templates that can be composed using common data access patterns.
This creates a methodology for efficient hardware implementations.
Our results demonstrate that a small number of optimized templates
can be hierarchically composed to develop highly optimized hardware
implementations for large applications.

I. INTRODUCTION

Field programmable gate arrays (FPGA) are seeing widespread
adoption in applications, including wireless communication, image
processing, and data center. Despite the benefits of FPGA, pro-
gramming an FPGA largely requires an expert hardware designer.
Recently, high-level synthesis (HLS) tools aim raise the level of pro-
gramming abstraction of FPGAs in order to make FPGAs accessible
to application programmers. While current HLS tools are meant to
be used by a larger number of designers and increase productivity,
creating an optimized implementation requires substantial code trans-
formations [22]. This transformations requires intimate knowledge of
microarchitectural tradeoffs and domain expertise of application at
hand. In order to successfully use today’s HLS tools one needs to
have: 1) domain knowledge about the application, 2) hardware design
expertise, and 3) the ability to translate the domain knowledge into
an efficient hardware design.
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Fig. 1: An abstraction layer that separates domain knowledge from
hardware skills.

In this work, we develop an approach to help separate domain
knowledge from hardware expertise, in order to create more efficient
implementation of an application on an FPGA. The general process
is shown in Figure 1. There are number of basic kernels that share
the same or similar computational primitives in range of applications
[2, 6]. This indicates that these kernels can and should be built using
a highly optimized template that is efficiently synthesized by the HLS
tool. These templates are developed by hardware designers that have
intimate knowledge of both the domain, hardware design, and the
HLS tools.

The basic building block of our approach is a composable, param-
eterizable template. These templates are easily composed to create
new templates that are automatically optimized for efficient synthesis
by HLS tools. This is enabled by utilizing existing templates that
follow pre described rules and common data access patterns. These

composed templates are added to the template pool and can be
later used to compose more complex templates. In this way, domain
experts simply need to use an existing template, or form a new
template for their specific applications. Similar to platform - based
design [4], our approach is a structured methodology. Platform-based
design ”‘theoretically limits the space of exploration, yet still achieves
superior results in the fixed time constraints of the design”’.

Hardware design expertise is required at the initial stage of the
process to contribute primitive templates for composition. However,
we show that the number of primitive templates is small for many
applications across several domains. We also show that it is possible
to automatically generate efficient, high performance hardware imple-
mentations through the careful use of composable, parameterizable
templates. Our method targets towards application programmers who
have little hardware design expertise and HLS expertise.

The specific contributions of this paper are:
1) A novel approach based on composable, parameterizable tem-

plates that enables the design of applications on an FPGA by
separating the domain knowledge from hardware design skill.

2) A theoretical framework based on trace theory [17] for the
composibility and parameterization of templates to combine
basic templates into more complex ones.

3) The development of basic templates across application do-
mains, and case studies of how to compose these templates
into more complex applications

This paper is organized as follows. Section 2 provides a motiva-
tional example. Section 3 and Section 4 formalizes the notation of
a template and composition of templates. Section 5 presents results.
Section 6 and Section 7 presents related work and conclusion.

II. MOTIVATING EXAMPLE: SORTING

The goal of this section is to motivate the research by stepping
through an example that demonstrates how small number of basic
templates can be composed to create an efficient hardware sorter
implementation. We show how two basic optimized templates, prefix
sum and histogram, can be combined in a hierarchical manner to cre-
ate highly efficient implementations of different sorting algorithms.
First, we combine the prefix sum and histogram templates to create
a counting sort template. This in turn will be used to develop several
parameterized implementations of a radix sort template. We use two
data access patterns (bulk-synchronous and fork/join) to compose
these basic templates into more complex ones.

