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Hardware Trojan detection is a very difficult challenge. However, the combination of sym- 

bolic execution and metamorphic testing is useful for detecting hardware Trojans in Verilog 

code. In this paper, symbolic execution and metamorphic testing were combined to detect 

internal conditionally triggered hardware Trojans in the register-transfer level design. First, 

control flow graphs of Verilog code were generated. Next, parallel symbolic execution and 

satisfiability modulo theories solver generated test patterns. Finally, metamorphic testing 

detected the hardware Trojans. The work used Trust-Hub benchmarks in experiments. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

As modern embedded system design becomes more complex,
malicious insiders have more opportunities to modify the
hardware with hardware Trojans. Hardware Trojans are a type
of malicious code that cause insertions, deletions and modi-
fications to the original hardware design. They can threaten
integrity, confidentiality and availability by altering the origi-
nal function of the design, leaking sensitive information ( Jin
and Makris, 2010 ) and reducing the reliability of the hardware.
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Hardware Trojans can cause very serious security problems
( Li et al., 2016 ) in many industries. Nissim et al. (2017 ) de-
scribed several USB hardware Trojans which installed back-
doors, emulated a keyboard or mouse and exfiltrated data. 

A hardware Trojan is usually composed of two parts: a
trigger and payload. Triggers can activate payloads when a
special condition is satisfied. The condition of a trigger is
usually satisfied with very low-probability, so a payload can
be activated with rare probability. When payload circuits are
activated, malicious activities will occur. The aim of hardware
Trojan detection is finding triggers and payloads. In different
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esign objects, Trojans have different characteristics. A trigger 
ay be classified as either an external trigger or an internal 

rigger. An internal-trigger uses an activation condition based 

n a particular input pattern, an internal logic state or counter 
alue ( Tehranipoor and Koushanfar, 2010 ). Time and data can 

e used as activation conditions of an internal-trigger.
ardware Trojans triggered with time are called time-bombs.
ime-bombs cause serious threats to many high security 
reas because they are only affected by the internal system 

lock. System clocks do not need to be controlled by attackers 
ho have to access to a hardware system. If a time-bomb 

s activated after a very long time, it will be very difficult to 
etect it because the testers may not have enough time to 
est all the code for time-bombs. Although formal validation 

echniques can verify all possible input values, it cannot 
rove that a time-bomb will never go off ( Waksman and 

ethumadhavan, 2011 ). Hardware Trojans triggered with data 
re called cheat codes. Cheat codes are the keys to identi- 
ying the payload of hardware Trojans. This work detects 
nternal-trigger hardware Trojans. 

Up to now, most literature focuses on post-fabrication de- 
ection which analyses IC chips, such as side channel tech- 
ology. However, designers usually implement the functions 
t register-transfer level (RTL) code. Trojans inserted in the 
esign at the register-transfer abstraction level or higher can 

e detected in RTL design. If Trojans are inserted in the gate- 
evel netlist or later design stages, they can be detected by us- 
ng equivalence checking tools for original RTL code ( Fern and 

heng, 2016 ). 
The aim of this study was to generate efficient test pat- 

erns for detecting internally triggered hardware Trojans in 

TL code. We proposed a test generation method for hardware 
rojans in RTL code. First, the synthesizable Verilog code was 
nalyzed to generate the control flow graphs (CFGs). Next, par- 
llel symbolic execution was implemented and a satisfiability 
odulo theories (SMT) solver was used to generate the test 

attern. Finally, metamorphic testing detected internal trig- 
ered hardware Trojans by using the test pattern. 

The contributions of our method include: 

1) We generated more precise and effective CFGs by repre- 
senting a Verilog statement as a node of a CFG. 

2) We implemented a parallel symbolic execution algorithm 

for the synthesizable Verilog code. The algorithm gener- 
ated test patterns which could detect hardware Trojans. 

3) Verilog expressions were converted to SMT-LIBv2 expres- 
sions. SMT-LIBv2 is supported by many popular SMT 

solvers, making it very flexible to choose an SMT solver to 
implement our method. 

4) Metamorphic testing was used to detect hardware Trojans.
There is no need to use a golden circuit to compare the 
outputs of a Design Under Test (DUT) because metamor- 
phic testing just verifies one or some metamorphic rela- 
tionships among inputs and outputs. 

The rest of the paper has the following structure: in 

ection 2 we discuss the hardware Trojan detection tech- 
ologies in post-fabrication stage, physical design stage and 

unctional design stage. In Section 3 we describe the de- 
ails of our method which include the implementation of two 
hases: parallel symbolic execution based test generation and 

etamorphic testing. In Section 4 we analyze the Trust-Hub 
enchmarks by our method. In Section 5 we discuss the ex- 
erimental results and conclude the features of our method 

s well as future work. 

. Background 

.1. Detecting hardware Trojans in IC chips 

he detection difficulty is highest at this stage because of pro- 
ibitive time and cost requirements ( Jacob et al., 2014 ). Current 
etection techniques mostly focus on post-fabrication stages 
nd use a golden chip as a reference model. Side channel anal- 
sis and logic tests are two approaches in this stage ( Bhunia 
t al., 2014 ). The side channel analysis can passively detect 
he hardware Trojan’s side channel signal. Logic tests activate 
he hardware Trojans by using appropriate test patterns. Side 
hannel analysis has been widely used to detect hardware Tro- 
ans because the inserted Trojans would affect the power con- 
umption ( Shende and Ambawade, 2016 ), current, signal delay 
nd electromagnetic emanation ( Ngo et al., 2015 ) of infected 

ircuits. Unfortunately, side channel analysis requires long 
imulation time and relies on a golden model to compare the 
easured parameters for identifying a Trojan-inserted one. In 

any situations, it is difficult to obtain a golden model. Even 

f a golden model can be used, a small Trojan in a large cir-
uit is very difficult to detect by side channel analysis because 
odern IC chips are becoming more and more complex. 

