
VeriSketch: Synthesizing Secure Hardware Designs with
Timing-Sensitive Information Flow Properties
Armaiti Ardeshiricham

University of California, San Diego
aardeshi@ucsd.edu

Yoshiki Takashima
University of California, San Diego

y1takash@ucsd.edu

Sicun Gao
University of California, San Diego

sicung@ucsd.edu

Ryan Kastner
University of California, San Diego

kastner@ucsd.edu

ABSTRACT
Wepresent VeriSketch, a security-oriented program synthesis frame-
work for developing hardware designs with formal guarantee of
functional and security specifications. VeriSketch defines a synthe-
sis language, a code instrumentation framework for specifying and
inferring timing-sensitive information flow properties, and uses spe-
cialized constraint-based synthesis for generating HDL code that en-
forces the specifications. We show the power of VeriSketch through
security-critical hardware design examples, including cache con-
trollers, thread schedulers, and system-on-chip arbiters, with formal
guarantee of security properties such as absence of timing side-
channels, confidentiality, and isolation.

ACM Reference Format:
Armaiti Ardeshiricham, Yoshiki Takashima, Sicun Gao, and Ryan Kastner.
2019. VeriSketch: Synthesizing Secure Hardware Designs with Timing-
Sensitive Information Flow Properties. In 2019 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’19), November 11–15, 2019,
London, United Kingdom. ACM, New York, NY, USA, 16 pages. https://doi.
org/10.1145/3319535.3354246

1 INTRODUCTION
The prevalent way of designing digital circuits uses register-transfer
level (RTL) hardware description languages (HDLs). It requires
designers to fully specify micro-architectural features on a cycle-
by-cycle basis. The verbosity and complexity of RTL HDLs opens
the door for security vulnerabilities. With the growing number and
severity of hardware security-related attacks [11, 16, 28, 31], we
urgently need better tools for detecting and mitigating security
vulnerabilities for hardware designs.

We propose the VeriSketch program synthesis framework for
developing secure-by-construction hardware designs. VeriSketch
frees hardware designers from exactly specifying cycle-by-cycle
behaviors. Instead, the designer provides an RTL sketch, a set of
security and functional specifications, and an optional set of soft
constraints. VeriSketch outputs complete Verilog programs that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00
https://doi.org/10.1145/3319535.3354246

satisfy all the specified functional and security properties, and
heuristically favors designs that satisfy the soft constraints. The
unique aspect of VeriSketch revolves around the use of program
synthesis techniques and timing-sensitive hardware information
flow analysis to enable the synthesis of hardware designs that are
functionally correct and provably secure, as shown in the Fig. 1.
VeriSketch employs Information Flow Tracking (IFT) methods to
allow the definition and verification of security properties related
to non-interference [46], timing invariance [3, 53], and confiden-
tiality, and it extends counterexample-guided synthesis methods
(CEGIS) [42] to hardware design.

VeriSketch uses CEGIS to complete the sketch by breaking the
synthesis problem into separate verification and synthesis sub-
problems which can be solved by a SAT/SMT solver. In each ver-
ification round, the solver searches for a counterexample which
falsifies the properties. During synthesis, the solver suggests a new
design which adheres to the properties for the visited counterex-
amples. Iterating over these two stages, the algorithm either finds
a design which has passed the verification round or the synthesis
fails if the solver cannot propose a new design.

VeriSketch makes three extensions to CEGIS to enable synthesis
of hardware designs with security objectives. First, VeriSketch runs
CEGIS over a program which is automatically instrumented with
IFT labels and inference logic. This enables reasoning about wider
range of security properties based on the model of information
flow. Second, VeriSketch extends CEGIS to synthesize sequential
hardware designs with streams of inputs and outputs. This requires
enforcing the properties over multiple clock cycles as outputs are
continuously updated. This is done by expanding the formulation
of SAT problems over multiple cycles bounded by the sequential
depth of the circuit. Lastly, VeriSketch introduces heuristics to guide
the search algorithm away from undesirable trivial designs, which
is one of the major challenges of program synthesis frameworks.
This is done by collecting and reasoning about both counterexam-
ples and positive examples (i.e., input traces where properties fail
and pass). Guided by the counterexamples, the synthesis algorithm
finds a design which satisfies the properties, while positive exam-
ples are used to enforce soft constraints where properties are held.
Soft constraints enable specification of design attributes which are
preferable for improved quality but are not strictly necessary. The
term soft constraint is used as opposed to hard constraints (i.e., our
original properties) which should always hold. Through positive ex-
amples and iterative synthesis rounds, VeriSketch favors programs

https://doi.org/10.1145/3319535.3354246
https://doi.org/10.1145/3319535.3354246
https://doi.org/10.1145/3319535.3354246

Exploration

Synthesis

Verification

SMT Solver

1) Sketch and Specification 2) Instrumentation 3) Program Synthesis 4) Secure and Correct Hardware Design
Sketch: Incomplete Verilog Design Verilog Instrumented with Security Labels Constraint-based Synthesis (CEGIS) Verified Verilog

SAT

if(pid == i && preload[addr])
assume (index_s == High);

if(pid != i)
assert (rd_dat_proc == Low);

try (!skip && lru_update);

Functional and Security Properties,
and Soft Constraints

Modify Sketch and/or Properties U
N

SA
T

Figure 1: VeriSketch accepts as input an incomplete hardware design (i.e., a “sketch”) and a set of functional and security
properties and soft constraints. VeriSketch leverages hardware information flow tracking and program synthesis to build a
Verilog design that satisfies the properties.

where soft constraints are held without changing the satisfiability
of the synthesis problem.

We use VeriSketch to generate hardware units that adhere to
various properties from sketches with different levels of details
spelled out by the programmer. We synthesize a cache controller
which is provably resilient against access-based timing side channel
attacks. We design fixed point arithmetic units such that they are
proven to run in constant time. Furthermore, we generate multiple
SoC arbiters and hardware thread schedulers that enforce non-
interference, timing predictability, and access control policies.

In all, we make the following contributions and organize the
paper as follows. We introduce the VeriSketch framework for semi-
automated synthesis of RTL hardware designs that enforce timing-
sensitive information flow policies. Section 3 introduces the for-
mal language definitions and main components of VeriSketch at
a high-level. Next, we demonstrate how IFT analysis can be used
to complete information flow constraints in Section 4. Section 5
focuses on introducing new program synthesis techniques that ex-
tend CEGIS for the synthesis based on information flow properties,
sequential circuits with bounded depth, and soft constraints. We
discuss the synthesized designs in Section 6.

2 BACKGROUND AND RELATEDWORK
VeriSketch adopts and extends techniques from program synthesis
and repair, as well as hardware information flow tracking systems.
Here, we briefly review the related work in each of these domains.

2.1 Program Synthesis
Constraint-based synthesis is modeled as ∃p∀x . ϕ(x ,p) where ϕ
denotes the design and specification, x is the design inputs and p
is the synthesis parameter encoding the undefined portion of the
design. The synthesizer’s goal is to find parameter p such that the
properties in ϕ are satisfied for all inputs x . CEGIS [2, 42, 43] intro-
duces a method for breaking down the exists-forall quantification
to iterations between verification and synthesis procedures that can
be solved by SAT/SMT solvers. The verification phase at each round
i fixes the parameter p to pi and attempts to verify the universal
conditions on all input combinations. The verification problem
can be written as ∃x . ¬ϕ(x , pi), which asks the solver to find a

case where properties are violated for the program synthesized by
parameter pi . Unsatisfiability here indicates that properties holds
for all input cases. Thus, pi is a valid solution and the synthesis
flow ends successfully. If satisfiable, the solver provides a coun-
terexample xi which falsifies the properties. The synthesis stage
looks for a new parameter that satisfies the properties for all the
previously visited counterexamples. This problem in round i can
be modeled as: ∃p. ∧x j ∈ CE ϕ(x j , p), whereCE is the set of visited
counterexamples. If the solver fails to find a solution, the synthesis
flow terminates unsuccessfully indicating that the properties are
unsatisfiable for the given sketch.

Synthesis techniques are widely used to automate difficult soft-
ware engineering tasks [17, 22, 27, 37, 43]. Program synthesis have
been employed in different domains such as data processing [41, 51],
data completion [18, 47], databases [52, 54], and more recently in
security applications [24, 38]. In the HDL domain, Sketchilog [6, 7]
translates partially written Verilog code to complete ones by di-
rectly solving the exists-forall problem employing a QBF solver.
Sketchilog can only synthesize small combinatorial circuits, and
is not scalable due to the limitations of QBF solvers. Furthermore,
Sketchilog does not support expressive properties as high level
specifications. VeriSketch extends CEGIS to enable synthesis of
combinational and sequential circuits written in HDLs from high
level specifications. Our problem statement is similar to that of
program repair techniques for automatically generating patches
for security-critical programs [20, 21, 23, 44]. Our work is unique
from these previous works because we enforce security and func-
tional properties while synthesizing incomplete hardware designs.
Counterexample guided algorithms have been used to automatically
synthesize device drivers [39, 40] and generate abstraction models
for SoCs [45] and ISAs [25]. Similar techniques have been used at
the gate level to automatically modify a netlist when errors are
detected late in the design flow [10, 50]. VeriSketch uses CEGIS at
a higher level of abstraction to complete partial HDLs with respect
to security properties and acquaint the traditional hardware design
flow with automated policy enforcement.

2.2 Information Flow Control
VeriSketch leverages hardware-level information flow analysis to
reason about security properties. Hardware IFT tools can be broadly

divided into two categories based on whether they introduce new
HDLs enabling definition of security labels [29, 30, 53] or rely on
automated label inference rules [3, 4, 46]. Here, we take the lat-
ter approach in order to enable integration of flow tracking with
sketching and synthesis. The structure of common HDLs facilitate
precise analysis of information flow policies and detection of tim-
ing leakage (refer to Remarks 4.8, 4.11 and 4.13). VeriSketch adopts
the approach from Clepsydra [3] which provides a sound labeling
system for precisely capturing timing flows in RTL designs and
verifying timing invariance properties. We extend and formalize
Clepsydra’s label inference rules and integrate them with program
synthesis techniques to automatically enforce timing-sensitive in-
formation flow policies.

2.3 Motivating Example
To illustrate the challenges of secure hardware design, we take
design of a cache that is resilient to timing side channel attack as
an example, and show how it is done via the traditional hardware
design flow versus by using VeriSketch. Unfortunately, modifying
hardware designs according to security requirements is often not
trivial; even the foremost hardware security experts canmake errors
as we discuss in the following.

2.3.1 Threat Model. We consider the Percival attack model [36]
where the adversary runs concurrently with the victim process on
a Simultaneous Multi-Threading processor. The adversary is an
unprivileged user process which is isolated from the victim process,
i.e., it does not share the address space with the victim. The attacker
aims to learn information about the addresses which the victim uses
to access the cache. The attack relies on the fact that in certain RSA
implementations parts of the encryption key is used to look up a pre-
computed table in the cache. Hence, by observing the cache access
pattern of the victim process, the adversary could gain knowledge
about the key. While the Percival attack originally targeted the
OpenSSL implementation of the RSA algorithm, similar attacks
can target different applications where the cache index is driven
from secret data [28]. In order to launch the attack, the adversary
repeatedly fills the cache with its own data and measures each
access time. Once the victim accesses some cache line, it evicts the
attacker’s data from that line. This eviction increases the attacker’s
access time in the following round.

