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Abstract— Simultaneous Localization And Mapping (SLAM)
is an important technique used in robotics, computer vision,
and virtual/augmented reality. SLAM algorithms have moved
past creating sparse maps to making dense 3D reconstruc-
tion of the environment. Dense SLAM algorithms have high
computational demands that require hardware acceleration
to be done efficiently in real-time. FPGAs are an attractive
compute platform for SLAM systems as they are low power
and high performance. Unfortunately, dense SLAM algorithms
are complex and FPGAs are notoriously difficult to program.
In this work, we study the best techniques for accelerating
3D reconstruction on FPGA. We analyze a 3D reconstruction
system, and implement modular FPGA designs for the main
components of this application. We target both an FPGA SoC
and a larger FPGA PCIe board, and perform a design space
exploration (DSE) of our designs. We analyze the results of
our DSE, characterize the design spaces to highlight important
features, and we implement the best designs in an open-source
and end-to-end dense SLAM system running on a FPGA
SoC board. On the SoC board, using the FPGA increases
the throughput of the whole application by a factor of two
compared to the ARM processor, and individual algorithms
are up to 38 times faster on the FPGA.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a gen-
eral technique that creates a spatial map of the environment
while determining the position of an agent inside this map.
SLAM has fundamental applications in robotics, computer
vision, and virtual/augmented reality. Ideally, a SLAM sys-
tem works in real-time, provides a detailed 3D map, uses
minimal power, has a small physical footprint, and is low-
cost. But these are often conflicting constraints that create a
complex design space.

Early SLAM algorithms dialed back the algorithmic com-
plexity to achieve suitable performance. For example, sparse
SLAM algorithms consider a subset of sensor data and only
model the environmental information needed for navigation
[1]. This was largely in response to available resources, e.g.,
low-power compute platforms were not available, and sen-
sors provided relatively low bandwidth information. As the
efficiency of compute platforms increased, SLAM algorithms
added the ability to model more complex environments. It is
now possible to produce a real-time detailed 3D model of the
world using dense SLAM aka 3D reconstruction algorithms.
To work in real-time, these algorithms must process a high
volume of information from large amount of sensor data
(cameras, depth sensors, IMU, LIDAR, etc.). These systems
often carefully leverage hardware acceleration techniques,
e.g., by operating on GPUs and FPGAs [2], [3], [4].

Our ultimate goal is to determine the best way to imple-
ment dense SLAM using an FPGA-accelerated system. This
requires us to perform architectural optimizations to carefully
balance between resource usage, performance, and accuracy.
However, the space of possible optimizations is vast, and
very slow to explore; testing a single design can take multiple
hours. As a result, we want to increase our understanding of
the effects of each optimization in an effort to improve the
design space exploration of similar applications.

We develop a set of highly parameterized architectures for
each of the dense SLAM components (tracking, depth fusion,
and ray casting). Each component is outfitted with multiple
optimizations that can be tuned to offer tradeoffs between
FPGA resource utilization, throughput, and quality of result.
We compile thousands of unique designs based on these
optimizations, and run each of them on two representative
FPGA platforms. The first is the Terasic DE1 FPGA System-
on-Chip (SoC), which is a low-cost, low-power integrated
system with an ARM processor and a small FPGA. The
second is the Terasic DE5 PCIe board, which has an FPGA
that is approximately 7× larger than the FPGA on the DE1.
We provide an analysis of the resulting spaces to better
understand the complex relationship between the tuning
parameters and the output architectures.

We develop the FPGA architectures using the Intel
OpenCL SDK for FPGA, which provides the flexibility to
perform high-level design tradeoffs and eases the integration
into the existing dense SLAM frameworks. We develop
a complete system capable of performing real-time dense
SLAM (Fig. 1) which is guided by our design space analysis.
Our designs, design space data, and analysis are made open-
source [5] to facilitate follow-on work related to SLAM,
FPGA design, and hardware design space exploration.

Our main contributions are to provide:
• Highly optimized OpenCL FPGA code for the major

components of dense SLAM.
• A new algorithm combining two major components of

dense SLAM.
• A comprehensive parameterization of these implemen-

tations to easily target different FPGA resources con-
straints and applications demands.