.2. Detecting hardware Trojans in gate-level netlists 

he detection difficulty at the gate-level is medium ( Jacob 
t al., 2014 ) because the netlist is used to produce IC chips.
ompared with chips, gate-level netlists provide more design 

nformation. While many ATPG (Automatic Test Pattern 

eneration) tools are used at the gate-level, traditional ATPG 

ools are not useful for detecting hardware Trojans because 
heir activation probability is very low. Random pattern test 
eneration was proposed by Xue et al. (2014 ) dividing the 
UT into regions based on heuristic partitions to reduce 

he analysis complexity. After this, a sequence of test vec- 
ors generated the ordering test vectors which introduced 

aximum switching activities in the regions. Finally, power 
orts were placed for localized transient current analysis.
he generation of the test patterns was based on the circuit’s 
tructure and the power dissipation should be monitored 

uring scan test. Some random algorithms have been used 

o generate the test patterns, such as the Genetic Algorithm.
aha et al. (2015 ) proposed a Genetic Algorithm based ATPG 

hich was improved to detect small combinational and 

equential hardware Trojans. The Genetic Algorithm detected 

any trigger conditions which were hard to be excited and 

he remaining unresolved trigger conditions were handled 

ith a SAT(Boolean satisfiability) tool. The SAT tool returned 

he input vectors when trigger conditions were satisfiable. 
Random methods are very time-consuming and cannot 

uarantee finding Trojans in limited amounts of time. Wang 
t al. (2016 ) proved this conclusion by some experiments and 
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evaluated the signal probability to judge rare events which
triggered small combinational Trojans. Test patterns were
generated by comparing the probability with a threshold. The
challenge of this method was how to find a compact set of
patterns that cover all rare events. 

Besides test pattern generation, some other methods have
been proposed to detect hardware Trojans in netlists, such as
information flow technology and pattern matching. Gate-level
information flow tracking ( Hu et al., 2014 ) realized the infor-
mation flow technology in a gate-level circuit. By adding secu-
rity labels to input signals, Gate-level information flow track-
ing generated a new gate-level circuit with security lattices. By
tracking the information flow, new gate-level circuits are able
to detect hardware Trojans. Although this approach is effec-
tive, adding labels to the original circuit increasing the com-
plexity of the original netlist by 2 ̂ n . Here, “n ” was the number
of input signals. 

2.3. Detecting hardware Trojan in RTL design 

RTL code is synthesized by the tools to output the gate-level
netlist. The gate-level circuit becomes very complex even with
simple RTL code. Compared to the netlist, RTL code is more
concise and easier to analyze. Jacob et al. (2014 ) thought that
Trojan insertion in the RTL code was relatively easier than
netlists and IC chips, and had a lower cost. The cost for Trojan
detection in RTL code was lower than netlists and IC chips . It
is very easy to insert hardware Trojans in RTL code, and it can
be predicted that more and more RTL hardware Trojans will be
designed in RTL code ( Zhang and Xu, 2013 ). Our work focuses
on Trojans in RTL code. 

Traditional tools, such as ATPG, are not useful for RTL code
because they are based on gate-level techniques ( Mirzaei et al.,
2013 ). To solve this, Banga and Hsiao (2010 ) proposed a Tro-
jan detection technique in third party RTL using ATPG tools
and equivalence checking. Mutation testing was used to de-
tect hardware Trojans in Unspecified Functionality ( Fern and
Cheng, 2016 ). Mutation testing inserts artificial errors into the
design code. If a mutation is detected, the test vector is useful.
Otherwise, a new test vector should be generated. One draw-
back of mutation analysis is it’s long run-time and the large
manual effort required to analyze undetected mutants. 

Unspecified hardware Trojans never violate the design
specification because they do not alter the logic functions
specified ( Fern et al., 2017 ). To handle this issue, Fern used
PyVerilog to directly analyze Verilog/VHDL code to detect
unspecified hardware Trojans. SMT or boolean formulas for
primary outputs were built from traversing the data-flow
graph by PySMT. The formulas for “dangerous” functionality
were transformed to satisfiability problems. If a formula
was satisfied, the signal was flagged as dangerous. A mutual
approach was used to identify (signal, condition) pairs which
were the key to detecting unspecified hardware Trojans.
PyVerilog ( Takamaeda-Yamazaki, 2015 ) is a Hardware Design
Processing Toolkit, which is written in Python for Verilog.
This open-source toolkit consists of four libraries includ-
ing a parser, data-flow analyzer, control-flow analyzer and
Verilog code generator. Unlike PyVerilog, we implemented a
control-flow analyzer by using Antlr4 and the outputs of our
control-flow graph are different from PyVerilog. A node in our
control-flow graph represents a statement instead of an
operator or operand. 

Some other methods which don’t use test vectors have
been proposed. Based on the principle of GLIFT, RTLIFT
( Ardeshiricham et al., 2017 ) precisely measured all digital
flows through RTL designs by adding Information Flow Track-
ing to the original Verilog code. The approach formally proved
security properties related to integrity, confidentiality and
logic side channels. For each operation, the number of output
signals became twice of original input signals. The increas-
ing number of input signals may increase the complexity and
scale of original design circuit. 

3. The symbolic execution based test pattern 

generation 

As illustrated in Fig. 1 , our method is composed of two phases.

Phase 1. The parse-tree of synthesizable Verilog code was
generated by Antlr4 ( Parr, 2013 ). Next, the CFGs of Verilog code
were generated by our work. Based on the CFGs, parallel sym-
bolic execution technology was implemented to get Path Con-
ditions(PCs). PCs were solved with an SMT solver and the sat-
isfiable test vectors were generated. 

Phase 2. The satisfiable test vectors were analyzed with meta-
morphic testing to detect hardware Trojans. 

In Phase 1, symbolic execution was used to discover the re-
lationship between input variables and output variables. Ob-
taining the relationship is key to generating the test vectors
which can discover Trojans. King (1976 ) proposed symbolic
execution for program testing. Symbolic execution is a very
useful program analysis technique. High-coverage test suites
can be generated by symbolic execution and deep errors can
be found too. It becomes practical because of the advances
of constraint satisfiability. The basic idea is to represent the
values of variables with the symbolic values of input vari-
ables. Symbolic execution can be implemented by the control
flow of a program. Each execution path has a path condition
which is a symbolic path constraint. During the process of
symbolic execution, symbolic variables are mapped to sym-
bolic expressions and Path Conditions(PCs). With the help of
an SMT solver, PCs are solved. If a PC is satisfiable, an SMT
solver can discover the values of input variables. A test vector
set is generated according to the execution paths of the pro-
gram. A symbolic execution path is composed of a sequence of
conditional statements which are obtained from control flow
graphs. 