2.3.2 Traditional Secure Hardware Design Flow. Assume that the
designers decide to implement the partition locked cache (PLCache)
mitigation technique [53] to secure the cache against the described
attack model. PLCache enables processes to preload and lock sen-
sitive data in the cache to avoid eviction and timing variations.
It extends a “normal” cache controller with logic that arbitrates
access to the cache based on the security requirements. As a proof
of concept, we created a Verilog design of the PLCache based upon
the details in their paper. We instrumented it and verified it against
the IFT properties modeling cache timing leakage (described in
Example 4.17), and the security verification failed. Analyzing the
counterexample trace given by the verification tool, we discovered
that the side channel manifests itself through the cache metadata re-
lated to the cache replacement policy. PLCache uses a least recently
used (LRU) policy even for the locked data: in case of a cache hit,

normal cache access is performed. This introduces a subtle timing
side channel that can be exploited by extending the Percival attack
(described in Section 6.3.1). This shows that even the foremost secu-
rity experts can create mitigation strategies that have flaws that go
undiscovered for more than a decade. And even worse, the designer
is now stuck with developing a new strategy to fix this flaw. In this
work, we show how we use VeriSketch to synthesize a cache which
is provably resilient against the described attack model.

3 THE VERISKETCH FRAMEWORK
VeriSketch synthesizes incomplete hardware designs that adhere
to the specified security and functional properties. It targets de-
signs at the register transfer level (RTL) abstraction. RTL remains
the prevalent way of specifying hardware designs and it has the
required information to precisely analyze timing-sensitive infor-
mation flow properties and identify timing side channels. We first
give an overview of the main components of VeriSketch and then
describe the details of the language design.

3.1 Main Components
Fig. 1 describes the VeriSketch framework, which converts an RTL
sketch and a set of hard and soft constraints into a complete Verilog
design. All inputs are written in the VeriSketch language, which ex-
tends Verilog with sketch and IFT specification syntax (see Table 1).
As we show in the rest of this section, the VeriSketch language
facilitates the modeling of security properties and a partial descrip-
tion of the hardware. The sketch is first translated to a Verilog
design which contains synthesis parameters. The Verilog design is
then instrumented with IFT analysis logic. This step (discussed in
Section 4) enables reasoning about security properties alongside
the functional ones. The instrumented design is given to the syn-
thesis engine (described in Section 5) which uses constraint-based
synthesis to resolve the parameters. If the synthesis succeeds (i.e.,
a parameter is found), the post-processor fills out the initial sketch
based on the parameters values and discards the IFT instrumenta-
tion. Otherwise, the programmer has to repeat the process after
relaxing the specifications or modifying the sketch.

3.2 VeriSketch Language
VeriSketch extends the standard Verilog language [13] with sketch
constructs and security property specifications. The formal syntax
is shown in Table 1.

3.2.1 Sketch Syntax. Sketches are language constructs that facil-
itate writing partial programs [43]. VeriSketch enables users to
describe a partial hardware design by combining low-level and
high-level sketch constructs with the original Verilog syntax. With
low-level sketches, the designer can define unknown n-bit con-
stants (n(??)), operation select (e1 (bop1, . . . , bopm) e2), operand
select (sel(e1, . . . , em)), or choose the value of a variable from any
of n previous cycles (step?(v,n)). To facilitate higher level sketch-
ing, VeriSketch introduces hardware-specific sketch constructs for
describing arbitrary combinational (y = comb(x1, . . . ,xm)) and
sequential circuits (y = seq(x1, . . . , xm)) with inputs x1, . . . ,xm ,
and procedural statements with unknown control flow (v ?= e0).
The original Verilog language supports two types of assignments:
continuous and procedural assignments. Continuous assignments

are specified by the keyword assign and are used to specify com-
binational logic. Procedural assignments are only activated when
they are triggered (e.g., by each rising edge of the clock signal)
and are used to describe complex timing behaviour. Procedural
assignments can be either blocking (=) or non-blocking (<=) which
indicates if the statements are executed sequentially or in parallel.
VeriSketch allows sketches of procedural assignments with un-
specified control logic using the v ?= e0 [e1, ..., em] syntax. This
is synthesized to a blocking or non-blocking assignment where a
function of [e1, ..., em] signals is used as the control logic. The list
of control variables [e1, ..., em] can be defined separately for each
statement or for the whole design.

3.2.2 Pre-Processing. Sketch constructs are compiled to synthesis
parameters in the pre-processing round. The unknown constants
are directly replaced by parameters. Operand and operation selects
are modeled as multiplexers where control lines are parameters.
step?(v,n) is mapped to a shift-register where one of its n slots
is selected by a synthesis parameter. v ?= e0 [e1, . . . , em] is trans-
lated into a block where assignment of e0 to v is guarded with
an unknown control signal defined by comb(e1, . . . , em). The comb
construct is compiled to a Binary Decision Diagram (BDD) tem-
plate where the nodes are the inputs to the comb function. The
leaves of the tree are replaced by synthesis parameters. Hence,
y = comb (x1, . . . , xm) is translated to y = (p1 ∧ x1 ∧ . . . xm) ∨
. . . ∨ (p2m ∧ ¬x1 ∧ . . .¬xm) where {p1, . . . ,p2m } are synthesis pa-
rameters. The seq construct generates a finite state machine with
binary encoded states where all state transitions are parameters
driven by the inputs. Thus, seq (x1, . . . , xm) is mapped to an FSM
where transitions from any state si to unknown state pi j are con-
ditioned on “{x1, . . . , xm } = qj ” where pi j and qj are synthesis
parameters. The template FSM receives its caller reset and clock
signals.

While high-level constructs (i.e., comb, seq and ?=) greatly sim-
plify sketching by providing generic templates for combinational
and sequential circuits and procedural statements, they adversely
affect synthesis time since the parameter size grows exponentially
according to the number of data and control inputs. Consequently,
these templates should be used sparingly if possible, e.g., to synthe-
size small but critical parts of the design.

3.2.3 Specification Syntax. Property specifications are logical for-
mulas which express an implementation-agnostic relationship be-
tween design variables and describe a desired invariant in the de-
sign’s behavior. VeriSketch introduces syntax for specifying proper-
ties using an information flow model and also supports properties
written in the System Verilog Assertion language. VeriSketch uses
two labels (s and t) corresponding to logical and timing flows for
specifying information flow properties. These labels are binary
values similar to design variables (i.e., L ∈ {Low, Hiдh}). Security
properties are expressed by initializing labels of the input variables
and constraining the labels of the output or intermediate variables.
Alternatively, information flow properties can be more abstractly
stated by↛ and↛t operators. These operators indicate absence of
logical and timing flows from left hand-side to right hand-side. Prop-
erties written over the security labels or the design variables form
the specification using assume, assert, or try keywords. assume
restricts the analysis to cases where the inner expression is true

Table 1: VeriSketch Syntax.

v ∈ Vars Variable
n ∈ Nums Constant

e ::= v | n | uop e | e1 bop e2 | Expression
n (??) | step? (v, n) |
sel (e1, . . . , em) |
e1 (bop1, . . . , bopm) e2 |
(uop1, . . . , uopm) e |
comb (e1, . . . , em) | seq (e1, . . . , em)

a ::= assign v = e; Continuous
Assignment

s ::=v = e; | v ⇐ e; | if (e) s1 else s2 | Procedural
begin s1 . . .sm end | for (v = n1 : n2) s; Assignment
v ?= e0 [e1, . . . , em]

γ ::= posedge clk | negedge clk | * | ®v Trigger
B ::= always@ (γ) s | a Block
M ::= B1 . . . Bm Module
S ::=M1 . . .Mm Sketch

L ::= vs | vt Label
p ::= v | uop v | v1 bop v2 | Property

L | uop L | L1 bop L2 |
v ↛ v | v ↛t v

C ::= assume (p) | assert (p) | try (p) Spec.

while assert causes the verification to fail once the inner expres-
sion is false. try is unique to VeriSketch and is used to model soft
constraints.

module Sketch_Cache(…);
 assign skip =
 comb(rd_rq,wr_rq,hit,lru_block[m]);

 assign lru_update =
 comb(rd_rq,wr_rq,lock,stall,waiting);

 always @ (posedge clk)
 if(!skip)
 //cache rd/wr
 if(lru_update)
 //update LRU
 else
 //direct memory access
endmodule

(a)

module Sketch_Cache(…);
 assign skip = !hit &
 comb(rd_rq,wr_rq,lru_block[m]);

 assign lru_update = (c_rd | c_wr)
&& lock == ?? && stall ==??;
 always @ (posedge clk)
 if(!skip)
 //cache rd/wr
 if(lru_update)
 //update LRU
 else
 //direct memory access
endmodule

(b)

Figure 2: Sketching the control logic for a modified and se-
cure version of PLCache. (a) A high-level sketch written in
VeriSketch. comb denotes a combinational circuit where the
implementation is totally unspecified. (b) Another sketch
for the same design with more provided details.

Example 3.1 (Sketching a Secure Cache). Fig. 2 shows two exam-
ple sketches for designing the locking strategy similar to PLCache
but eliminating the metadata timing side channel (and any other
security flaws). We define the structural connections between the
elements of the secure cache similar to a “normal cache” and leave
the tricky control and arbitration logic for VeriSketch to decide. One
major aspect of the partitioning mitigation technique is specifying
the logic for the skip signal which we leave as undefined. skip

makes the decision about whether to follow a normal cache access
or perform a direct memory access. We also add sketch constructs
to decide when the cache LRU bits are updated. We manually ex-
tend the cache blocks to store the lock status of the stored data
similar to PLCache. The difference between the sketches in Fig. 2 is
the amount of detail provided by the designer and conversely that
which is left to be determined by VeriSketch. Fig. 2(a) is a high-level
sketch; it states that the skip signal should be some combinational
function of the signals rd_rq, wr_rq, hit and lru_block[m]. Here,
lru_block is the cache block selected for eviction according to
the replacement policy and m is the index of the bit which stores
the lock status of the block. The sketch for determining how the
LRU bits are updated is a combinational function depending on
the signals rd_rq, wr_rq, lock, stall and waiting. Here, lock
is the incoming lock request and waiting shows if the cache is
accessing the memory. The sketch in Fig. 2(b) has more detail; here
the designer provided additional information that the skip signal is
low when there is a cache hit and the structure of the logic driving
the lru_update signal is given. The ?? syntax assumes one bit if
not specified.