We will quickly and briefly discuss the basics of the counting and
radix algorithms. Counting sort has three primary kernels which are
ripe for basic templates. These code blocks are: histogram, prefixsum,
and another kernel which uses histogram operation. Figure 2 a) and
b) shows how these histogram and prefix sum templates are used
to build a counting sort template. Creating an efficient counting sort
template requires functional pipelining between the three templates
using a data access pattern that we call bulk-synchronous. We will
later argue, and show in a number of examples, that this sort of
functional pipelining is generalizable to a large range of applications.



It must be mentioned that it is quite important that the initial tem-
plates are optimized in a manner that enables them to be efficiently
composed. While we do not have space to describe such optimizations
for histogram and prefix sum, it is not simply creating a functionally
correct implementation. Care must be taken to insure that they can be
composed efficiently. This largely boils down to insuring that each
template can be suitably pipelined. Details on how to make these
subtle, but extremely important transformations can be found in [15].
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Fig. 2: Hierarchically composing templates from primitive templates. a)
Initial templates for histogram and prefix sum. b) A counting sort

template built using histogram and prefix sum templates. c) Radix sort
built with counting sort templates using a bulk-synchronous data access
pattern. d) A different implementation of radix sort composed using a

fork/join data access pattern on two radix sort templates.

Radix sort performs counting sort n times for n radix (digits).
Therefore, we can compose a radix sort template using counting sort
templates. Again, to develop an efficient implementation, we require
functional pipelining of the counting sort templates. In this case,
we can build multiple implementations of radix sort, as depicted
in Figure 2 c) and d). Figure 2 c) depicts a bulk-synchronous
implementation using three counting sort templates. This hierarchical
composition provides an optimized radix sort implementation that
can be added into the template library. Figure 2 d) provides another
implementation of radix sort. Here we combine two of the previously
developed radix sort templates hierarchically using a fork-join data
access pattern. This provides another option in the design space with
different performance and area. Both of these can be added into the
template library and later be used to compose more complex ones.

Based upon this example and our experience developing applica-
tions on FPGAs, we argue that domain programmers can efficiently
build hardware implementations if they are provided with templates
that are easily composable. We aid the composability by using a
number of common data access patterns, e.g., bulk-synchronous,
fork/join. By providing some optimized basic templates, and methods
for automatically composing new templates in an efficient manner
using these data access patterns, we show that it is possible to create
highly efficient hardware implementations across a wide swath of
application domains.

III. TEMPLATES AND COMPOSITIONS

In this section, we present a theory behind templates and necessary
conditions for their composition. The template composition algebra
and resulting process calculus is explained below, and is based on the
theory of traces [18]. Readers should note that the rules given below
fit into the framework of process calculi and trace theory. We will
avoid an excessive introduction to those subjects, but those familiar
with the concepts of trace theory will see that our rules form a process
calculus, we will highlight the analogous operators towards the end
of the section. For those interested in the abstract algebra of traces we
refer the reader to [17] and for a well known treatment with respect
to VLSI verification [7]. In the following, an abstract template is a
functionally specific process. A template is a member of an abstract
template super-class, but having a specific architecture. Let us start

by defining necessary properties for elements of the set of abstract
templates. We define three sets: T , P , and I . T = {t1, t2, . . . , tn}
is the set of the abstract templates. P = {p1, p2, . . . , pm} is the
set of ports. Pi and Po are subsets of input ports and output ports,
respectively. P = Pi ∪ Po and Pi ∩ Po = ∅. I = {i1, i2, . . . , in} is
a set of template interfaces applicable to ports.

Def 1. A port p = (d, i) ∈ P is a tuple where d ∈ {in, out} is a
direction and i ∈ I . We use d(p) and i(p) to represent the direction
and interface of the port p.

Templates are composed based upon their port properties. Def
2 defines port properties which are defined by forward/backward
(FC/BC) compatibility which are defined below. The Def 3 de-
fines templates and their composability properties based upon for-
ward/backward compatibility.