SMT can solve constraint-satisfaction problems. SMT is the
core theory to solve the problems in many application areas,
such as program analysis, test generation, verification. Mod-
ern SMT solvers decide the satisfiability of conjunctions of
literals ( De Moura and Bjørner, 2011 ). SMT provides a much
richer modeling language than SAT. SMT-LIB calls an SMT
solver that implements a procedure for satisfiability modulo
theory ( Barrett et al., 2017 ). SMT-LIB provides standard rigor-
ous descriptions of background theories used in SMT systems,
and it also develops and promotes common input and output
languages for many different SMT solvers. Now SMT-LIBv2 is
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Fig. 1 – RTL test generation and Metamorphic testing hardware Trojan detection. 
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upported by many SMT solvers, such as Z3, Alt-Ergo, raSAT,
MTInterpol, SMT-RAT, Yices. 

In Phase 2, the test generation was used to discover Trojans 
n RTL code. Usually, the outputs of test vectors are observed 

nd used to compare the expectation results. In this study, we 
ocused on metamorphic relationships rather than the value 
f output variables. Metamorphic testing ( Chen et al., 1998 ) is 
sed to check the correctness in software and alleviate the or- 
cle problem. This method checks the relationships among in- 
uts and outputs to discover abnormal code in programs. The 
elationships are called metamorphic relations. Metamorphic 
elations are the intrinsic properties of a program. A meta- 

orphic relation violation refers to a checked error in a pro- 
ram ( Yi et al., 2013 ). For example, let us consider a program 

hat implements the cosine function. One of the properties 
f a cosine function is: cos( x ) = cos( − x ). If there is the rela-
ion between inputs: x 1 = x 2 , the relation of outputs should 

atisfy cos( x 1 ) = cos( − x 2 ). If the relation of outputs does not
atisfy cos( x 1 ) = cos( − x 2 ), some faults must exist in the pro-
ram. Metamorphic relations should be built according to the 
pecifications of design. 

.1. Test generation for Verilog code 

he control flow graph generated in this study was different 
rom PyVerilog. Usually a node in a CFG represents an opera- 
or or a variable. In our work, a node in a CFG represented a 
tatement in Verilog code. 

.1.1. The node of a CFG 

efinition 1. a control flow graph is a directed graph,
FG = < V, E > . Where V is the set of vertices of the CFG and
 is the set of edges of the CFG. A vertex v,v ∈ V , has the follow-

ng characteristics: C
1) v is a quadruple(S, T, PRE, NEXT). 
2) S is a statement in Verilog code. 
3) T is the type of S. We define the types of synthesizable Ver- 

ilog statements, such as ALWAYS and ALWAYS_END. An 

ENTER node is added to start the CFG, and an EXIT node 
is added to end the CFG. 

4) PRE is the set of previous nodes of S. 
5) NEXT is the set of next nodes of S. 

.1.2. The edge of a CFG 

efinition 2. An edge e = < v, u > , e ∈ E, v ∈ V, u ∈ V is the control
elation between two nodes when Verilog code execute s . An 

dge e has the following characteristics: 

1) The edge between two control nodes is a control relation. 
2) The edge between a control node and an assign node is a 

control relation. 
3) The edge between two assign nodes is an execution se- 

quence, not a control relation. 
4) There is parallel execution among the statements of “al- 

ways”, “instantiation” and “assign”. 
5) Nodes in PRE and NEXT can be found by control region of 

nodes and execution sequence. 

.1.3. Control flow graph(CFG) generation for Verilog code 
n Algorithm 1 , function CFGGeneration() read a Verilog file 
nd extracted the basic grammar information from a parse 
ree. The most important grammar information for a node in 

 CFG includes node.index,node.controlIndex,node.type. Node.index 
s the index of a statement. Node.controlIndex is the index of 
ontrol statement of the current node. The main grammar in- 
ormation of the lines 94–101 in the Appendix B was listed 

n Table 1 . The control relationship is described in Fig 2 . The
unction connectControlFlowListVariable() created the edge of 
FG. 
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Fig. 2 – The CFG of uart.v (drawn by Graphviz). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.4. Parallel symbolic execution 

The symbolic execution of Verilog code is described in
Algorithm 2 . Algorithm 2 is a recursive function. The func-
tion fileControlFlowList() is the start of the entire analy-
sis. The input of the algorithm is a synthesizable Verilog
file(VC.v). The CFGs of VC.v were generated by Algorithm
1 . Next, the filename of instantiation statements were ob-
tained and the instantiation nodes were analyzed by call-
ing fileControlFlowList(). After the code of instantiation
files(subModuleVC.v) were analyzed, the PCs(subPCs) of non-
input variables were returned. When all the subPCs were re-
turned, the parallel symbolic execution thread symbolExecu-
tionThread() started to analyze the always statements and
continuous assign statements. The threads returned the PCs
of variables at the left of statements. 

A flag variable, nonInput_variable.isDone , would be set
“true” if the PCs of a non-input variable were obtained.
Input_variable.isDone would be set “true” in the stage of
Table 1 – The main grammar information of Verilog code. 

Node Node.index 

94 always @(posedge sys_clk or negedge 
sys_rst_l) begin 

3 

95 if ( ∼sys_rst_l) begin 4 
96 rec_dataH = 0; 5 
97 end 
98 else begin 6 
99 rec_dataH = rec_dataH_temp; 7 
100 end 8 
101 end 9 
initialization. When nonInput_variable.isDone was set “true”,
the sub-threads which were halted because the nonIn-
put_variable.isDone was equal to “false” would continue to run.

An optimization during the progress of parallel symbolic
execution is possible. If PCs are not satisfiable, they may be
deleted during symbolic execution, reducing the number of
PCs and consequently the execution time and memory re-
quired. 

3.1.5. Loop dependency problem and randomizing internal
variables 
Loop dependencies are a complex situation in RTL code. For
example, the code in Listing 1 has loop dependencies because
the variable “count_in” exists at both sides of “ < = ” at the
same time. “count_in” is a non-input variable. 

During symbolic execution, we replaced the variable on
the left side of an assignment with the variable on the
right side. If a variable is on both sides of an assignment,
Node.controlIndex Node.type 

0(ENTER) ALWAYS 

3 IF 
4 ASSIGN_BLOCK 

4 ELSE 
6 ASSIGN_BLOCK 

4 IF_END 

3 ALWAYS_END 



272 c o m p u t e r s  &  s e c u r i t y  7 8  ( 2 0 1 8 )  2 6 7 – 2 8 0  

Algorithm 1 – CFG generation. 