4 INFORMATION FLOW TRACKING
Traditional HDLs like Verilog and VHDL lack a framework for cap-
turing security traits. Information flow models enable the analysis
of a wide range of hardware security properties such as confiden-
tiality, integrity, isolation, and timing side channels. IFT tools define
labels which convey security attributes of design variables (e.g.,
whether or not that variable contains sensitive or untrusted infor-
mation). IFT models capture how data moves through the system,
enabling an analysis of security behaviors of the hardware design.
For instance, in order to assess unintended data leakage in a design,
secret inputs are initialized with a High label. Next, the design is
analyzed to ensure that public outputs maintain a Low label, which
indicates that no secret data has reached these ports.

4.1 VeriSketch IFT Framework
VeriSketch tracks information flow by annotating each design vari-
able (wire or register) v with two different security labels, vs and
vt , where the s-labels track logical flows and t-labels track timing
flows. Inference rules for propagating these labels are formalized
in Table 2. VeriSketch defines the propagation rule for each as-
signment within the same block by using the same syntax as of
the original assignment. For instance, label of a register which is
updated in a non-blocking procedural assignments is defined via a
non-blocking procedural assignments while label of a wire which is
driven by combinational logic is defined using combinational logic
as well. This ensures that variables and their labels are updated
simultaneously. VeriSketch performs precise label propagation, i.e.,
all label updates take into account the exact Boolean values of the
design at the given time. This is enabled by modeling labels and
inference rules with standard Verilog syntax and leveraging EDA
tools to reason about the IFT labels and design variables at once.

Example 4.1. Fig. 3 shows the IFT instrumentation for a snippet
of Verilog code implementing a cache unit. Lines 1 − 3 and 7 − 16
show how instrumentation for combinational and sequential blocks
are done within the same block following the syntax of the original

Table 2: VeriSketch Label Inference Rules.

Γ ⊢ e :: (s, t)
T-uop

Γ ⊢ uop e :: (uopift (e, s), t)

Γ ⊢ e1 :: (s1, t1), e2 :: (s2, t2) T-bop
Γ ⊢ e1 bop e2 :: (bopift (e1, s1, e2, s2), t1 ⊔ t2)

Γ ⊢ e :: (s, t), assign v = e
T-assign

Γ ⊢ v :: (s, t)

Γ ⊢ e :: (s, t), v=ηe , ci ∈ Ctrl(v) :: (si , ti)
T-blocking

Γ ⊢ v :: (s ⊔ si , t ⊔ ti ⊔ (¬Bal(v) ⊓ si))

Γ ⊢ e :: (s, t), v ⇐η e , ci ∈ Ctrl(v) :: (si , ti)
T-nonblocking

Γ ⊢ v :: (s ⊔ si , t ⊔ ti ⊔ (¬Bal(v) ⊓ si))

code. Note that all assignments and nonblocking statements are
executed simultaneously in Verilog. Hence, all variables (e.g., stall)
and their labels (e.g., stall_s and stall_t) are updated at the same
time. We will discuss the detail of the right hand-side logic in the
following subsections.

Remark 4.2. The blocking (=η) and nonblocking (<=η) assign-
ments for statement η differ in that blocking assignments are per-
formed sequentially while the nonblocking ones run in parallel.
They have the same inference logic according to Table 2, to ensure
that variables and their labels are updated simultaneously.

Remark 4.3. Labels of variables defined via procedural assign-
ments are triggered by the same event as the original statement and
are defined in the same block. This ensures synchronous updates
to variables and their labels.

In the following, we go over the details of the label inference
rules. Note that since sketch constructs are pre-processed before
the instrumentation, the inference rules are only defined for the
original Verilog syntax.

4.2 Tracking Logical Flows
Logical flows are tracked via label vs defined for each variable
v . VeriSketch tracks both explicit and implicit flows (i.e., flow of
information via the data path and the control path). Explicit flows
are tracked by instrumenting each operation.

Definition 4.4 (IFT Operator). Let op be a valid binary/unary
operator in Verilog RTL. IFT operator opift computes the label of
op’s output based on its inputs’ values and labels.

For instance, explicit flows of assignment z = x bop y are tracked
via zs = bopift(x ,xs ,y,ys). In the simplest case, zs is the join (⊔) of
xs and ys . In a more precise analysis (i.e., lower number of false
positives), zs also depends on the Boolean values (i.e., x and y) and
the operator’s functionality [4, 26]. IFT operators are pre-defined
and stored in VeriSketch IFT library where label tracking precision
level is controllable by the user.

Implicit flows for each statement are tracked by upgrading the la-
bel of the left hand-side variable according to the labels of variables
which control the statement’s execution.

1. assign stall = rq && miss;
2. assign stall_s = and_ift (rq, rq_s, miss, miss_s);
3. assign stall_t = rq_t || miss_t;
4. always @ (posedge clk) begin
5. if(rd_rq && stall)
6. if(stall_cycles == N)
7. cache[index] <= {rd_data_mem,tag,pid};
8. cache_s[index] <= {rd_data_mem_s,tag_s,pid_s} |
9. rd_rq_s | stall_s | stall_cycles_s | index_s;
10. cache_t[index] <= {rd_data_mem_t,tag_t,pid_t} |
11. rd_rq_t | stall_t | stall_cycles_t | index_t |
12. ((rd_rq_s | stall_s | stall_cycles_s | index_s)
13. &&!Bal(cache[index]) && !((!rd_rq_s & Full(rd_rq,
14. cache[index]))|(!stall_s & Full(stall, cache[index]))
15. |(!stall_cycles_s & Full(stall_cycles, cache[index]))
16. |(!index_s & Full(index, cache[index]))));

(a)

Figure 3: VeriSketch IFT framework automatically extends
Verilog code with IFT labels and inference rules. The exam-
ple is a portion of a cache. The gray lines here are the origi-
nal code and the instrumentation is shown in black. Logical
and timing flows are captured via s-labels and t-labels.

Definition 4.5 (Ctrl(v)). Let η be a procedural assignment.Ctrl(η)
is the set of all variables which control the execution of η. Ctrl(v)
is the union of all Ctrl(ηi) where ηi is a procedural assignment
where v is the l-value variable. Ctrl(v) is determined statically by
analyzing the program control flow graph.

It immediately follows that:

Proposition 4.6 (c.f. [34]). Implicit flows via each procedural state-
ment η with l-value variable v can be conservatively estimated by:⊔

{cis : ci ∈ Ctrl(v)} (1)

Notation 4.7. We use join (⊔) and meet (⊓) to describe the in-
ference rules in a generic multi-level security system. Since we
consider binary operations, these operations can be replaced by
disjunction (∨) and conjunction (∧).

Remark 4.8. Note that grammar of the Verilog language and sim-
ilar HDLs only permits assignments to each variable in a single
block as all blocks are executed in parallel. Hence, Ctrl(v) can be
determined by analyzing the single block in which v is used as left
hand-side variable. Furthermore, continuous assignments cannot
be guarded by conditional variables. Hence, IFT operators suffice
to track information flow through continuous assignments.

Example 4.9. Examples of tracking explicit flows for combina-
tional and sequential code are shown in lines 2 and 8 of Fig. 3.
Explicit flows capture how information moves through logical oper-
ations and assignments from right to left. Line 9 shows an example
of tracking implicit flows. Here, execution of line 7 depends on
control variables rd_req, stall, and stall_cycles. Furthermore,
value of index specifies which memory element is accessed. Hence,
these variables implicitly affect cache[index] and their labels are
propagated to cache_s[index].

4.3 Tracking Timing Flows
VeriSketch provides the ability to track both timing flows and logical
flows. This allows the designer to define properties related to timing
invariance alongside those related to logical flows. Timing flows
are a subset of logical flows [34] and can be modeled by capturing

how registers can be updated at each clock cycle [3]. We describe
this in more detail in the following.

Definition 4.10 (Bal(v)). Letv be the l-value variable in the proce-
dural assignment η. Boolean variable Bal(v) declares if updates tov
are balanced. An unbalanced update means that there exists a clock
cycle where register v can either maintain its current value or get
reassigned. Bal(v) is statically decided by analyzing the program
control flow graph.

Remark 4.11. Bal(v) can be determined since Verilog grammar
confines all assignments to each variable v to a single block. Hence,
one can compute if v keeps its value under certain branches of that
block.

Using Bal(v) VeriSketch detects timing variation occurring at
assignments to variable v and tracks them via vt .

Proposition 4.12 (c.f. [3]). Sensitive timing variations in a se-
quential circuit are generated at the l-value variable v of a clocked
statement if the following equation evaluates to true:

¬Bal(v) ⊓
⊔
{cis : ci ∈ Ctrl(v)} (2)

Any register v in a given hardware design is written to at each
clock edge by a set of data signals which are multiplexed using a set
of control signals. The existence of a feedback loop which connects
the register to itself (¬Bal(v)) indicates that there are some cases
when the register maintains its value. Consequently, the final value
of the register may become available at different cycles resulting
in a timing leak. Hence, the conjunction of unbalanced updates
and control signals which carry sensitive information results in
sensitive timing variation at the register. To make the analysis more
precise, a new conjunction is added to check if there is any untainted
(¬cis) control variable which fully controls updating the register
(Full(v, ci)). This enables safe downgrading of timing variations:

¬Bal(v) ⊓
⊔

cis ⊓ ¬
⊔
(¬cis ⊓ Full(v, ci)) : ci ∈ Ctrl(v) (3)

Remark 4.13. Proposition 4.12 relies on the fact that in a hardware
design registers updated at clock edges and combinational logic do
not introduce cycle-level timing variation. Hence, the analysis is
specific to HDLs and cannot be applied to software languages.

Example 4.14. Examples of tracking timing flows in combina-
tional and sequential blocks are shown in lines 3 and 10 − 16 of
Fig. 3. Lines 12 − 16 show the logic for detecting occurrence of tim-
ing flows while lines 3 and 10 − 11 show the logic for propagating
them.

Example 4.15 (Secure Cache Property Specification). The root
cause of timing side channel leakage is that the victim’s action
changes the state of the hardware in a way that affects the time
it takes for the succeeding operations to complete. If the victim
action depends on secret data, the subsequent timing variation
reveals information about the secret data. In the cache example,
the index that the victim uses to read from the cache changes the
state of the cache memory by bringing in new data and evicting
the adversary’s data to the next level memory. If the index contains
secret information (as in table-based RSA implementation), the
increment in the time taken for adversary’s subsequent request

discloses information about the index used by the victim process.
Absence of timing information leaked from process i’s access to a
cache can be modeled by the following property:

if(pid=i) assume(index_s ==High);

else assert(rd_proc_t ==Low);

This property states that assuming that process i accesses the
cache with an index which contains sensitive information (shown
by having Hiдh index_s label), the data read afterwards by other
processes should not have sensitive timing information. This is
shown by having an assertion on rd_proc_t, which is the timing
label of the data read by the processor from the cache. This property
along with the instrumented cache design is given to a formal veri-
fication tool to determine if a cache implementation is vulnerable
against access pattern based cache timing attacks. Writing the IFT
properties is identical to formalizing the security expectations and
does not require knowledge of how an attack is performed since
the verification tool searches for the exact input sequence which
leaks the secret data.

Notation 4.16. Throughout the examples, all input labels have a
Low value if not specified otherwise.