Def 2. (Forward/Backward Compatibility) ∀p1, p2 ∈ P ,
FC(p1, p2) = 1⇐ d(p1) = out ∧ d(p2) = in ∧ i(p1) = i(p2) and
BC(p1, p2) = 1⇐ d(p1) = in ∧ d(p2) = out ∧ i(p1) = i(p2).

Def 3. An abstract template is a tuple t = (IN,OUT, f) ∈ T
with following properties: 1) IN ⊂ Pi ∧ OUT ⊂ Po, 2) |IN | ≥
1 ∧ |OUT | ≥ 1, 3) f(IN) = OUT .

IN(t), OUT (t), and f(t) represent a set of input ports, a
set of output ports, and the functionality of t, respectively. An
abstract template is useful much like an abstract class in soft-
ware engineering, and is useful for validating composition. Actual
architectures are represented by optimized architectural instance
templates which are instantiations of an abstract template. The
abstract template t ∈ T can have many variants of optimized
architectural instance template, each of which has the same func-
tionality and ports as the abstract template t. We use a set Ati

I =
{tij |tij is the jth instance template of abstract template ti}, so tij
for j = 1, . . . , k denote k instances of an abstract template ti. In
the rest of the paper, we use instance template to refer optimized
architectural instance template and template to refer both abstract and
instance template. An instance template tij is a tuple tij = {II, a}
where II is the throughput of tij and a is the area of tij . We
use II(tij) and a(tij) to represent throughput and area of instance
template tij .

Now we define rules and functions that must hold in order
to compose two or more templates to form a new template.
BSComposability and FJComposability functions that check if
two or more templates can be composed to form a new template based
on bulk-synchronous or fork/join data access patterns, respectively.
In order to define bulk-synchronous composability of t1, t2, ..tn ∈ T ,
we check the composability of every consecutive pair of templates
using a binary composability property, BinaryComposability.

Rule 1. ∀t1, t2 ∈ T , BinaryComposability(t1, t2) = 1 if
|OUT (t1)| = |IN(t2)|, and ∀pi ∈ OUT (t1) ∃!pj s.t. pj ∈ IN(t2).

Based on BinaryComposability, we can define
BSComposability as follows:

Rule 2. BSComposability(t1, t2, . . . , tn) = 1 if ∀ti, ti+1 ∈ T
BinaryComposability(ti, ti+1) = 1 where i = 1, n− 1

In order to define fork/join composability of t1, t2, . . . , tn ∈ T
we assume t1 is the fork, and tn is the join. Then the fork join
composability function, FJComposability, is defined by checking
ForkComposability and JoinComposability rules.



Rule 3. ForkComposability(t1, t2, ..tn) = 1 where t1, . . . , tn ∈
T if 1) |IN(t1)| = 1 ∧ |OUT (t1)| = n − 1, 2)
|IN(tk)| = |OUT (tk)|, ∀k = 2, n, 3) ∀pi ∈ OUT (t1)
if ∃pk ∈ IN(tk) s.t. ForwardCompatibility(pi, pk) = 1 ∧
BackwardCompatibility(pk, pi) = 1

Rule 4. JoinComposability(t1, t2, ..tn) = 1 where t1, . . . , tn ∈
T if 1) |IN(ti)| = 1 ∧ |OUT (ti)| = 1, ∀i = 1, n − 1
|IN(tn)| = n − 1, 2) ∀pk ∈ OUT (ti) for i = 1, n − 1
if ∃pj ∈ IN(tn) s.t. ForwardCompatibility(pk, pj) = 1 ∧
BackwardCompatibility(pj , pk) = 1

Rule 5. FJComposability(t1, t2, ..tn) = 1 where
{t1, . . . , tn} ∈ T if ForkComposability(t1, t2, . . . , tn−1) = 1
∧JoinComposability(t2, t3, . . . , tn) = 1. As a corollary,
for a template t, if IN = IN1 ∪ IN2, . . . , INn,
OUT = OUT1 ∪ OUT2, . . . , OUTn and ∃f(t) such that
f(IN1) = OUT1, f(IN2) = OUT2, . . . , f(INn) = OUTn, then
t is n-way FJ composable.