Input: synthesizable verilog code( filename.v ) 
Output: CFG 

CFG CFGGeneration( filename.v ) 
{ 

ENTER → CFG; // add ENTER node into CFG 

Walk parse tree of filename.v and create v, v → CFG; 
EXIT → CFG; // add EXIT node into CFG 

Get v from CFG; 
while (! (all nodes are handled)) 
{ 

u ← CFG; //get u from CFG ; 
//Adjust the PRE and NEXT of v and u 
connectControlFlowListVariable(); 
v ← u ; // the value of u overwrites the value of v 

} 
Breadth-first traverses CFG to generate the DOT files of CFG; 
Draw CFG with DOT files; 
return CFG; 

} 
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Algorithm 2 – parallel symbolic execution. 

Input: synthesizable verilog code(VC.v) 
Output: the set of PC 

PC fileControlFlowList(VC.v) 
{ 

CFG ← CFGGeneration(VC.v); 
for (each INSTANTIATION node) 
{ 

subPC = fileControlFlowList(subModuleVC.v); 
noninput_variables.PC ← subPC ; 

} 
return noninput_variables.PC ← symbolExecution(CFG); 

} 
PC symbolExecution(CFG) 
{ 

initialize noninput_variables.PC ; 
input_variable.isDone = true; 
nonInput_variable.isDone = false; 
for (each ALWAYS or ASSIGN_CONTINUOUS node ) 

//Parallel execute sub-thread 
noninput_variables.PC ← symbolExecutionThread( node_index , 
CFG); return noninput_variables.PC ; 

} 
PC symbolExecutionThread( node_index , CFG) 
{ 

root ← node_index ; 
Depth-first traverses CFG, start from root ; 
while (Depth-first traverse not end) 
{ 

get a node from CFG; // assign statement will be handled 
if (node is an assign statement) 
{ 

for (each variable in the right of statement) 
{ 

while ( variable.isDone = = false) 
hang-up current symbol execution thread; 

} 
} 
PC ← replace noninput_variables at the right of statement with 

input_variables ; 
if ( PC is satisfiable) update left_variables.PC ; 

} 
left_variables.isDone = true; 
return left_variables.PC ; 

} 

Listing 1 – A loop dependency in Verilog code. 

if (count_in = = 32 ′ hffffffff) begin 
DataSend_ena < = 1 ′ b1; 
count_in < = 32 ′ b0; 

end 
else 

count_in < = count_in + 1 ′ b1; 

a
s
f
n
b
b

t means the variable is replaced by itself. The result can- 
ot be solved by symbolic execution which uses input vari- 
bles and constants to express an output variable. As an in- 
ernal counter, “count_in” is only affected by the system clock.
he system clock is a special signal which cannot be directly 
dded to the expression of “count_in” because the system 

lock variable “sys_clk” never appears in the right side of 
n assignment. In our experimental Verilog code there are 
wo assignments about “count_in”: “count_in < = 32 ′ h0” and 

count_in < = count_in + 1 ′ b1”. If “count_in” is replaced with 

0”, the symbolic expression can be solved during symbolic 
xecution. Replacing “count_in” with “count_in + 1” leads to 
n endless loop and symbolic execution cannot go on because 
count_in” isn’t an input variable or constant.

To solve the problem of loop dependencies, during sym- 
olic execution we converted “count_in” into a random vari- 
ble which was regarded as an input variable causing some 
nternal variables to become global random variables. The 
lobal random variables revealed some important internal 
onditions. For the code in Listing 1 , “count_in” was replaced 

ith “RANDOM_filename_M_count_in”. The path condition 

count_in = = 32 ′ hffffffff” equalled “RANDOM_filename_ 
_count_in = = 32 ′ hffffffff”. The solver got a satisfiable re- 

ult: “RANDOM_filename_M_count_in = #xffffffff ”. One PC 

or “count_in” was “RANDOM_filename_M_count_in = = 

xffffffff” and the other PC for “count_in” was “RANDOM_ 
lename_M_count_in! = 0xffffffff”. “count_in” is an internal 
ariable, the trigger of a hardware Trojan, and a counter which 

etermines the value of the system clock. When “count_in”
as equal to “0xffffffff”, a hardware Trojan payload was 

ctivated. 
Converting internal variables into random variables can 

verapproximate the set of values that the variable takes dur- 
ng the course of execution, which will lead to spurious states 
nd false positives . To solve this problem, we used constraint 
onditions to represent the internal variables’ special val- 
es range. For example, we represented “count_in > = 5 and 

ount_in < = 0xfffffffe” with a constraint condition and we 
V
dded the constraint condition to the path conditions after 
ymbolic execution. A new path condition has the SMT-LIBv2 
ormat: (and (constraint conditions) (a path condition)). If a 
ew path condition is not solved, a satisfiable result cannot 
e achieved. As a result, the overapproximation problem can 

e avoided. To prove the function of constraint conditions, the 
erilog code in Listing 1 was modified in Listing 2 . 
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Listing 2 – Verilog code with infeasible trigger. 

if ( ∼sys_rst_l) begin 
DataSend_ena < = 1 ′ b0; 
count_in < = 32 ′ h5; // count_in’s values from 5 to 0xfffffffe 

end 
else if (count_in = = 32 ′ hfffffffe) begin 

DataSend_ena < = 1 ′ b1; 
count_in < = 32 ′ h5; // count_in’s values from 5 to 0xfffffffe 

end 
else if (count_in < 5) // infeasible condition 

count_in < = 32 ′ hfffffffe; 
else count_in < = count_in + 1 ′ b1; 

Listing 3 – The SMT-LIBv2 statements include the infeasi- 
ble condition. They can be tested in Z3 ( https://rise4fun. 
com/ Z3/ tutorial/ guide ). The result is “unsat” (unsatisfi- 
able). 

(declare-const RANDOM_u_xmit_M_count_in (_ BitVec 32)) 
(assert (and (and (bvule RANDOM_u_xmit_M_count_in #xfffffffe) 
(bvuge RANDOM_u_xmit_M_count_in #x00000005)) (bvult 
RANDOM_u_xmit_M_count_in #x00000005))) 
(check-sat) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 3 – Convert infix expression of Verilog to prefix 

expression of SMT-LIBv2. 