Example 4.17 (PLCache Property Specification). To take into ac-
count the assumption that sensitive data should be preloaded and
locked in the partition locked cache before access, we rewrite the
properties as follows:

if(pid=i&& Preloaded[addr]) assume(index_s ==High);

if(pid,i) assert(rd_proc_t ==Low);

4.4 Enforcing Multiple Policies
In order to instrument the circuit with the appropriate IFT instru-
mentation, we need to know how many disjoint flow properties
we will be checking. It may be the case that different security prop-
erties require unique and independent tracking logic, each with
different input labels. To accommodate simultaneous analysis of
these properties, VeriSketch instruments the circuit with disjoint
sets of labels and tracking logic based on the number of specified
flow properties.

Example 4.18. In order to specify absence of timing leakage be-
tween multiple processes sharing a cache, we need disjoint labels
to track flow of information from different processes:

if(pid=i) assume(index_s_i ==High);

else assert(rd_proc_t_i ==Low);

if(pid=j) assume(index_s_j ==High);

else assert(rd_proc_t_j ==Low);

Definition 4.19 (IFT Instrumentation). For any design F (x), its
instrumented representation, denoted by FIFT (x , xtaint), has the
original functionality of F (x), as well as multiple lines of flow track-
ing logic. Here,vtaint defined for each variablev is a vector of tuples
of labels (vsi , vti).

5 SYNTHESIS
Reasoning about digital circuits can be encoded as SAT or bit-
vector SMT problems, making them perfect targets for constraint-
based synthesis. At a high-level, the standard synthesis problem

is of the form ∃p∀xν .ϕ (p, xν), where ϕ encodes the sketches and
specifications, and the goal is to find parameters p such that the
hard constraints in ϕ are satisfied for all possible inputs xν . We now
show how to extend this formulation to handle IFT instrumentation
and solve for finite sequential circuits with soft constraints.

5.1 Synthesis with IFT
In order to take advantage of the IFT model within our synthesis
flow, we give the parametric design F (xν , p) to the IFT unit. This
transforms the design to FIFT (xν , xνtaint , p) where xνtaint and FIFT
are the input’s security labels and instrumented design (Defini-
tion 4.19). The synthesis problem over the instrumented design
now includes the labels in addition to the original inputs:

∃p ∀x .Φ(x , p)
where Φ(x , p) := Q (xν , FIFT (xν , xνtaint , p)). (4)

HereQ encodes the specifications written over the instrumented
design. We use vector x to refer to the concatenation of the design
inputs xν and their taints xνtaint . Note that xνtaint is constrained by
the specific security properties we want to enforce.

Example 5.1. For instance, in our cache example, the cache index
is initialized with a High label if it contains a sensitive address. And
all other input labels have a Low label (notation 4.16). Thus, all
input taints are constrained.

5.2 CEGIS for Finite Sequential Circuits
To handle sequential circuits, the CEGIS procedures need to expand
over multiple cycles. To accommodate that, we extended the def-
inition of a counterexample to capture a trace instead of a single
value. Essentially, the counterexample represents a sequence of
input values which take the design into an invalid state. Hence,
in the synthesis stage the solver should look for a parameter such
that the properties are satisfied for all the cycles triggered by the
counterexample sequence. We model this by changing the original
synthesis equation to:

Definition 5.2 (Synthesis Target for Sequential Circuits).

∃p.
∧

x j ∈CE
Φ∗(x j ,p)

where Φ∗(x j , p) :=
∧

k≤ |x j |

Past(Φ(x j ,p), k) (5)

Here |x j | is the length of counterexample x j in number of cycles.
Φ∗(x j , p) is the conjunction of the properties over the length of
each counterexample. Function Past(v,k), part of System Verilog
Assertion language, returns value of variable v from k previous
cycles.

For the secure hardware design problems that we consider here,
the bounds on the sequential depth are clear so that we can focus
on tackling the synthesis aspect of the problems. With bounded
depth, the verification component can be conveniently performed
by standard bounded model checking (BMC). For unbounded veri-
fication, various techniques such as k-induction [15] can be used;
and the framework can be naturally extended with more powerful
verification methods.

5.3 CEGIS for Soft Constraints
CEGIS could potentially suggest any programwhich does not falsify
the formal properties. Thus, the properties should effectively elimi-
nate all undesirable programs. This makes property specification a
major challenge. For example, consider the cache example where
IFT properties similar to Example 4.17 are in place to eliminate
side-channel leakage and synthesize the sketch from Fig. 2(a). A
trivial implementation that results from this sketch and satisfies
the IFT properties is a design that skips all cache accesses. While
this satisfies the security properties, it is not what the designer in-
tended to get. However, it is not clear how to formalize the property
being violated in this case. The designer can potentially get around
this issue by providing input/output (I/O) pairs which should be
generated by the synthesized design, extending the formal prop-
erties, or shrinking the sketch such that undesirable programs are
unreachable. However, all these approaches require non-trivial ef-
fort from the designer. Instead, we take an automated approach to
heuristically guide the search algorithm to avoid recommending
undesirable designs. We introduce soft constraints for specifying
properties which may not hold for all cases but it is desirable if
they do. Soft constraints are particularly beneficial for modeling
performance attributes.

Definition 5.3 (Soft Constraint). Soft constraints are logical for-
mulas that model properties which are preferably true. We show
soft constraints for the design being synthesized by T (x , p).

Example 5.4. A soft constraint for synthesizing the secure cache
can be defined by indicating that that having a low value for the
skip signal and a high value for the lru_update signal (from Fig. 2)
are desirable.While this constraint cannot be strictly enforced if one
wants to eliminate timing side channel, we use it to guide CEGIS to
find a design which does not skip cache writes and updates the LRU
if possible. Using the try keyword to model the soft constraints, we
rewrite the properties for synthesizing a secure cache as follows:

if(pid=i&& Preloaded[addr]) assume(index_s ==High);

if(pid,i) assert(rd_proc_t ==Low);

try(!skip && lru_update);

In order to enforce soft constraints via synthesis, we extend the
CEGIS algorithm to further explore the input space by searching
for positive examples.

Definition 5.5 (Positive Example). Positive example pe for the
design synthesized with p = pi is any input trace which satisfies
the specification Φ∗(x , pi).

Positive examples represent cases where the design is working
correctly according to the hard constraints. Positive examples are
gathered after each verification round by searching the input space
surrounding the newly found counterexample.

Definition 5.6 (Exploration). The exploration round computes
the set of positive examples PE by searching the design space sur-
rounding each counterexample x . Exploration can be modeled by
the following SAT problem for xm ∈ x :

∃a. Φ∗(a, pi) ∧
∧

x j ∈x∧j,m

(aj = x j) (6)

While the original CEGIS algorithm tries to fix the design by
enforcing hard constraints on the counterexamples, we direct it to
further enforce soft constraints on the collected positive examples.
This is done by modifying the synthesis round to find a design such
that soft constraints are held for the maximum possible number of
collected positive examples while hard constraints are held for all
visited counterexamples. This new synthesis problem is defined by:

Definition 5.7 (Synthesis Target for Soft Constraints T).

∃p.
∧

x j ∈CE
Φ∗(x j , p) ∧

∑
xi ∈PE

T ∗(xi , p) = n

where T ∗(xi , p) :=
∧

k≤ |xi |

Past(T (xi , p), k) (7)

The synthesis round iteratively solves Eq.7 and decreases n from
|PE | to zero if unsatisfiable.

Theorem 5.8. If satisfiable, CEGIS with soft constraints finds the
program which enforces soft constraints on the maximum number
of collected positive examples.

Proof Outline. Each synthesis round solves Eq.7 by setting n :=
|PE | initially and decrease n if unsatisfiable. Hence, if satisfiable,
parameter p represents the design where soft constraints are held
for maximum n ≤ |PE |. □

ALGORITHM 1: Given sketch F (x), hard constraints C(x),
and soft constraints C ′(x), VeriSketch generates Fsyn(x).
Input :F (x),C (x), C ′ (x) : VeriSketch
Output :Fsyn (x) s.t. ∀x . C(x) : Verilog

1 F (x ,p) ← pre-processing (F (x))
2 FIFT (x , xtaint, p) ← instrumentation (F (x ,p),C(x))
3 P ← CEGIS (FIFT (x , xtaint, p), C(x), C ′(x))
4 if P , unsat then
5 Fsyn(x) ← post-processing (F (x ,p), P)
6 return Fsyn
7 else return unsat

Soft constraints are ignored in the verification round since they
do not necessarily hold for all input traces. This means that the
equisatisfiability of the synthesis problem does not change as soft
constraints are added. Hence, one can add soft constraints without
worrying about making the problem unsatisfiable.

Theorem 5.9. Soft constraints do not impact satisfiability of the
synthesis problem.

Proof Outline. The synthesis parameter, the verification equation,
and hence the domain of valid programs remain the same by adding
soft constraints. Furthermore, the synthesis equation in each round
reduces to the original synthesis equation (i.e., Eq.5) in the worst
case. Thus, the satisfiability does not change. □

Synthesis by soft constraints combines techniques from property-
based and example-based synthesis by automatically searching for
examples which should be generated by the synthesized design.

ALGORITHM 2: Counterexample guided inductive synthe-
sis (CEGIS) for synthesizing sequential circuits with soft con-
straints
Input :Φ (x , p), T (x , p)
Output :pi s.t. ∀x . Φ(x ,pi)

1 Initial Stage:
2 pi ← random assignment
3 CE ← ∅

4 PE ← ∅

5 while 1 do
6 Verification Phase:
7 ce ← SAT (∃x . ¬Φ(x ,pi))
8 if ce = unsat then return pi
9 else

10 CE ← CE ∪ ce

11 Exploration Phase:
12 pem ← SAT (∃a.Φ∗(a, pi) ∧ ∧

ce j ∈ce ∧ j,m
aj = ce j)

13 Φ∗(a, p) :=
∧

k≤ |a |
Past(Φ(a, p), k)

14 if pem , unsat then PE ← PE ∪ pem ;
15 Synthesis Phase:
16 for (l = |PE |; l ≥ 0; i = i − 1) do
17 solution ← SAT ∃p. ∧

x j ∈CE
Φ∗(x j ,p) ∧ (sumpe = l)

18 sumpe :=
∑

x ′j ∈PE
T ∗(x

′

j ,p)

19 T ∗(x
′

j ,p) :=
∧

k≤ |x ′j |
Past(T (x

′

j , p), k)

20 Φ∗(x j , p) :=
∧

k≤ |x j |
Past(Φ(x j , p), k)

21 if solution,unsat then pi ← solution; break
22 else if l=0 then return unsat

23 end
24 end

Alternatively, one can manually specify the positive examples; how-
ever, defining traces of examples for sequential circuits may be chal-
lenging itself. The overall VeriSketch flow and CEGIS algorithm for
synthesizing sequential circuits with soft constraints are shown in
Algorithm 1 and 2, respectively.