Based on the definitions and rules above, we define template
composition functions. Template composition is a way of structurally
composing existing templates from T based on data access patterns
such as bulk-synchronous and fork/join. We omit the proofs here for
the sake of brevity.

Lemma 1. if BSComposability(t1, t2, ..tn) = 1 for {t1, . . . , tn}
∈ T , then BS(t1, t2, ..tn) maps to a new template tnew where tnew

has all properties in Definition 3.

Lemma 2. if FJComposability(t1, t2, . . . , tn) = 1 for
{t1, . . . , tn} ∈ T , then FJ(t1, t2, . . . , tn) maps to a new template
tnew where tnew has all properties in Definition 3.

These lemmas demonstrate that our rules give templates algebraic
closure and transitivity. To see that these rules have indeed defined
a process calculus, notice that we have a set of processes that 1)
can be executed in parallel, 2) have communication channels, 3)
may be nested recursively, 4) have abstracted interaction semantics,
and 5) are sequentially composable. In practical terms BS and FJ
functions are ways of constructing a new template tnew with new
functionality, which later can be used as an existing template. We
also define a general strategy to parameterize any code block. If
there is functionality which does not have a corresponding template
in T , we rely on users making a new template and contributing it to
our system. The users add the new template to the system by defining
the abstract properties of the template. Loop optimization works
discussed in [5, 11, 23] can be used here. This area of research needs
further investigation. We believe that our approach, as in Figure 1,
will eventually fill functionality gaps by producing more and more
templates in a disciplined manner.

IV. TEMPLATE PARAMETERIZATION

In this section, we describe how to compose templates in a
highly optimized manner and provide trade-offs on performance and
area. When composing new templates based on the rules defined in
previous section, we have two constraints: 1) composition algorithm,
2) parameterizable architecture generation.

Composition Algorithm: A domain expert is designing an ap-
plication A with n kernels, i.e., A = {k1, k2, ..kn}. Assume that
there exists at least one template that can be used to implement
each ki. The input to the algorithm is a set of templates T , user
input data, and an optional user constraints UC. UC is a tuple
UC = (fu, IIu, au) where fu is frequency, IIu is throughput, and

Algorithm 1: Procedures of BS construction algorithm

1 Procedure BulkSynchronous()
Data: UC = {fu, IIu, au}, D = data T = {t1, t2, ..tn}

2 //Call the subroutines here
3 Procedure FindInstances()

Data: T = {t1, t2, ..tn}
Result: MA=set of instance templates for each ti

4 forall the ti ∈ T do
5 in=GetAllInstancesOf(ti, D), i = 1, ..n
6 end
7 return MA

8 Procedure ComposabilityCheck()
Data: MA

Result: G=A set of graphs of composable templates
9 return G

10 Procedure ConstructBulkSynchronous()
Data: G(V,G)
Result: BS= BSComposability set of templates

11 currentV ertex = v0
12 if UC is ∅ then
13 while i < n do
14 Select next v ∈ V s.t. v(II) is minimum

BS.AddToBS(v)
15 currentV ertex = selected(v)
16 end
17 end
18 else
19 foreach (vi) do
20 templates = GetAllComposableTo(vi)

BS.AddToBS(v)
21 foreach (templates) do
22 cost = CalculateClosestPair(vi, templates)
23 end
24 currentV ertex = VertexWithMinCost()

BS.AddToBS(currentV ertex )
25 end
26 end
27 return BS
28 Procedure CodeGeneratorBS()
29 //Omitted for brevity

au is area. The area, au, is considered as a weighted combination
of FPGA elements such as BRAMs, LUT/FFs. Next, we present an
algorithm for constructing a new template using bulk-synchronous
function (BS) in Algorithm 1. Due to limited space, we only present
an algorithm for BS. The same principle and algorithm applies to
FJ function using Rule 5.