• A statistical analysis of the design space considering
more than 2500 possible implementations with different
resource utilization and performance.

• An open-source release of our algorithms and data.
In Section II we discuss related work on FPGA-accelerated

SLAM. In Section III, we introduce the 3D Reconstruction



Fig. 1: 3D model reconstructed in real-time on a DE1 FPGA
SoC with the data transmitted from a Google Tango tablet.

framework, and we detail its FPGA implementation in Sec-
tion IV. Section V shows the results of our design space
exploration, and we conclude in Section VI.

II. RELATED WORK

SLAM is commonly deployed in applications that utilize
high bandwidth sensors, require real-time results, and have a
limited power budget [6]. This has naturally pushed SLAM
designers towards hardware accelerated platforms.

FPGAs are a particularly attractive platform due to their
power efficiency. For example, the bottleneck in visual
SLAM algorithms (i.e., using cameras as sensors) is feature
detection (detecting points of interest in an image) and
feature extraction (encoding the visual features for distance
calculation). Ulusel et al. [7] analyze one feature detection
algorithm (FAST) and two feature extraction algorithms
(BRIEF, BRISK) on embedded CPU, GPU, and FPGA.
Feature detection and extraction are common tasks in SLAM.
Their results show that the FPGA implementation outper-
forms the CPU and GPU in both power and performance.

The complexity of SLAM algorithms makes it difficult
to implement an entire end-to-end system utilizing solely an
FPGA. FPGA SoCs are an appealing option as the algorithm
can be split across hardware and software. For example,
Tertei and Devy [8] implement a version of SLAM based
upon an Extended Kalman Filter. They perform matrix mul-
tiplication on the FPGA and the remainder of the algorithm
in software. Nikolic et al. [9] build a visual-inertial motion
estimation system. They offload the feature detection (Harris
corners / FAST corners) onto the FPGA. Similarly, Aguilar-
Gozalez et al. [10] describe an FPGA implementation of
the detection/extraction process to increase the number of
features detected by standard feature detection algorithms.

Other works utilize the FPGA for a larger portion of
the application. The authors in [11] implement a particle
filter SLAM on the FPGA. The input comes from a sparse
laser scanner and the map is created as a simple occupancy
grid. Another work implements a large portion of the Scan-
Matching Genetic SLAM (SMG-SLAM) algorithm [12] on
an FPGA. SMG-SLAM is similar to our algorithm (see
Section III), but takes its input from a sparse laser range
finder. The result is stored in an occupancy grid map with
a resolution between 2 cm and 12 cm and a fairly low
number of grid cells (up to 724). While occupancy grids
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Fig. 2: InfiniTAM Reconstruction workflow. Each iteration
of the algorithm processes an input depth map through three
steps: ICP, Depth Fusion, and Ray Casting.

are an efficient map representation for navigation purposes,
other representations such as Signed Distance Function [13]
are more adapted to dense 3D reconstruction. More recently,
Boikos and Bougnais [14], [15] accelerate the semi-dense
LSD-SLAM algorithm on an FPGA SoC achieving 22 frames
per second on a 320x240 input visual frame. We are able to
handle denser environmental maps than these projects.

Dense SLAM algorithms focused on creating detailed 3D
models are often classified as real-time 3D reconstruction
algorithms. There are only a few recent attempts to port
3D reconstruction algorithms to an FPGA. Gautier et al. [2]
implement the KinectFusion algorithm [16] on an FPGA.
KinectFusion performs dense 3D reconstruction based on
an input from a RGB-D sensor. They were only able to
successfully implement one portion of the 3D reconstruction
on FPGA; the other algorithms could not be integrated due
to limited memory bandwidth. We are able to handle all the
algorithms. Additionally, their work also targets a single large
FPGA. It does not consider the appropriate trade-offs that
could be made to use smaller FPGA SoC systems.