6 EXPERIMENTS
We now demonstrate four examples of security-critical hardware
designs that are successfully synthesized by VeriSketch.
• Constant Time Arithmetic Units We implement fixed
point arithmetic units which run in constant time. We use
IFT specification to model constant time behaviour and non-
synthesizable1 portion of the Verilog language to model
functional properties.
• Leakage-free caches:We add sketch constructs (following
the partition lock methodology [48]) to traditional cache

1Synthesizable in this case refers to the portion of the language that can be mapped to
a gate-level netlist. Complex Verilog operators can only be used in simulation.

Table 3: Summary of synthesized designs in terms of lines
code for the sketch, synthesized code and specifications.

Design
Sketch LoC Spec. LoC Syn. LoC

VeriSketch VeriSketch Verilog/AST

Fixed Point Arithmetic 59 33 107/961
Direct Mapped Cache 243 73 379/3809

4-way Set Associative Cache 303 73 512/6098
Hardware Thread Scheduler 73 92 365/2308

SoC Arbiter 57 80 487/4262

architectures and synthesize two caches (direct mapped and
4-way set associative) which are resilient against timing side
channel attacks. We model resilience against timing side
channel attacks as IFT properties and add soft constraints to
model performance traits.
• Hardware thread schedulers: We synthesize schedulers
for fine-grained multithreading in mixed criticality systems
by defining properties regarding confidentiality between
threads, guaranteed scheduling frequency, and timing pre-
dictability. We define three sketches of different size and
synthesize each to satisfy different combinations of the prop-
erties along with soft constraints modeling efficiency and
fairness.
• System-on-chip (SoC) arbiters:We synthesize arbiters to
mediate access in bus architectures by enforcing (one or
multiple of) non-interference, access control, priority, and
fairness between the cores.

Table 3 shows the code size for the biggest synthesized design
in each experiment set. These numbers are reported in terms of
lines of code written in VeriSketch language for the sketch and
specification (i.e., the formal testbench) and in Verilog and AST
for the synthesized code. We will first explain the implementation
details of the framework and then discuss the synthesized designs.

6.1 Implementation
As shown in Fig. 1 and Algorithm 1 VeriSketch flow consists of
an IFT engine and a program synthesis unit. The IFT tool uses the
Yosys [49] front-end parser to get the AST representation of the
Verilog design. It then analyzes the design’s data and control graph
along with the security properties to generate the corresponding
information flow tracking logic. It writes back the instrumented
design in Verilog. The instrumented Verilog design is then given to
the synthesis unit to search for the ideal parameter. The program
synthesis unit makes calls to a SAT/SMT solver for verification, ex-
ploration, and synthesis. This unit can either use a commercial EDA
tool (Questa Formal Tool from Mentor Graphics) or open source
solvers (Any of Yices2 [14], Boolector [8], Z3 [12], or CVC4 [5]) by
using Yosys to translate Verilog to SMT-LIB2 representation.

6.2 Constant Time Arithmetic Units
The Verilog language supports multiplication and division opera-
tors; however, these operators cannot be directly mapped to hard-
ware by EDA tools due to their complexity. For instance the state-
ment “assign c=a\b;" requires the EDA tool to build a divider

module div (clk, start, dividend, divisor, quotient, done, overflow);
 assign flag = reg_a (>=,>,<,=>) reg_b;
 always @(posedge clk) begin
 if(done && start)
 //initialize …
 reg_q[reg_count] ?= ??;
 reg_b ?= reg_b(>>, <<, <<<, >>>) ??;
 reg_a ?= reg_a - reg_b;
 quotient ?= reg_q;
 ctrl_vars = [start, done, count_done, flag];
 //counter, overflow and sign logic …

assert (dividend, divisor -/->t quotient);
assert (done && divisor!=0 |->(|quotient-((dividend << Q)/divisor)|<=1));

endmodule

module div (clk, start, dividend, divisor, quotient, done, overflow);
assign flag = reg_a >= reg_b;
always @(posedge clk) begin
 if(done && start)
 //initialize …
 if(!reg_done && !count_done && (reg_a >= reg_b))
 reg_q [reg_count] <= 1;
 if(!reg_done)
 reg_b <= reg_b << 1;
 if(!reg_done && (reg_a >= reg_b))
 reg_a <= reg_a - reg_b;
 if (!start & !done & count_done)
 quotient <= reg_q;
 //counter, overflow and sign logic …

endmodule
(a) (b)

Figure 4: Synthesizing a constant time fixed point divider using VeriSketch. (a) Sketch of a shift-and-subtract divider where
the structure of the procedural statements, operations, and constant values are left unspecified as shown by the highlighted
code. Constant time and functional properties are modeled by IFT and built-in Verilog operators, respectively. (b) The divider
unit generated by VeriSketch. The highlighted parts show the code that is generated automatically.

which runs in a single cycle. As this is not feasible in most cases,
the complex operations can only be used in simulation and the
hardware designers need to implement arithmetic units using low
level operators. These arithmetic units run in multiple cycles and
could have early termination based on the operands’ values which
leaks information about the values. We use VeriSketch to design
fixed point multiplier and divider units which run in constant time
independent of their operands’ values.

Sketches and Properties. We sketch a shift-and-add multiplication
unit and a shift-and-subtract division unit for fixed point computa-
tion as described in [1]. The sketch of the divider unit along with
the functional and security properties are shown in Fig. 4(a). We
leave the structure of the procedural statements undefined using
“?=” construct and ask the synthesizer to find the correct control
logic and cycle-level register updates using the list of the control
variables in the design (start,done,count_done and flag). Here,
start and done indicate the beginning and end of the computation
while count_done shows that the counter has reached its maximum
value. Variable flag is defined in the sketch. For simplicity, control
signals ctrl_vars are globally defined for all assignments. We also
use low-level sketch constructs to leave operations and constant
values undefined. The first assertion in Fig. 4(a) describes constant
time requirements using IFT operators. The second property states
that the quotient computed by the sequential circuit should differ
from the value computed by the built-in operations by at most one
bit. This error value is equivalent to 2−Q where Q is the number
of bits used to represent the fractional segment. The dividend is
shifted by Q bits to follow the fixed point representation.

Synthesized Designs. The divider unit synthesized by VeriSketch
is shown in Fig. 4(b). VeriSketch finds the appropriate control sig-
nal to guard execution of the procedural statements as shown by
the if statements. The last statement ensures that the final output
quotient is updated at a constant time, even though the intermedi-
ate variable reg_qmay contain the final result sooner. This example
shows how the IFT unit safely downgrades timing variations (Eq. 3)
from reg_q to quotient since count_done fully controls timing of
the updates to the quotient. We skip reporting the details of the
synthesized multiplier as it is similar to the divider.

module Sketch_Cache(…);
 assign skip =
 (!rd & wr & !hit & lru_block[m])| (rd & !wr & !hit & lru_block[m])
 |(!rd & !wr & hit & lru_block[m])|(!rd & !wr & !hit & lru_block[m])|
 (!rd & !wr & hit & !lru_block[m]);
 assign lru_update =
 (rd & !wr & waiting & stall & !lock)|(rd & !wr & waiting & !stall & !lock)|
 (rd & !wr & !waiting & stall & !lock)|(rd & !wr & !waiting & !stall & !lock)|
 (!rd & wr & waiting & !stall & !lock)|(!rd & wr & !waiting & stall & !lock)|
 (rd & wr & waiting & !stall & lock) |(rd & wr & waiting & !stall & !lock)|
 (rd & wr & !waiting & !stall & lock);
always @ (posedge clk)
 if(!skip)
 //cache rd/wr
 if(lru_update)
 //update LRU
 else
 //direct memory access
endmodule

Figure 5: VeriSketch synthesizes the sketch from Fig. 2(a) to
a fully specifiedVerilog design thatmeets the functional and
security properties specified in Example 5.4.

6.3 Leakage-Free Cache
We use VeriSketch to modify an existing (non-secure) cache im-
plementation such that it defends against timing attacks. We de-
fine sketch and properties for this set of experiments as shown in
Fig. 2(a) and Example 5.4 for both a direct mapped and a 4-way set
associative cache (with the difference that the direct mapped cache
does not require LRU logic). Fig. 5 shows the output of VeriSketch
Synthesizing a fully specified and functional Verilog design. We
only show the parts of the code that is automatically generated. The
synthesized skip logic indicates that when a read or write request
result in a cache miss, it should skip the cache and go through
direct memory access if the block to be evicted is locked. The cache
design created by VeriSketch does not update the LRU state when
a locked cache block is accessed, and hence eliminates the timing
leakage in the original PLCache. Note that as the comb syntax is
mapped to a BDD, it generates logic for certain input combinations
that do not occur in execution (e.g., having both a read and write
request). Using Yices2 [14] as the SMT solver, the synthesis process
takes around six and eight hours for the direct mapped and set
associative caches, respectively. The synthesis time in this set of
experiments are considerably longer compared to the ones reported
in the rest of the examples and are dominated by the time taken to
perform bounded model checking in the verification rounds. This

is due to the fact that formally verifying and reasoning about mem-
ory elements take large amount of time. This can be alleviated by
abstracting the unrelated data path or giving hints to the solver on
what the relevant variables are. We leave this problem for future
work.

6.3.1 Security Analysis of Sketch Cache vs. PLCache. The PLCache
is resilient against the original Percival attack as the victim’s access
to its preloaded data results in a cache hit and does not evict the
attacker’s data. However, accessing preloaded data changes the LRU
bits of that cache set. More specifically, accessing the preloaded data
marks the locked block as the most recently used block in the set;
and it prioritizes other blocks in the set for eviction. Consequently,
even though accessing locked data does not evict the attacker’s data
directly, it prioritizes eviction of the attacker’s data. In order to exploit
this subtle change in the state of the cache, we extend the Percival
attack such that the adversary can observe the effect of the change
in the LRU bits. This is done by adding an extra stage to the attack
where the attacker tries to evict its own data. If the attacker is
able to evict its data (i.e., the attacker observes an increased access
time in the next access), it indicates that the attacker’s data has
been prioritized for eviction as a result of the victim’s action. The
Percival attack is extended as suggested by the counterexample
trace collected while verifying the PLCache.