The algorithm has four sub routines. The FindInstances calls
GetAllInstance sub routine for each abstract template ti. The
GetAllInstance returns a set MA containing optimized instance
templates. As discussed in previous section, abstract template is a
black box, and each abstract template has a number of instance
templates. This is because in our framework, we want to separate
functionality from the underlying microarchitectural hardware, and
letting our framework choose the one based on user constraints.
For example, as shown in Figure 3, matrix multiplication abstract
template has a number of instances. Each instance is implemented
in different microarchitecture (streaming, 1 processing element (PE),
4 PE with streaming) having different performance and area based



on user constraint. Based on user constraint (e.g., input data size),
the algorithm selects different instance templates. This is important
because some applications have a intersection points between differ-
ent instance templates where certain instance template is better than
another around that point for different user constraints (e.g., input
size). We call it performance breaking point. This will be discussed
in more detail in experimental section.

After FindInstances routine, MA set contains all instance tem-
plates necessary to implement an application A. MA has a matrix-
like structure where column i represents the same class of templates
that can be used to implement kernel ki. To illustrate this process
better, we give an example in Figure 3 (a). The k1, k2, k3, and k4
are kernels which can be implement by abstract templates t1, t2, t3,
and t4. In the next step, we call subroutine ComposabilityCheck
which returns a set of graphs (each graph contains a set of templates
composable based on BS model). The routine checks Rule 1 for
each tij , tij+1 pair, and Rule 2 for the selected set of tij . In the
case of fork/join, we use Rule 5 to check composability. After this
step, we obtain one or more sub-graphs of MA as shown in the
Figure 3. The optimal algorithm (maximizes throughput) to find
instance templates runs checks all possible paths in each graph which
runs O(n × k × k). We use a greedy algorithm which selects a
graph that has t1i where the II(t1i) is minimum. The result of
this algorithm returns a graph G which starts from a selected t1i
as a source. The next step, ConstructBulkSynchronous, accepts
input G and outputs a path from a source of G to a sink of G. This
procedure returns path that contains a set of instance templates for
the given application A based on BS. In this process, we consider
two cases; When UC = ∅, the algorithm selects each next instance
template greedily which maximizes throughput. If UC 6= ∅, then we
model the selection as a cost function using closest point problem
[19] between UC and a set of candidate instance templates. The
function GetAllComposableTo returns all composable templates
from the current vertex vi. For example, in Figure 3, if we are
on t14 of G2, then GetAllComposableTo retuns t22 and t24 The
CalculateClosestPair function calculates cost from the current
vertex vi to all other vertices returned by GetAllComposableTo.
The next instance template tik is selected based on a value of
closest point between pair of (IIa, au) and a II(tij), a(tij) where
tij is a set of all candidate instance templates. This process is
performed in V ertexWithMinCost function. Based on UC, if a
certain template fall to meet IIu, we apply parameterized template
generation and selection, which will be discussed in Section IV. The
final step, CodeGeneratorBS, generates optimized HLS code based
on compositions and templates.
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Fig. 3: a) Composition example for bulk-synchronous model, b) An
example relationship between abstract and instance templates.

Parameterization: Instance templates allow users to have param-
eterizable architectures. This enables instance templates to provide
flexibility that leverages area and performance trade-off by providing
different instances of an abstract template. The flexibility of instance
templates provides two benefits: 1) adjusting throughput to global