Input: infix expression( middle ) of Verilog 
Output: prefix expression( prefix ) of SMT-LIBv2 
prefix middleToPrefix( middle ) 
{ 

tmp ← middle ; 
for (each element1 in tmp ) 
{ 

tmpPrefix ← element1 ; 
if ( element1 .type = = OPERATOR) 

operatorStack ← element1 ; 
} 
for (each element2 in tmpPrefix ) 
{ 

if ( element2 .type = = CONST) 
dataStack ← convertToBitVector( element2 ); 

if ( element2 .type = = VARIABLE) 
dataStack ← element2 ; 

if ( element2 .type = = OPERATOR) 
{ 

operatorStack ← convertToSMTOperator( element2 ); 
tmpPrefix ← operatorHandle(dataStack,operatorStack); 

} 
} 
return tmpPrefix ; 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Listing 2 the constraint condition of “count_in” is “(and
(bvule count_in #xfffffffe) (bvuge count_in 5))”. The path
condition of “count_in < 5” is “(bvult count_in 5)”. The total
path condition is 

“(and (and (bvule count_in #xfffffffe) 
(bvuge count_in 5)) 

(bvult count_in 5))”. 
During symbolic execution, we replaced “count_in” with

“RANDOM_filename_M_count_in ”, the condition was trans-
formed to: 
“(and (and (bvule RANDOM_filename_M_count_in #xfffffffe) 

(bvuge RANDOM_filename_M_count_in 5)) 
(bvult RANDOM_filename_M_count_in 5))”

Listing 3 consists of the SMT-LIBv2 statements used to test
the infeasible condition. The result is unsatisfiable, so no ac-
cording test vector is generated and metamorphic testing does
not handle the infeasible condition. 

3.1.6. SMT solver and test generation 

PCs which had the Verilog grammar format were converted to
SMT-LIBv2 format in our method. Afterwards, Z3 ( Microsoft,
2017 ) which was a SMT solver from Microsoft Research was
used to solve the PCs. 

Convert Verilog statement to SMT-LIBv2 format : A Verilog state-
ment is an infix expression while a SMT-LIBv2 statement is
prefix expression. Z3 cannot solve a PC which is an infix ex-
pression. An infix expression should be converted to a prefix
expression. To solve this problem, Algorithm 3 was proposed.
During the conversion, Verilog operators were replaced with
SMT-LIBv2 operators. The operator conversion between Ver-
ilog and SMT-LIBv2 are listed in Appendix A . 

The function convertToBitVector( element ) changed the for-

mat of “element ” to SMT-LIBv2. The function convertToSMT- 
Operator( operator ) converted the “operator ” of Verilog to SMT-
LIBv2 operator. The function operatorHandle() dealt with the
priority of operators. 

For example, an infix expression of Verilog, 
(rec_dataH_rec = = xmit_dataH) && (rec_dataH_rec = = 

{x_START,x_WAIT,x_SHIFT[1:0]}), was converted to prefix 
expression SMT-LIBv2 : 

(add ( = rec_dataH_rec xmit_dataH) 
( = rec_dataH_rec 

(concat x_START (concat x_WAIT 

((_ extract 1 0) x_SHIFT))))). 
Test generation : If a PC was satisfiable, the values of in-

put variables were obtained. For example, after Z3 solved the
statement: 

(rec_dataH_rec = = xmit_dataH) && (rec_dataH_rec = = 76),
the result from the Z3 was “rec_dataH_rec = xmit_dataH
and rec_dataH_rec = 76”. We got an input vector which in-
cluded “xmit_dataH = 76”(“rec_dataH_rec” is not an input
variable). 

3.2. Metamorphic testing 

To verify the test generation generated in Section 3.1 , meta-
morphic testing was used to detect the hardware Trojan. In
our research, Trust-Hub RS-232 benchmarks were used, so we
defined the metamorphic relation of RS-232 as following: 

( X i = X j ) ⇒ ( Y i � Y j = 0) (1)

where X is an 8-bits data input which should be sent out by
a sender. Y is an 8-bit data output which is acquired by the
receiver. The function of RS-232 is that a sender transmits X

https://rise4fun.com/Z3/tutorial/guide
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Table 2 – The Trojan description of T300, T400, T500 ( Shakya et al., 2017 ; Salmani et al., 2013 ). 

T300 T400 T500 

Trojan trigger Trigger is a 32-bit 
counter(“count_in”). When 
“count_in” reaches 32 ′ hFFFFFFFF, 
the payload becomes activated. 

Trigger compares transmitted and 
received data(“xmit_dataH”, 
“rec_dataH_rec”). If both equal 
8 ′ h4C the payload becomes 
activated. 

Trigger is a 32-bit 
counter(“count_in”). When 
“count_in” reaches 32 ′ hFFFFFFFF 
the payload becomes activated. 

Trojan payload Payload replaces the 7th bit of all 
transmitted data after the 
payload was activated. 

4 bits of received data are replaced 
by the payload. 

“xmit_doneH” is stuck at ‘0 ′ . 

Insertion phase design design design 
Abstraction level Register-transfer level (RTL) Register-transfer level (RTL) Register-transfer level (RTL) 
Activation mechanism Internally time-based triggered Internally 

conditionally(data-based) 
triggered 

Internally time-based triggered 
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Table 3 – The number of test vectors of each output vari- 
able. 

Output variable The number of test vectors 

uart_M_rec_dataH 3 
uart_M_uart_XMIT_dataH 6 
uart_M_xmit_doneH 4 
uart_M_rec_readyH 4 
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o a receiver who gets X as Y . If X is received correctly, Y should
e equal to X . According to formula ( 1 ), let X i = X j , then 

if ( Y i �Y j = 0), Y i and Y j may be normal, 

f ( Y i �Y j 	 = 0), Y i and Y j are abnormal. 
Because “0 �1 = 1” and “0 �0 = 0”, “0” can detect abnormal 

1” by XOR. Because “1 �0 = 1” and “1 �1 = 0”, “1” can detect ab- 
ormal “0” by XOR. So when 8-bits of “0”(00000000) are sent to 
 receiver, “00000000” should be received. If Y is not equal to 
00000000”, abnormal “1”s and their locations can be detected 

ccording to the result of ( Y i �Y j ). If 8-bits of “1”(11111111) are 
ent, abnormal “0”s and their locations can be detected in the 
ame way. 

For example, “X = (0000,0000) 2 ” was sent twice, then 

Y i = (0000,0000) 2 ” and “Y j = (0100,0111) 2 ” were received.
Y i �Y j = (0100,0111) 2 ” meant that four abnormal “1”s were 
etected at 6th,2th,1th,0th bit. 

In-fact, it is very important to test the metamorphic rela- 
ion in many network protocols. 