//(1) Victim preloading sensitive addresses
pid=1, lock=1, addr=0x801, addr_s=0x0,stall=1, rd_proc_t=0

pid=1, lock=1, addr=0x801, addr_s=0x0, stall=0, rd_proc_t=0

//(2) Adversary filling the cache block
pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=0, rd_proc_t=0

pid=0, lock=0, addr=0xE01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xE01, addr_s=0x0, stall=0, rd_proc_t=0

pid=0, lock=0, addr=0xF01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xF01, addr_s=0x0, stall=0, rd_proc_t=0

//(3) Victim accessing preloaded data
pid=1, lock=1, addr=0x801, addr_s=0xFFFF, stall=0, rd_proc_t= 0xFFFF

//(4) Adversary actions exposing the effect of the LRU bits
pid=0, lock=0, addr=0xF81, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xF81, addr_s=0x0, stall=0, rd_proc_t=0

//(5) Adversary getting a cache miss
pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=1, rd_proc_t=0x0

pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=0, rd_proc_t= 0xFFFF

//(1) Victim preloading sensitive addresses
pid=1, lock=1, addr=0x801, addr_s=0x0, stall=1, rd_proc_t=0

pid=1, lock=1, addr=0x801, addr_s=0x0, stall=0, rd_proc_t=0

//(2) Adversary filling the cache block
pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=0, rd_proc_t=0

pid=0, lock=0, addr=0xE01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xE01, addr_s=0x0, stall=0, rd_proc_t=0

pid=0, lock=0, addr=0xF01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xF01, addr_s=0x0, stall=0, rd_proc_t=0

//(3) Victim accessing another cache set
pid=1, lock=0, addr=0x802, addr_s= 0x0, stall=0,rd_proc_t= 0x0

//(4) Adversary actions exposing the effect of the LRU bits
pid=0, lock=0, addr=0xF81, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xF81, addr_s=0x0, stall=0, rd_proc_t=0

//(5) Adversary getting a cache hit
pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=0, rd_proc_t=0x0

(a) (b)

Figure 6: Timing leakage in PLCache. (a) Victim process
(pid=1) accesses its locked data in stage 3. This results in a
cache miss for the attacker in stage 5 (shown by stall=1).
The verification tool captures this since rd_proc_thas aHiдh
value in stage 5. (b) Victim does not access its locked data in
stage 3 and the attacker observes a cache hit in stage 5.

Fig. 6 shows the results of simulating the PLCache with simu-
lation traces that resemble the extended Percival attack. In both
Fig. 6(a) and (b) the victim process first preloads and locks its data
(stage 1). Next, the adversary fills the cache set, but fails to evict the
locked block (stage 2). Fig. 6(a) represents the case where the victim
accesses its locked data at stage 3 making the locked data the most
recently used block and the attacker’s data the least recently used
block. Fig. 6(b) represent the case where the victim accesses some
other cache set and leaves the LRU bits unmodified (i.e., the locked
block remains the least recently used block). In stage 4, the adver-
sary aims to observe the change in the LRU bits by trying to evict
the its own data that was used to fill cache in stage 2. In case (a),
adversary’s access to the cache set evicts its own data since victim’s
action from stage 3 has prioritized eviction of the attacker’s data.
In case (b), the attacker’s access to the cache is skipped because

the least recently used block is locked and cannot be evicted. The
adversary is able to observe the difference in victim’s action from
stage 3 at stage 5 through timing variation. In case (a) the adversary
experiences a cache miss (i.e., increased cache access time) while
in case (b) adversary’s access results in a cache hit. This difference
is shown in the value of the stall signal in simulation. The IFT
instrumentation shows a high value for rd_proc_t at stage 5 of
Fig. 6(a) which is a violation of the security property specified in
Example 5.4. VeriSketch synthesizer mitigates this vulnerability
by generating the lru_update logic such that accessing locked
blocks does not change the LRU bits (and any other hardware state).
Results of simulating the synthesized cache by the same traces are
available in Appendix B.

6.3.2 Soft Constraint Analysis. As described in Section 5.3, per-
formance related soft constraints are essential for synthesizing
a practical cache. In order to analyze the effect, we simulate the
caches which are synthesized with and without soft constraints
using memory traces from the CloudSuite benchmarks [19]. Fig. 7
shows cache misses for simulating 4-way set associative caches of
size 32KB with one million memory traces for each application. All
numbers are normalized to the number of misses for a non-secure
cache of the same size. As shown by the graph, the cache which
is synthesized with soft constraints has a considerable lower miss
rate.

N
or

m
al

iz
ed

 n
um

be
r o

f c
ac

he
 m

is
se

s

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

SAT Solver Data Serving Map
Reduce-c

Map
Reduce-w

Media
Streaming

TPCC DB2 TPCC
Oracle

Web
Frontend

Web Search

Synthesized With Soft Constraints Synthesized Without Soft Constraints

Figure 7: Number of cache misses for caches synthesized
with and without soft constraints simulated with memory
traces from CloudSuite benchmarks [19]. The numbers are
normalized to the number of cache misses from a non-
secure cache.

6.4 Hardware Thread Scheduler
Here we describe design of a hardware thread scheduler module
for fine-grained multithreading in mixed criticality systems [9].
The design problem is borrowed from the FlexPRET project [55]
which implements a processor dedicated to real time needs. We
have expanded the scheduler design by introducing confidentiality
requirements and automatically generating different modifications
of it. The scheduler decides which hardware thread should execute
at each clock cycle based on inputs from the operating system. These
inputs consists of two vectors freq and mode. freq specifies the
expected execution frequency for the threads, and mode describes

Table 4: Summary of synthesized thread schedulers.

Sketch
Size Prop. Time(sec.)[Syn., Ver., Exp.]

- E F

72bits
V G C 9, 3, - 11, 5, 2 14, 4, 3
V G P 7, 4, - 13, 4, 3 10, 3, 2
V G C P 9, 3, - 12, 4, 2 15, 5, 3

192bits
V G C 50, 12, - 175, 17, 14 187, 19, 14
V G P 114, 18, - 140, 19, 11 221, 22, 15
V G C P 105, 20, - 205, 24, 15 209, 21, 15

232bits
V G C 185, 17, - 338, 27, 23 877, 29, 31
V G P 357, 20, - 831, 32, 28 1592, 38, 38
V G C P 412, 23, - 781, 32, 27 2900, 71, 44

different traits of each thread. These traits state if the thread has
hard real-time or soft real-time requirements, whether or not it
carries sensitive information, and if it is active or asleep at the
given cycle.

Sketches and Properties. The scheduler sketch consists of two
FSMs and one combinational function written with seq and comb
syntax, respectively. The first FSM outputs a thread_id based
on the given frequencies freq. The second FSM generates a new
thread_id according to the result of the first FSM and the mode
signal. The combinational function selects between the outputs
of these two FSMs. This implements two interleaving schedulers
where details of the scheduling schemes are unspecified. We have
modeled different properties regarding real-time requirements, fair-
ness, confidentiality, and efficiency as hard and soft constraints. The
real-time properties, borrowed from [55], include timing predictabil-
ity for hard real-time threads, and guaranteed expected frequency
for soft real-time threads. Timing predictability requires the sched-
uler to give the hard real-time the exact frequency that they asked
for. Guaranteed frequency on the other hand, requires the sched-
uler to give the soft real-time threads at least what they asked for.
This enables the scheduler to assign soft real-time threads to any
empty slots (for instance caused by others being asleep). Hence,
the soft real-time threads can have expected frequency of zero and
still get to execute. Both of these properties are modeled as hard
constraints. We also model fairness for the extra quota given to
soft real-time threads as soft constraints. The confidentiality re-
quirement states that activity status of sensitive threads should
not be revealed. We model this as an IFT property by assigning
High labels to active/asleep bit of sensitive threads, and asserting
that the scheduler output should maintain a Low label. Enforcing
this property changes how the scheduler assigns empty slots to
available soft real-time threads. Lastly, an efficiency property – mod-
eled as a soft constraint – synthesizes a scheduler which selects
active threads for execution. If written as a hard constraint, the
problem becomes unsatisfiable due to cases where no active thread
is available for scheduling. This experiment illustrates how soft
and hard constraints are used in property-based program synthesis
frameworks. While security and safety requirements are modeled
as hard constraints since they should be held unconditionally, soft
constraints are helpful for modeling properties regarding system
performance.

Table 5: Summary of synthesized SoC Arbiters.

Design Properties
Time
(sec.)

Arbiter w/ 4 cores
and 1 shared unit

338 bits

WISHBONE [32] 248
WISHBONE w/ priority for core 1 162

Priority-based access 616
WISHBONE w/ no access for core 1 171

TDMA 128
Non-interference b/w all cores 157
Non-interference b/w cores 1&2 113

Arbiter w/ 4 cores
and 3 shared unit

1014 bits

U1: Non-interference
U2: Non-interference bw/ cores 1&2

U3: WISHBONE 312
U1: Non-interference

U2: Non-interference bw/ cores 1&3
U3: WISHBONE w/o access for cores 2&3 278
U1: WISHBONE w/o access for core 3

U2: Priority-based access
U3: WISHBONE 719

Synthesized Designs. In order to show how the sketch size af-
fects synthesis time, we generate the circuitry from three different
templates. We gradually add the sketch constructs and decrease the
manually specified details to observe the effect. Synthesis results
are shown in Table 4 where the property abbreviations are as fol-
lows. V: Valid thread id, C: Confidentiality for sensitive threads, P:
Predictability for hard real-time threads, G: Guaranteed frequency,
E: Only Scheduling available threads, F: Fairness between soft real
time threads. The formal representation of these properties is avail-
able in Table 6 in Appendix B. As shown in Table 4, the synthesis
time increases proportionally to the sketch size mostly due to the
increase in the time spent on synthesis. In the first set of experi-
ments we only leave the combinational select logic unspecified, and
implement everything else manually. For the other two rounds, we
replace the FSMs with sketches as well. For each set, we synthesize
the sketch using various combinations of the discussed properties.
The synthesis time increases as soft constraints are added. This in-
crease is mainly caused by multiple synthesis stages which fail and
are replayed by relaxing the problem. Collecting positive examples
does not contribute much to the overall time. Yices2 [14] is used as
the SMT solver for generating all the designs in these experiments.

6.5 SoC Arbiter
System-on-chip arbiters which mediate accesses in bus architec-
tures have been shown to be vulnerable against timing side channel
attacks [33, 35]. The vulnerability arises as different cores which are
requesting access to a shared unit can infer about each others access
pattern based on the time they are granted access themselves. We
model timing side channel elimination as IFT properties to enforce
non-interference between mutually untrusted cores. We further
specify various functional properties and synthesize multiple SoC
arbiters from generic FSM sketches.

Sketches and Properties. To synthesize the arbiter module, we
have sketched three FSMs where state transitions are left unspeci-
fied. The one-hot encoded req and grant signals indicate the in-
coming requests and the given grant at each clock cycle. The first

two FSMs are defined using seq syntax with different sets of inputs.
The first one takes req and grant as inputs, and the second one
models a smaller FSM where state transitions are independent of
the incoming requests. While the second FSM models designs that
can be generated by the first one, it can more quickly synthesize ar-
biters where the scheduling is independent of the input (e.g., TDMA
policy). The third sketch models an FSM which groups different
cores in disjoint sets. Finally, we sketch a combinational logic which
selects one of the FSMs. We define two sets of sketches modeling
an arbiter module which mediates between four cores sending re-
quests to one and three shared units. We define properties regarding
access control, non-interference, and priority-based scheduling to
synthesize different arbiters. The formal representation of these
properties is available in Table 7 in Appendix B.