throughput or to user specified constraints when composing template,
2) template selection based on user constraints or user input data size.
Both of these benefits are crucial when composing templates. The
former benefit provides easy way to achieve throughput increase/de-
crease based on user constraints. We name it parameterizable speed-
up in this paper. The latter benefit of instance template is essential
to provide optimized architecture for the user, which selects certain
architecture based on user constraint or user input data. For example,
RS1 and RS2 in Figure 3 (b) are the same instance templates for
radix sort that represent the architecture as in Figure 2 (c). Based
on different parameters and user input data size, RS1 and RS2 has
different throughputs for a given data size as shown in Figure 3
(b). We will discuss this example in detail in Section V. Currently,
this process of selecting optimized architecture for specific user
constrain is being done manually by HLS experts. With our approach,
we will automate this process by leveraging user constraints and
analyzing user input data. Since templates have pre-defined high-level
structures, throughput, II(tij), and area, a(tij), are linear functions
of input data size. They can be determined differently for regular
and irregular programs; for regular programs, II(tij) and a(tij)
are defined by exploiting the user input data and instance template
structures. For irregular programs such as sparse matrix vector
multiplication, we rely on design space exploration to determine
II(tij) and a(tij).

V. EXPERIMENTAL RESULTS

We used Vivado HLS 2014.1 as a back-end HLS tool. In our proto-
type framework, each abstract template is modeled as a Python class.
Each instance template is a Python class inherited from an abstract
template class. An abstract template class consists of fields to model
ports, interfaces, and functionality for its child classes. In this work,
we define interfaces based on Vivado HLS interface specification [1].
The abstract template implements the HLSCodeGenerator func-
tion which writes HLS code based on domain-specific functionality.
Each instance template inherits this method and calls it with template
specific parameters, e.g., optimization parameters, bit width, size,
number of functional units, etc.
1 Radix ( a r r a y , N)
2 Loop0 : f o r ( i =0 ; i<N ; ) {
3 L0 :
4 LP1 : f o r ( . . . ) {
5 L1 :
6 . . . }
7 LP2 : f o r ( . . . ) {
8 L2 :
9 . . . }

10 LP3 : f o r ( . . . ) {
11 L3 : . . .
12 }}

Listing 1: Radix sort (sw)

1 MergeSor t ( a r r a y , N)
2
3 LP0 : f o r ( i =0 ; i<N ; ){
4 L0 :
5 LP1 : f o r ( . . . ) {
6 L1 :
7 . . .
8 LP2 : f o r ( . . . ) {
9 L2

10 . . .
11 }
12 }}

Listing 2: Merge sort

TABLE I: Case study: SWO versus Template. (Period = clock period)

Optimizations II FF/LUT Period

Radix OSC1 Pipeline L1, L2, L3 14425 320/544 6.38

Radix OSC2 Pipeline L1, L2, L3, Unroll
L0 factor=2

14422 497/936 6.38

Radix OSC3 Pipeline L1, L2, L3, Unroll
L0 factor=2

14420 849/1688 6.38

Radix Template Inner loop pipeline 2476 2065/4100 7.58

Merge OSC1 Pipeline L3 8742 1503/831 4.21

Merge OSC2 Pipeline L2 14551 1531/832 5.25

Merge OSC3 Unroll L2 factor=4 2476 2065/4100 4.21

Merge Template Inner loop pipeline 262 3475/6897 2.69



We present area and performance results of different primitive
templates. We use Template and Optimized Software Code (OSC) to
indicate code generated from our method and optimized synthesizable
code for HLS, respectively. OSC is a HLS code highly optimized
using HLS #pragmas. This codes is not rewritten to target low level
architectural features. It is code written optimized for software and
using only HLS pragmas. It is how a software programmer would
write the code and use the HLS tools based on our experience in
teaching HLS over three years of a graduate student class. To illustrate
how software code is optimized in HLS using only pragmas, we
present two examples in the following; one is easy to parallelizable
(radix sort) and other is inherently recursive (merge sort) algorithms.
By presenting optimization of these examples, our goal is to give
an intuitive example which shows that re-writing software code
is an essential step (not easy for software programmers) in order
to generate an efficient hardware from HLS. Important parts of
pseudo code to optimize radix and merge sort is given in Listing 1
and Listing 2. In the first OSC, we can pipeline all inner loops
L1, L2, L3 of radix sort. This will gives better performance but
performance will not increase largely because inner loop pipeline only
improves instruction level parallelism. Second, in order to improve
performance, we unrolled L0 which tries to unroll the loop by a given
factor (factor=2). However, due to dependency between different
iterations of loop, the unroll attempt does not success; in fact, this
gives worse results than OSC1. We summarized different OSC results
and template results for radix and merge sort in Table I. OSC results
for radix and merge sort does not improve performance; in fact area
gets larger than OSC1. On the other hand, template approach improve
performance while area is linearly increasing due to achieved II.
Template uses higher area (2X to 4X) than OSCs because it achieves
higher parallelism. The particular merge sort and radix sort templates
uses 8 and 14 BRAMs, respectively which is 4-8X more than OSC1.