. Experiments and results 

he time-bomb and cheat codes in RTL codes are difficult to 
etect. To detect them, symbolic execution and metamorphic 
esting were used in this study. The Trust-Hub benchmark 
 Salmani et al., 2013; Shakya et al., 2017 ) RS-232-T300, T400 and 

500 were analyzed. Compared with PyVerilog, our work gen- 
rated more precise CFGs and disclosed the relationships be- 
ween statements. By using an SMT solver, test patterns were 
ompacted effectively which increased the speed of analysis.
he Trojans in the three benchmarks were detected by the 

est vectors and the abnormal bits of output variables were 
etected. 

Three Verilog files were analyzed: uart.v, u_xmit.v, u_rec.v.
he source code of uart.v in T300 was attached in Appendix B.
able 2 describes the details of three Trojans. T300 and T500 
ad time triggers. T400 had a data trigger. 

.1. Test generation for Verilog code 

.1.1. Control flow graph generation for Verilog code 
o identify the variables in all Verilog files, we added a pre- 
x before each variable. The prefix has the format: “file- 
ame_M_”. So the variables in uart.v would add a prefix 
uart_M_”. If a variable is changed to a random variable, a pre- 
x “RANDOM_” will be added. 

Before symbolic execution, the CFGs of RTL code were 
enerated. The CFG of “uart.v” in Trust-Hub RS-232 T300 is 
hown in Fig. 2 . The name of node has the format: “node-
ype_lineNo”. So “INSTANTIATION_79” in Fig. 2 means the 
ode type is INSTANTIATION and the instantiation statement 

s at line 79 in uart.v. “[uart_M_rec_dataH]” meant that the 
ariable “rec_dataH” was changed between always statements 
ine 94 and 101. ENTER is the first node and EXIT is the last
ode. 

.1.2. Symbolic execution and test generation 

he test vectors were generated for each output variable. It 
as convenient to test one output signals or all output signals.

Trust-Hub RS-232 T300 : Table 3 shows the results of 
ymbolic execution. In fact, some of the test vectors are 
he same for different output variables. For instance,
eset signal “sys_rst_l” resets the whole circuit and af- 
ects all outputs. Table 4 shows the detail of test vec- 
ors of “uart_M_uart_XMIT_dataH ”. The first test vec- 
or means that the reset signal “uart_M_sys_rst_l” (in 

op file) is enabled. The second test vector means that 
n input signal “xmitH” in uart.v was “0” and the re- 
et signal “uart_M_sys_rst_l” is disabled. But two inter- 
al signals “RANDOM_u_xmit_M_count_in” and “RAN- 
OM_u_xmit_M_bitCell_cntrH” must satisfy conditions 

0xFFFFFFFF” and “15”, respectively. When “count_in” was 
qual to “0xFFFFFFFF”, it activated a Trojan payload by setting 
nternal signal “DataSend_ena = 1”. Detection detail was de- 
cribed in Section 4.2 . “uart_M_xmit_dataH(random)” means 
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Table 4 – The test vectors for “uart_M_uart_XMIT_dataH”. 

Input Vectors Explanation 

1 uart_M_sys_rst_l = 0 Reset 
2 uart_M_sys_rst_l = 1 Activate the hardware Trojan 

uart_M_xmitH = 0 
RANDOM_u_xmit_M_count_in = 0xFFFFFFFF 
RANDOM_u_xmit_M_bitCell_cntrH = 15 
uart_M_xmit_dataH(random) 

3 uart_M_sys_rst_l = 1 
uart_M_xmitH = 1 
RANDOM_u_xmit_M_count_in = 0xFFFFFFFF 
RANDOM_u_xmit_M_state = 0 
uart_M_xmit_dataH(random) 

4 uart_M_sys_rst_l = 1 Normal output 
uart_M_xmitH = 0 
RANDOM_u_xmit_M_bitCell_cntrH = 15 
uart_M_xmit_dataH(random) 

5 uart_M_sys_rst_l = 1 
uart_M_xmitH = 1 
RANDOM_u_xmit_M_bitCell_cntrH = 15 
uart_M_xmit_dataH(random) 

6 uart_M_sys_rst_l = 1 
uart_M_xmitH = 1 
RANDOM_u_xmit_M_bitCell_cntrH = 1 
uart_M_xmit_dataH(random) 

Listing 4 – Trigger circuit in T300 ( Shakya et al., 
2017 ; Salmani et al., 2013 ). 

always @ (negedge sys_rst_l or posedge xmitH) begin 
if ( ∼sys_rst_l) begin 

DataSend_ena < = 1 ′ b0; 
count_in < = 32 ′ h0; 

end else if (count_in = = 32 ′ hffffffff) begin 
DataSend_ena < = 1 ′ b1;//trigger 
count_in < = 32 ′ h0; 

end else 
count_in < = count_in + 1 ′ b1; 

end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Listing 5 – Trigger circuit in T400 ( Shakya et al., 2017 ; 
Salmani et al., 2013 ). 

always @(posedge xmit_doneH or negedge sys_rst_l) begin 
if ( ∼sys_rst_l) begin 

cntr < = 1 ′ b0; 
end 
else begin 

if((rec_dataH_rec = = xmit_dataH) && (rec_dataH_rec = = 

{x_START, x_WAIT, x_SHIFT[1:0]})) // trigger 
cntr < = 1 ′ b1; 

else 
cntr < = 1 ′ b0; 

end 

Table 5 – The number of test vectors of each output vari- 
able. 

Output variable The number of test vectors 

uart_M_rec_dataH 3 
uart_M_uart_XMIT_dataH 6 
uart_M_xmit_doneH 5 
uart_M_rec_readyH 5 

Table 6 – The test vectors for “uart_M_rec_dataH”. 

Input vectors Explanation 

1 uart_M_sys_rst_l = 0 Reset 
2 uart_M_sys_rst_l = 1 Activate the hardware Trojan 

uart_M_xmit_dataH = 76 
uart_M_uart_REC_dataH = 0 

Others Normal output 
that the input variable “uart_M_xmit_dataH” could be any
value in its value ranges. “RANDOM_u_xmit_M_state = 0”
means the start state of a finite-state machine in u_xmit.v.
Listing 4 shows the source code of trigger. We detected
this internal trigger condition by randomizing internal vari-
able “count_in” in u_xmit.v during the process of symbolic
execution. 