Synthesized Designs. Table 5 shows the result of synthesizing
different arbiters by combining different sets of properties. Note
that while the sketch includes multiple FSMs, only one of them is
chosen and synthesized by CEGIS. Using this strategy, the sketch
can be automatically selected from a pool of available sketches
eliminating the need to explicitly determine a single template for
synthesis. The first four designs from Table 5 are synthesized by
the first most generic template. The next two designs are gener-
ated from our second template. Lastly, adding non-interference
properties between two cores results in using the third template
where different cores are appropriately placed in separate groups.
As we can see from the results, adding IFT properties speeds up the
synthesis procedure because these properties constrain the high-
level structure of the design. In the next round of experiments, we
replicated the templates to synthesize an arbiter which mediates
accesses to three shared units with distinct policies.Ui in the table
refers to shared uint number i . The last column of Table 5 shows
the time taken for synthesis using Questa Formal Tool.

7 CONCLUSION
Thiswork presents a semi-automated and security-orientedmethod-
ology for designing hardware with formal proof of security. The
proposed design framework consists of language support for sketch-
ing digital circuitry, and a set of techniques for translating partially
writtenHDL codes into complete designs that provably complywith
the designers’ functional and security specifications. The proposed
flow speeds up and simplifies the lengthy process of hardware de-
sign and verification, and acquaints the traditional design flow with
automated enforcement of security properties. We have shown how
combining program synthesis techniques with the model of infor-
mation flow enables generating hardware units which are correct
and secure by construction.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under grant no. CNS-1527631 and CNS-1563767.

REFERENCES
[1] [n. d.]. The reference community for Free and Open Source gateware IP cores.

https://opencores.org/project,verilog_fixed_point_math_library.
[2] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund

Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama, Emina

Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In Formal Methods
in Computer-Aided Design (FMCAD), 2013. IEEE, 1–8.

[3] Armaiti Ardeshiricham, Wei Hu, and Ryan Kastner. [n. d.]. Clepsydra: Modeling
Timing Flows in Hardware Designs. In International Conference on Computer-
Aided Design (ICCAD), 2017.

[4] Armaiti Ardeshiricham, Wei Hu, Joshua Marxen, and Ryan Kastner. [n. d.]. Reg-
ister Transfer Level Information Flow Tracking for Provably Secure Hardware
Design. In Proceedings of the 2017 Conference on Design, Automation & Test in
Europe.

[5] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011. Cvc4. In
International Conference on Computer Aided Verification. Springer, 171–177.

[6] Andrew Becker, David Novo, and Paolo Ienne. [n. d.]. Automated circuit elabora-
tion from incomplete architectural descriptions. In Signals, Systems and Comput-
ers, 2013 Asilomar Conference on.

[7] Andrew Becker, David Novo, and Paolo Ienne. 2014. SKETCHILOG: Sketching
combinational circuits. In Proceedings of the conference on Design, Automation &
Test in Europe.

[8] Robert Brummayer and Armin Biere. 2009. Boolector: An efficient SMT solver
for bit-vectors and arrays. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. Springer, 174–177.

[9] Alan Burns and Robert Davis. 2013. Mixed criticality systems-a review. (2013),
1–69.

[10] Kai-Hui Chang, Igor L Markov, and Valeria Bertacco. [n. d.]. Fixing design errors
with counterexamples and resynthesis. In Design Automation Conference, 2007.
Asia and South Pacific.

[11] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H Lai. 2018. SGXPECTRE Attacks: Leaking Enclave Secrets via Speculative
Execution. arXiv preprint arXiv:1802.09085 (2018).

[12] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[13] Jordan Dimitrov. 2001. Operational semantics for Verilog. In Software Engineering
Conference, 2001. APSEC 2001. Eighth Asia-Pacific. IEEE, 161–168.

[14] Bruno Dutertre. 2014. Yices 2.2. In International Conference on Computer Aided
Verification. Springer, 737–744.

[15] Niklas Eén and Niklas Sörensson. 2003. Temporal induction by incremental SAT
solving. Electronic Notes in Theoretical Computer Science 89, 4 (2003), 543–560.

[16] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, Dmitry Ponomarev,
et al. 2018. BranchScope: A New Side-Channel Attack on Directional Branch Pre-
dictor. In Proceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM, 693–707.

[17] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program synthesis
using conflict-driven learning. In Proceedings of the 39th ACM SIGPLANConference
on Programming Language Design and Implementation. ACM, 420–435.

[18] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri.
2017. Component-based synthesis of table consolidation and transformation
tasks from examples. ACM SIGPLAN Notices 52, 6 (2017), 422–436.

[19] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad
Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia
Ailamaki, and Babak Falsafi. 2012. Clearing the Clouds: A Study of Emerging Scale-
out Workloads on Modern Hardware. Proceedings of the Seventeenth International
Conference on Architectural Support for Programming Languages and Operating
Systems (2012). http://infoscience.epfl.ch/record/173764

[20] Matthew Fredrikson, Richard Joiner, Somesh Jha, Thomas Reps, Phillip Porras,
Hassen Saïdi, and Vinod Yegneswaran. 2012. Efficient runtime policy enforcement
using counterexample-guided abstraction refinement. In International Conference
on Computer Aided Verification. Springer, 548–563.

[21] Vinod Ganapathy, Trent Jaeger, and Somesh Jha. 2006. Retrofitting legacy code
for authorization policy enforcement. IEEE.

[22] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. 2011.
Synthesis of loop-free programs. ACM SIGPLAN Notices 46, 6 (2011), 62–73.

[23] William R Harris, Somesh Jha, and Thomas Reps. 2010. DIFC programs by
automatic instrumentation. In Proceedings of the 17th ACM conference on Computer
and communications security. ACM, 284–296.

[24] William R Harris, Somesh Jha, Thomas W Reps, and Sanjit A Seshia. 2017. Pro-
gram synthesis for interactive-security systems. Formal Methods in System Design
51, 2 (2017), 362–394.

[25] Stefan Heule, Eric Schkufza, Rahul Sharma, and Alex Aiken. 2016. Stratified
synthesis: automatically learning the x86-64 instruction set. In ACM SIGPLAN
Notices, Vol. 51. ACM, 237–250.

[26] Wei Hu, Andrew Becker, Armita Ardeshiricham, Yu Tai, Paolo Ienne, Dejun Mu,
and Ryan Kastner. 2016. Imprecise security: quality and complexity tradeoffs for
hardware information flow tracking. In Computer-Aided Design (ICCAD), 2016
IEEE/ACM International Conference on. IEEE, 1–8.

[27] Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish Tiwari. 2010. Oracle-
guided component-based program synthesis. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1. ACM, 215–224.

https://opencores.org/project,verilog_fixed_point_math_library
http://infoscience.epfl.ch/record/173764

[28] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, StefanMangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. 2018.
Spectre attacks: Exploiting speculative execution. arXiv preprint arXiv:1801.01203
(2018).

[29] Xun Li, Vineeth Kashyap, Jason K Oberg, Mohit Tiwari, Vasanth Ram Rajarathi-
nam, Ryan Kastner, Timothy Sherwood, Ben Hardekopf, and Frederic T Chong.
2014. Sapper: A language for hardware-level security policy enforcement. ACM
SIGARCH Computer Architecture News 42, 1 (2014), 97–112.

[30] Xun Li, Mohit Tiwari, Jason K Oberg, Vineeth Kashyap, Frederic T Chong, Tim-
othy Sherwood, and Ben Hardekopf. 2011. Caisson: a hardware description
language for secure information flow. In ACM SIGPLAN Notices, Vol. 46. ACM,
109–120.

[31] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
2018. Meltdown. arXiv preprint arXiv:1801.01207 (2018).

[32] Milica Mitić and Mile Stojčev. 2006. A survey of three system-on-chip buses:
AMBA, coreconnect and wishbone. In Proc. 41st Int. Conf. Inform. Commun.
Energy Syst. Technol.(ICEST). Citeseer, 282–285.

[33] Jason Oberg, Wei Hu, Ali Irturk, Mohit Tiwari, Timothy Sherwood, and Ryan
Kastner. 2011. Information flow isolation in I2C and USB. In Proceedings of the
48th Design Automation Conference. ACM, 254–259.

[34] J. Oberg, S. Meiklejohn, T. Sherwood, and R. Kastner. 2014. Leveraging gate-
level properties to identify hardware timing channels. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on 33, 9 (2014), 1288–1301.

[35] Jason Oberg, Timothy Sherwood, and Ryan Kastner. 2013. Eliminating timing
information flows in a mix-trusted system-on-chip. IEEE Design & Test 30, 2
(2013), 55–62.

[36] Colin Percival. 2005. Cache missing for fun and profit. (2005).
[37] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program

synthesis from polymorphic refinement types. ACM SIGPLAN Notices 51, 6
(2016), 522–538.

[38] Nadia Polikarpova, Jean Yang, Shachar Itzhaky, and Armando Solar-Lezama. 2016.
Type-Driven Repair for Information Flow Security. CoRR abs/1607.03445 (2016).
arXiv:1607.03445 http://arxiv.org/abs/1607.03445

[39] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, Etienne Le Sueur, and Gernot Heiser. [n.
d.]. Automatic device driver synthesis with Termite. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles, 2009.

[40] Leonid Ryzhyk, Adam Walker, John Keys, Alexander Legg, Arun Raghunath,
Michael Stumm, and Mona Vij. 2014. User-Guided Device Driver Synthesis.. In
OSDI. 661–676.

[41] Calvin Smith and Aws Albarghouthi. 2016. MapReduce program synthesis. ACM
SIGPLAN Notices 51, 6 (2016), 326–340.

[42] Armando Solar-Lezama. 2013. Program sketching. International Journal on
Software Tools for Technology Transfer 15, 5-6 (2013), 475–495.

[43] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay
Saraswat. 2006. Combinatorial sketching for finite programs. ACM SIGOPS
Operating Systems Review 40, 5 (2006), 404–415.

[44] Sooel Son, Kathryn S McKinley, and Vitaly Shmatikov. 2013. Fix Me Up: Repairing
Access-Control Bugs in Web Applications.. In NDSS.

[45] Pramod Subramanyan, Bo-Yuan Huang, Yakir Vizel, Aarti Gupta, and Sharad
Malik. 2017. Template-based Parameterized Synthesis of Uniform Instruction-
Level Abstractions for SoC Verification. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (2017).

[46] Mohit Tiwari, Hassan M.G. Wassel, Bita Mazloom, Shashidhar Mysore, Frederic T.
Chong, and Timothy Sherwood. 2009. Complete Information Flow Tracking from
the Gates Up. In International Conference on Architectural Support for Programming
Languages and Operating Systems. 109–120. https://doi.org/10.1145/1508244.
1508258

[47] Xinyu Wang, Isil Dillig, and Rishabh Singh. 2017. Synthesis of data completion
scripts using finite tree automata. Proceedings of the ACM on Programming
Languages 1, OOPSLA (2017), 62.

[48] Zhenghong Wang and Ruby B Lee. 2007. New cache designs for thwarting soft-
ware cache-based side channel attacks. In ACM SIGARCH Computer Architecture
News.

[49] Clifford Wolf. [n. d.]. Yosys Open SYnthesis Suite. http://www.clifford.at/yosys/.
([n. d.]).

[50] Bo-Han Wu, Chun-Ju Yang, Chung-Yang Ric Huang, and Jie-Hong Roland Jiang.
[n. d.]. A robust functional ECO engine by SAT proof minimization and interpola-
tion techniques. In Proceedings of the International Conference on Computer-Aided
Design, 2010.