In the following, we start by comparing Template against OSC.
Then, we present two examples of achieving parameterizable speed-
ups using templates. Finally, we use several of those highly param-
eterizable templates to design five large applications. Due to space
constraints, we present only few results of applications designed using
templates. The applications are Canny edge detection and matrix
inversion. All results are obtained from HLS place and route.

Template vs. OSC: Figure 4 shows throughput of Template and
OSC designs for various templates designed. Level 0 is a primi-
tive template and includes the 0prefsum, 0histo, 0gaussian, 0conv,
0hufftre, 0thrh, 0Imgadjt, 0bicubic, 0dilation, 0erosion, 0bit rev,
0butter, 0SpMV 0 kernels. For templates 0dilation, 0erosion, and
0thrh kernel, Template is better than OSC by around 1.1 − 1.5X .
This is because those templates can be highly optimized using
only HLS only directives. For kernels 0gaussian, 0conv, 0bicubic,
0bit rev, 0butter and 0hufftre, we see several orders of magnitude
of improvement. This is because these templates require low-level
microarchitectural knowledge in order to generate efficient hardware.
The second level kernels are designed using the templates from the
Level 0. For example, 1CntSort is built on using 0histo and 0prefsum.
FFT is built using 0bit rev and 0butter. 1SpMV is built by composing
several of 0SpMV 0 templates using the fork join data access pattern.
Several templates in Level 1 use linear algebra primitives such as
vector-vector multiplication. Level 2 are five applications composed
using existing templates from Level 0 and Level 1. Next, we will
elaborate parameterizability of templates.

Parameterization: Parameterization plays a vital role in Algo-
rithm 1 when composing templates to meet a throughput require-
ments. Here we describe the parameterizable templates for prefix sum

Performance 
Breaking Point 

Fig. 5: Radix sort

and histogram. The result is shown in Figure 6. First, we optimized
both of them targeting low level hardware architecture by removing
data and read after write dependencies. This is same as the template
in Level 0 in Figure 4. We call this Lev0. Then using these Lev0
designs, we applied different combinations of parameterizable speed-
up factors using FJ and BS data access patterns. The prefix sum is
composed based on FP pattern while histogram is composed based
on FJ pattern. The speed-up factor (shown as Factor in the Figure 6)
is the unrolling factor for OSC and Lev0 designs. OSC − X
means speed-up factors of X . The same convention follows for Lev0
designs. For BS and FJ designs, the speed-up factor is the task
level parallelism factor. In both cases, OSC designs does not give the
desired throughput regardless of unrolling factor. In the Lev0 designs,
the throughput does increase, but it does not scale as expected. This
is because the clock frequency is also increasing with higher speed-
up factor. BS and FJ , both designs perform and scale as expected
according (4, 8, 16) to speed-up factor.