Trust-Hub RS-232 T400 : Listing 5 shows the
code of the trigger in T400. The trigger’s con-
dition is “(rec_dataH_rec = = xmit_dataH) &&
(rec_dataH_rec = = {x_START, x_WAIT, x_SHIFT[1:0]})”. The
condition means that input 8-bits “xmit_dataH” was equal
to output 8-bits “rec_dataH” and both of them were equal to
“76”({x_START, x_WAIT, x_SHIFT[1:0]} = 010 011 00). Table 5
lists the number of test vectors of each output variable. The
second test vector in Table 6 activates the payload. Detection
detail was described in Section 4.2 . 

Trust-Hub RS-232 T500 : Listing 6 shows the trigger circuit in
T500. Table 7 lists the number of test vectors of each output
variable. Table 8 lists the test vectors of “uart_XMIT_dataH”
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Listing 6 – Trigger circuit in T500 ( Shakya et al., 2017 ; 
Salmani et al., 2013 ). 

always @ (negedge sys_rst_l or posedge sys_clk) begin 
if ( ∼sys_rst_l) begin 

DataSend_ena < = 1 ′ b0; 
count_in < = 32 ′ h0; 

end else if (count_in = = 32 ′ hffffffff) // trigger 
DataSend_ena < = 1 ′ b1; 

else 
count_in < = count_in + 1 ′ b1; 

end 

Table 7 – The number of test vectors of each output vari- 
able. 

Output variable The number of test vectors 

uart_M_rec_dataH 3 
uart_M_uart_XMIT_dataH 5 
uart_M_xmit_doneH 3 
uart_M_rec_readyH 3 
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n uart.v. The Trojan was activated when the second and 

hird test vectors were used. Detection detail was described 

n Section 4.2 . 

.2. Metamorphic testing 

ccording to Section 3.2 , let X = uart_M_xmit_dataH,
 = uart_M_rec_dataH. Input X was used twice. The first 
 was X i, and the second X was X j, making X i equal to X j .
he test vectors in Section 4.1 were used after X i was set 
nd before X j was set. The abnormal outputs were detected 

fter a test vector was used. The object of the experiments 
as to test the metamorphic relationship between Y i and Y j .
ardware Trojans were detected according to the results of 
etamorphic testing. 

.2.1. Trust-Hub RS-232 T300 
n Table 9 , Y i is the output of X i before the second and third test
ectors in Table 4 were used and Y j is the output of X j after the
wo test vectors were used. According to the results of ( Y i �Y j )
n Table 9 and 8 abnormal outputs were detected. By using “0”,
Table 8 – The test vectors for “uart_M_uart_XMIT_dataH”. 

Input vectors 

1 uart_M_sys_rst_l = 0 
2 uart_M_sys_rst_l = 1 

uart_M_xmitH = 0 
RANDOM_u_xmit_M_count_in = 0xF
uart_M_xmit_dataH(random) 

3 uart_M_sys_rst_l = 1 
uart_M_xmitH = 1 
RANDOM_u_xmit_M_count_in = 0xF
uart_M_xmit_dataH(random) 

Others 
ne abnormal “1” was detected at the 7th bit in the result of 
 Y i �Y j ). Figs. 3 and 4 show the result affected by the Trojan af-
er the test vectors were used. In Fig. 3 the internal variable 
count_in” in u_xmit.v reaches “0xFFFFFFFF” at the location 

here X was equal to “0 x00” again. Before X j was set “0 x00”,
 i = Y i . After X j was set “0 x00”, some abnormal Y j were de-

ected in Fig. 3 . In Fig. 4 , X was set “0xff” and one abnormal bit
s detected. The data in Fig. 3 is shown in the left part of Table
 and the data in Fig. 4 is shown in the right part. The hard- 
are Trojan was detected by the randomized internal variable.
he location of abnormal bits was consistent with the Trojan 

escription in Table 2 . The branch coverage of uart.v, u_xmit 
nd u_rec.v were 100%, 100% and 93.8%, respectively. 

.2.2. Trust-Hub RS-232 T400 
here is a data trigger in T400. After X j was set “0 x4c”, two ab-
ormal outputs are detected in the result of ( Y i �Y j ) in Table
0 . By using “0”, two abnormal “1”s are detected at the 0th
nd 6th bits in ( Y i �Y j ). By using “1”, two abnormal “0”s are
etected at the 5th and 7th bit. Figs. 5 and 6 were the results
enerated by simulating in QuestaSim 10. The data in Fig. 5 is 
isted in the left part of Table 10 and data in Fig. 6 is listed in
he right part. The hardware Trojan was detected by the spe- 
ial input value “0 x4c”. The locations of abnormal bits were in 

ine with the Trojan description in Table 2 . The branch cover- 
ge of uart.v, u_xmit and u_rec.v were 100%, 100% and 93.8%,
espectively. 

.2.3. Trust-Hub RS-232 T500 
he value of internal variable “count_in” in u_xmit.v reaches 
0xFFFFFFFF” before the X was set “0 x00” or “0xff” again. Af- 
er “count_in” reached “0xFFFFFFFF” some abnormal outputs 
ere detected in Figs. 7 and 8 . By using “0”, eight “1”s are
etected in ( Y i �Y j ), so all bits are abnormal. By using “1”,
ight “1”s are detected, so all bits are abnormal. Figs. 7 and 

 are the results by simulating in QuestaSim 10. The abnor- 
al “xmit_done” is found in Figs. 7 and 8 when abnormal re- 

ults were detected in ( Y i �Y j ) in Table 11 . The hardware Tro-
an was detected by the randomized internal variable. The ab- 
ormal outputs(“rec_dataH” and “xmit_doneH”) were consis- 
ent with the Trojan description in Table 2 . The branch cover- 
ge of uart.v, u_xmit and u_rec.v were 100%, 97.6% and 93.8%,
espectively. 
Explanation 

Reset 
Activate the hardware Trojan 

FFFFFFF 

FFFFFFF 

Normal 
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Table 9 – The results generated by QuestaSim 10.1b. Y i are the output of Trust-Hub RS232-T300 before Input vector was 
set the value in the second and third test vectors in Table 4. Y j is the output after the two test vectors were set. 