[51] Navid Yaghmazadeh, Christian Klinger, Isil Dillig, and Swarat Chaudhuri. 2016.
Synthesizing transformations on hierarchically structured data. In ACM SIGPLAN
Notices, Vol. 51. ACM, 508–521.

[52] Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. 2017. Sqlizer:
Query synthesis from natural language. Proceedings of the ACM on Programming
Languages 1, OOPSLA (2017), 63.

[53] Danfeng Zhang, Yao Wang, G Edward Suh, and Andrew C Myers. 2015. A
hardware design language for timing-sensitive information-flow security. In

ACM SIGARCH Computer Architecture News, Vol. 43. ACM, 503–516.
[54] Sai Zhang and Yuyin Sun. 2013. Automatically synthesizing sql queries from input-

output examples. In Proceedings of the 28th IEEE/ACM International Conference
on Automated Software Engineering. IEEE Press, 224–234.

[55] Michael Zimmer, David Broman, Chris Shaver, and Edward A Lee. 2014. FlexPRET:
A processor platform for mixed-criticality systems. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2014 IEEE 20th. IEEE, 101–110.

APPENDIX
A SECURITY ANALYSIS OF SKETCH CACHE

VS. PLCACHE
Results of simulating PLCache and the sketch cache with traces that
represent the extended Percival attack on LRU bits are shown in
Fig. 8. Fig. 8(a) and (b) show the results of simulating PLCache and
are identical to Fig. 6(a) and (b). Fig. 8(c) and (d) show the results of
simulating the sketch cache. Fig. 8(a) and (c) show the case where
the victim process (pid=1) accesses its locked data at stage 3 (case
A). Fig. 8(b) and (d) represent the case where the victim does not
access its locked data and accesses a different cache set (case B). In
this simple example we use the 4 lowest bits as index; hence, all
addresses except for 0x802 map to the same cache set.

The extended Percival attack on the LRU bits of a partition locked
cache comprises five stages. In the first stage the victim process
preloads and locks its sensitive data. Next, the attacker fills the
cache set but is not able to evict the cache block which contains
the locked data. At this point, the cache set includes the victim’s
locked data as well as the attacker’s data. Furthermore, the attacker
knows that its data is the most recently used data as it was just
accessed. Now, consider case A where the victim process accesses
its locked data at stage 3. This access results in a cache hit. In
PLCache (Fig. 8(a)) this access changes the LRU bits by making
the locked data the most recently used block and consequently
making the attacker’s data the least recently used block. In the
sketch cache (Fig. 8(c)) this access does not modify the LRU bits
and the locked block remains the least recently used. In case B,
the LRU bits remain unmodified in both PLCache and the sketch
cache (Fig. 8(b) and (d)). In stage 4, the attacker aims to observe
the potential changes in the LRU bits. This is done by the attacker
trying to bring new data to the cache in order to force an eviction
in the set. In PLCache, the attacker is able to evict its own data
in case A since it had become the least recently used. However, it
cannot evict its data in case B because the locked data is the least
recently used block which cannot be evicted. In the synthesized
cache, the attacker is not able to force an eviction in any of the
cases. In stage 5, the attacker accesses the data which was brought
to the cache in stage 2. In PLCache, this results in a cache miss in
case A and a cache hit in case B. Hence, the attacker can observe
the difference between the two cases through the timing variation.
In our simulations, this timing variation manifests itself through
the value of the stall signal and the timing label of the data which
is read by the processor rd_data_proc_t (Fig. 8(a) vs. Fig. 8(b)). In
the synthesized cache, the adversary observes a cache hit in both
cases (Fig. 8(c) vs. Fig. 8(d)).

B PROPERTIES FOR SYNTHESIZING THREAD
SCHEDULERS AND SOC ARBITERS

http://arxiv.org/abs/1607.03445
http://arxiv.org/abs/1607.03445
https://doi.org/10.1145/1508244.1508258
https://doi.org/10.1145/1508244.1508258
http://www.clifford.at/yosys/

//Sketch Cache — Case A
//(1) Victim preloading sensitive addresses
pid=1, lock=1, addr=0x801, addr_s=0x0,stall=1, rd_proc_t=0

pid=1, lock=1, addr=0x801, addr_s=0x0, stall=0, rd_proc_t=0

//(2) Adversary filling the cache block
pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=0, rd_proc_t=0

pid=0, lock=0, addr=0xE01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xE01, addr_s=0x0, stall=0, rd_proc_t=0

pid=0, lock=0, addr=0xF01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xF01, addr_s=0x0, stall=0, rd_proc_t=0

//(3) Victim accessing preloaded data
pid=1, lock=1, addr=0x801, addr_s=0xFFFF, stall=0, rd_proc_t= 0xFFFF

//(4) Adversary actions exposing the effect of the LRU bits
pid=0, lock=0, addr=0xF81, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xF81, addr_s=0x0, stall=0, rd_proc_t=0

//(5) Adversary getting a cache hit
pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=0, rd_proc_t=0x0

Sketch Cache — Case B
//(1) Victim preloading sensitive addresses
pid=1, lock=1, addr=0x801, addr_s=0x0, stall=1, rd_proc_t=0

pid=1, lock=1, addr=0x801, addr_s=0x0, stall=0, rd_proc_t=0

//(2) Adversary filling the cache block
pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=0, rd_proc_t=0

pid=0, lock=0, addr=0xE01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xE01, addr_s=0x0, stall=0, rd_proc_t=0

pid=0, lock=0, addr=0xF01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xF01, addr_s=0x0, stall=0, rd_proc_t=0

//(3) Victim accessing another cache set
pid=1, lock=0, addr=0x802, addr_s= 0x0, stall=0,rd_proc_t= 0x0

//(4) Adversary actions exposing the effect of the LRU bits
pid=0, lock=0, addr=0xF81, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xF81, addr_s=0x0, stall=0, rd_proc_t=0

//(5) Adversary getting a cache hit
pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=0, rd_proc_t=0x0

(c) (d)

//PLCache — Case A
//(1) Victim preloading sensitive addresses
pid=1, lock=1, addr=0x801, addr_s=0x0,stall=1, rd_proc_t=0

pid=1, lock=1, addr=0x801, addr_s=0x0, stall=0, rd_proc_t=0

//(2) Adversary filling the cache block
pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=0, rd_proc_t=0

pid=0, lock=0, addr=0xE01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xE01, addr_s=0x0, stall=0, rd_proc_t=0

pid=0, lock=0, addr=0xF01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xF01, addr_s=0x0, stall=0, rd_proc_t=0

//(3) Victim accessing preloaded data
pid=1, lock=1, addr=0x801, addr_s=0xFFFF, stall=0, rd_proc_t= 0xFFFF

//(4) Adversary actions exposing the effect of the LRU bits
pid=0, lock=0, addr=0xF81, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xF81, addr_s=0x0, stall=0, rd_proc_t=0

//(5) Adversary getting a cache miss
pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=1, rd_proc_t=0x0

pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=0, rd_proc_t= 0xFFFF

//PLCache — Case B
//(1) Victim preloading sensitive addresses
pid=1, lock=1, addr=0x801, addr_s=0x0, stall=1, rd_proc_t=0

pid=1, lock=1, addr=0x801, addr_s=0x0, stall=0, rd_proc_t=0

//(2) Adversary filling the cache block
pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=0, rd_proc_t=0

pid=0, lock=0, addr=0xE01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xE01, addr_s=0x0, stall=0, rd_proc_t=0

pid=0, lock=0, addr=0xF01, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xF01, addr_s=0x0, stall=0, rd_proc_t=0

//(3) Victim accessing another cache set
pid=1, lock=0, addr=0x802, addr_s= 0x0, stall=0,rd_proc_t= 0x0

//(4) Adversary actions exposing the effect of the LRU bits
pid=0, lock=0, addr=0xF81, addr_s=0x0, stall=1, rd_proc_t=0

pid=0, lock=0, addr=0xF81, addr_s=0x0, stall=0, rd_proc_t=0

//(5) Adversary getting a cache hit
pid=0, lock=0, addr=0xC01, addr_s=0x0, stall=0, rd_proc_t=0x0

(a) (b)

Figure 8: Simulating PLCache and the synthesized cache with traces representing the extended Pecival attack.

Table 6: Summary of properties used for synthesizing thread schedulers.

Synopsis Formal Representation
(V) Valid thread id valid 7→ assert(thread_id < n)

(C) Confidentiality of sensitive threads ∀i .(i .sensitive) 7→ assume (i .actives = Hiдh)assert (thread_idt = Low)

(P) Predictability of hard real-time threads ∀i . (i .hardRT) 7→ assert (i . f req + i .sleep = i .count)

(G) Guaranteed frequencies ∀i . assert (i . f req + i .sleep ≤ i .count)

(E) Scheduling available threads ∀i . ¬i .active 7→ try (thread_id , i)
(F) Fairness for soft real-time threads ∀i, j .(¬i .hardRT ∧ ¬j .hardRT)) 7→ try ((i .count − i . f req) = (j .count − j . f req))

Table 7: Summary of properties used for synthesizing SoC arbiters.

Synopsis Formal Representation
Grant given to at most n cores assert(Countones(дrant) ≤ n)

Grant given to a core which requested assert(Past(req) 7→ (∀i . дrant[i] 7→ Past(req[i])))

Stabilizing the grant while a core is using assert((дrant[i] ∧ Past(req[i])) 7→ Stable(дrant))

Equal share assert(
n−1∧
i=0
(
n−2∧
j=i+1
(Past(дrant , period ∗ i) = Past(дrant , period ∗ j))))

Denying access to core #i assert(¬дrant[i])

Prioritizing core #i assert(Past(req[i]) 7→ дrant[i])

Priority-based access assert(
i−1∧
j=0
¬Past(req[j]) ∧ (Past(req[i]) 7→ дrant[i]))

Non-interference between all cores assert(reqs ↛t ¬дrants)

Non-interference between cores #i, j assert((reqs [i]↛t ¬дrants [j]) ∧ (reqs [j]↛t ¬дrants [i]))

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Program Synthesis
	2.2 Information Flow Control
	2.3 Motivating Example

	3 The VeriSketch Framework
	3.1 Main Components
	3.2 VeriSketch Language

	4 Information Flow Tracking
	4.1 VeriSketch IFT Framework
	4.2 Tracking Logical Flows
	4.3 Tracking Timing Flows
	4.4 Enforcing Multiple Policies

	5 Synthesis
	5.1 Synthesis with IFT
	5.2 CEGIS for Finite Sequential Circuits
	5.3 CEGIS for Soft Constraints

	6 Experiments
	6.1 Implementation
	6.2 Constant Time Arithmetic Units
	6.3 Leakage-Free Cache
	6.4 Hardware Thread Scheduler
	6.5 SoC Arbiter

	7 Conclusion
	Acknowledgments
	References
	A Security Analysis of Sketch Cache vs. PLCache
	B Properties for Synthesizing Thread Schedulers and SoC arbiters