Next we present three different radix sort templates in Figure 5.
RS1, RS2 are templates composed as in Figure 2 (c) with different
parameters, and RS FJ is a template as in Figure 2 (d). Sorting
algorithms use less slices, and usaully BRAM is important area
metric. Thus, in the Figure 5 we presented throughput and BRAM
utilization. RS1 and RS2 have similar area usage, and RS FJ has 8
times larger area usage than RS1 and RS2 due to higher parallelism.
In this case if UC is maximizing throughput with minimum area,
the Algorithm 1 selects RS1 for input data size 213 − 215 and
RS2 for input data size 216 − 219 as shown in the Figure 3. We
call the intersection of RS1 and RS2 performance breaking point.
Our algorithm transparently selects an architecture based on user
constraint balancing performance breaking point. If UC is empty
or maximum throughput, the algorithm selects RS FJ .
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Fig. 6: Developing parameterizable templates for a) Histogram, b)
Prefixsum

Canny Edge Detection / Matrix Inversion: Next, we argue that
the hardware generated from our approach has competitive area
and performance results. We compare area and performance of
applications composed with templates with other published work.
We use two cases: Canny edge detection and matrix inversion. The
Canny edge detection algorithm is divided into four stages, Gaussian
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Fig. 4: The performance of OSC versus Templates. The OSC results are always on the left and the Template results on the right. In each
application we give the actual speedup above the bars. The Template approach is always better than OSC. The “level” indicates the maximum
amount of hierarchy used for the templates. Level 0 is a primitive template. Level 1 is composed of at least one primitive template. Level 2 is

composed of at least one Level 1 (or higher) template.

TABLE II: Hardware area and performance results. T=Throughput,
S=Size, F=Freq, B=BRAM, W=bits, *=QVGA or VGA size

Canny Edge Matrix Inversion

Q/VGA R [12] R [8] MI R [13] R [14]

T 464/134 400 240 2.44 0.33 0.13
S * 360x280 512x512 4x4 4x4 4x4
F 121/140 27 120 180 - 115
B 9/9 - - 0 1 9
W 8/8 - - 32 20 20

smoothing, edge strength identification, non maxima suppression,
and double thresholding. All four stages can be designed using
highly parameterizable convolution and histogram templates from
our template pool. We composed a new template for Canny edge
using BS function. Our designs of Canny edge runs for Q/VGA
sizes. Table II shows the throughput as frames per second and
hardware utilization for our designs and previous work. Our results
are comparable to these published works. Matrix inversion application
uses FJ pattern. Table II shows a comparison between our results
(synthesized on xc4vfx140) and previously published works [13, 14]
for 4 × 4 matrix inversion. In general, our performance is 7-18X
better than [13, 14] but our area is 2-8X larger (we use 85 DSP, [13]
use 12 DSP) than those works.

VI. RELATED WORK

Several HLS vendors provide libraries, e.g., OpenCV and linear
algebra from Xilinx. They provide a first step towards making FPGA
designs more accessible. While experienced HLS users find these
libraries useful, it is difficult for a domain programmers to use
them since they require low level hardware expertise. Our technique
goes further than just static libraries; these libraries are typically not
composable or parameterizable. In fact, we can use the functions
in these libraries as basic templates. The work [6, 16] present
similar approaches to this work terms of facilitating composability of
reusable components. The work [6] defines accelerator building block
as a service for hardware blocks and the work [16] presented a study
of IP core composition. Both of these works compose low level IP
cores. Therefore, our approach can provide functionality to them by
generating composable IP cores or accelerator blocks. Several other
works such as Chisel [3], FCUDA [18] and others [9, 20] present
domain-specific language based approach to design an FPGA system.

System level design automation [21] and compositional high-level
synthesis [10] present an approach to select hardware components
while doing inter/intro optimizations among components. The main
building blocks (or assumptions) of these works are existing com-
ponents. These components, in fact, can be modeled as composable

parameterizable templates. Thus our work can be used as a compo-
nents for [10, 21]. Different than these works, we assume the users of
our work will be pure software programmers without any hardware
knowledge. Thus, our work provides higher-level of abstraction by
composable parameterizable templates.

VII. CONCLUSION

In this work, we described a theoretical framework for parame-
terizable and composable HLS templates using common data access
patterns. We built a highly optimized library of basic parameterizable
templates and showed how to compose them to create a number of
large applications from various domains. These designs were highly
optimized and easily developed using our framework.
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