Input X Output Y i Output Y j ( Y i �Y j ) Input X Output Y i Output Y j ( Y i �Y j ) 

0x0 0x0 0 x80 1000,0000 0 xff 0 xff 0 xff 0000,0000 
0 x1 0 x1 0 x81 1000,0000 0xfe 0 xfe 0xfe 0000,0000 
0 x2 0 x2 0 x82 1000,0000 0xfd 0xfd 0xfd 0000,0000 
0 x4 0 x4 0 x84 1000,0000 0xfb 0xfb 0xfb 0000,0000 
0 x8 0 x8 0 x88 1000,0000 0xf7 0xf7 0xf7 0000,0000 
0 x10 0 x10 0 x90 1000,0000 0xef 0xef 0xef 0000,0000 
0 x20 0 x20 0xa0 1000,0000 0xdf 0xdf 0xdf 0000,0000 
0 x40 0 x40 0xc0 1000,0000 0xbf 0xbf 0xbf 0000,0000 
0 x80 0 x80 0 x80 0000,0000 0 x7f 0 x7f 0xff 1000,0000 

Fig. 3 – T300-1. 

Fig. 4 – T300-2. 

Table 10 – The results generated by QuestaSim 10.1b. The second test vector in Table 6 was used. 

Input X Output Y i Output Y j ( Y i �Y j ) Input X Output Y i Output Y j ( Y i �Y j ) 

0 x 4c 0 x4c 0 x4c 0 0 x4c 0 x4c 0 x4c 0 
0 x0 0 x0 0 x41 0100,0001 0xff 0xff 0 x5f 1010,0000 
0 x1 0 x1 0 x1 0 0xfe 0xfe 0xfe 0 
0 x2 0 x2 0 x2 0 0xfd 0xfd 0xfd 0 
0 x4 0 x4 0 x4 0 0xfb 0xfb 0xfb 0 
0 x8 0 x8 0 x8 0 0xf7 0xf7 0xf7 0 
0 x10 0 x10 0 x10 0 0xef 0xef 0xef 0 
0 x20 0 x20 0 x20 0 0xdf 0xdf 0xdf 0 
0 x40 0 x40 0 x40 0 0xbf 0xbf 0xbf 0 
0 x80 0 x80 0 x80 0 0 x7f 0 x7f 0 x7f 0 

Fig. 5 – T400-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Discussions and conclusions 

To generate test patterns for hardware Trojan detection, con-
trol flow analysis, symbolic execution, SMT and metamorphic
testing were used in our work. CFGs were generated by ana-
lyzing the grammar of the Verilog code. By walking the CFGs,
Symbolic execution executed the multi-threads to replace the
non-input variables with input variables and random vari-
 

ables in PCs. Z3 was used to solve the PCs to discover the sat-
isfiable input vectors. The satisfiable input vectors were de-
tected by metamorphic testing to detect the abnormal outputs
which may be caused by hardware Trojan s . 

In our work, the key was the randomizing of the internal
variables during symbolic execution. The randomizing found
out the internal variables which were affected by internal
conditions . Path Conditions including randomizing internal
variables were also constructed, which detected the internal
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Fig. 6 – T400-2. 

Fig. 7 – T500-1. 

Fig. 8 – T500-2. 

Table 11 – The results generated by QuestaSim 10.1b. The second and third test vectors in Table 8 were used. 

Input X Output Y i Output Y j ( Y i �Y j ) Input X Output Y i Output Y j ( Y i �Y j ) 

0x0 0x0 0 0000,0000 0xff 0xff 0 1111,1111 
0 x 1 0 x1 0 0000,0001 0xfe 0xfe 0 1111,1110 
0 x2 0 x2 0 0000,0010 0xfd 0xfd 0 1111,1101 
0 x4 0 x4 0 0000,0100 0xfb 0xfb 0 1111,1011 
0 x8 0 x8 0 0000,1000 0xf7 0xf7 0 1111,0111 
0 x10 0 x10 0 0001,0000 0xef 0xef 0 1110,1111 
0 x20 0 x20 0 0010,0000 0xdf 0xdf 0 1101,1111 
0 x40 0 x40 0 0100,0000 0xbf 0xbf 0 1011,1111 
0 x80 0 x80 0 1000,0000 0 x7f 0 x7f 0 0111,1111 
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onditions triggered only by system clock or a special inter- 
al constant. Unlike the random pattern test generation, our 
ork detects the triggers with more accuracy and certainty,

ess randomness. Because the test vectors are generated ac- 
ording to statements branch of RTL code, our method has 
ery high branch coverage. 

Our work can be used during the process of the RTL de- 
ign to discover suspicious conditions and internal variables.
t also provides a more accurate and concise test generation 

hich can also be used to detect the design errors in RTL code 
ritten by Verilog DHL. This work is a very important base 

or future effort to detect the more complex internal time and 

ata triggers. 
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ppendix A: The correspondence between Verilog 

perators and SMT-LIBv2 operators 

Verilog operator SMT-LIBv2 operator 

!, ∼ bvnot 
∗ bvmul 
/ bvudiv 
% bvmod 
+ bvadd 
– bvsub 
<< bvshl 
>> bvlshr, bvashr 
> bvugt, bvsgt 
> = bvuge, bvsge 
< bvult, bvslt 
< = bvule, bvsle 
== = 

&& and 
& bvand 
| bvor 
^ bvxor 
^ ∼ bvxnor 
||,or or 
,(in {}) concat 
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Appendix B: The source code of uart.v in 

RS-232-T300 

79 u_xmit iXMIT(.sys_clk(sys_clk), 
80 .sys_rst_l(sys_rst_l), 
81 .uart_xmitH(uart_XMIT_dataH), 
82 .xmitH(xmitH), 
83 .xmit_dataH(xmit_dataH), 
84 .xmit_doneH(xmit_doneH) 
85 ); 

87 u_rec iRECEIVER (.sys_rst_l(sys_rst_l), 
88 .sys_clk(sys_clk), 
89 .uart_dataH(uart_REC_dataH), 
90 .rec_dataH(rec_dataH_rec), 
91 .rec_readyH(rec_readyH) 
92 ); 

94 always @(posedge sys_clk or negedge sys_rst_l) begin 
95 if ( ∼sys_rst_l) begin 
96 rec_dataH = 0; 
97 end 
98 else begin 
99 rec_dataH = rec_dataH_temp; 
100 end 
101 end 

103 always @(posedge rec_readyH or negedge sys_rst_l) begin 
104 if ( ∼sys_rst_l) begin 
105 rec_dataH_temp < = 0; 
106 end 
107 else begin 
108 rec_dataH_temp < = rec_dataH_rec; 
109 end 
110 end 
111 endmodule 
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