III. DENSE SLAM OVERVIEW

We create FPGA architectures for the SLAM framework
called InfiniTAM [4] which is itself derived from KinectFu-
sion. InfiniTAM runs on a multicore CPU or on a GPU. Fig. 2
illustrates the InfiniTAM 3D Reconstruction framework. It
takes as input depth maps from an RGB-D camera (e.g.,
the Microsoft Kinect) and iteratively processes these depth
maps through three main modules: Tracking, Depth Fusion,
and Ray Casting, and updates a global Map that represents
the 3D model. Below we give a brief description of these
modules; exact details can be found in the original paper [4].

1) Map Representation: The 3D model is stored in a
grid of voxels using the Truncated Signed Distance Function
(TSDF) [13]. Each voxel records the distance to the nearest
surface, along with a confidence value. The distance is
normalized to a maximum value called truncation distance.
An efficient way of storing a TSDF volume is to use a
hash table that only keeps non-empty voxels. Hash tables
are usually very efficient on FPGAs [17], [18]. InfiniTAM
leverages a voxel hashing representation [19] with a hash



function based on the coordinates. The hash table actually
references blocks of 8×8×8 voxels, while the actual voxels
are stored in a flat memory buffer.

2) Depth Fusion: Depth Fusion starts with a pre-
processing step to calculate the visibility of each block
from the camera position. The main algorithm iterates over
the voxels in the precomputed visible blocks. Each voxel
is projected into the depth map, and its distance to the
camera center is compared to the depth map value. If the
two distances are within the truncation threshold, they are
combined using a weighted average.

3) Ray Casting: Ray Casting also starts with a pre-
processing stage to create a rough bounding box around vis-
ible blocks. Then, the main computation consists of sending
a ray from each pixel of a 2D view into the 3D TSDF model
within the bounding box, to find a point where the sign of the
distance changes. The result is saved as a 3D point in a Voxel
Map. A post-processing step estimates a surface normal for
each resulting 3D point.

4) Tracking: Tracking is based on the Iterative Closest
Point (ICP) algorithm [20]. ICP finds the optimal alignment
between the input depth map and the 2D projection of the
current model from the last camera position (the output of
Ray Casting). The transformation between these two inputs
represents the camera motion between frames. The details
of this particular implementation of ICP are presented in the
original Kinect Fusion paper [16], with an additional option
in InfiniTAM to solve for rotation only or translation only.

IV. FPGA ARCHITECTURE

In this section, we describe our proposed FPGA architec-
tures for the main components of InfiniTAM, along with the
optimization options that we enable. We focus on the core
algorithms, without pre- or post-processing steps.

For each algorithm, we develop parameterized OpenCL
code that is synthesized to an FPGA using the Intel FPGA
OpenCL SDK. Different optimizations are enabled, disabled,
and tuned using parameters, also called knobs for design
space exploration purposes [21], [22]. We define many
knobs (e.g., loop unroll factor, memory layout, etc.) that
generate designs with different performance, resource usage,
and accuracy. In the following, we describe the OpenCL
implementations for each algorithm, with a focus on the key
optimization knobs that we analyze in Section V.

We also propose a new algorithm that combines Depth
Fusion and Ray Casting to improve throughput. We refer to
this algorithm as the Combined Kernel.

A. Depth Fusion

The Depth Fusion algorithm takes as input the depth map,
a list of hash table entries indexes, the hash table, and the
buffer containing actual voxel data. The algorithm contains
an outer loop to process each hash table entry (block), and an
inner loop to process the 512 voxels inside each block. In the
following, we describe how we modified this implementation
with FPGA-specific optimizations.

Loop Optimizations: The OpenCL compiler offers multi-
ple options to implement loops. This includes using OpenCL
work-items (WI) (on FPGA, a WI is generally interpreted as
a single – data-dependency free – stage of a pipelined loop),
a simple for loop that automatically gets pipelined, or work-
groups (groups of WI) that enable coarse-grained parallelism.
We provide knobs to switch between these representations.
The coarse-grain parallelism enabled with work-groups is an
OpenCL feature called compute units. Each compute unit is a
duplication of the kernel to increase the parallelism and thus
easily scale the task on larger devices. We provide another
knob to control the number of compute units.

Memory Optimizations: Input buffers can be cached using
local memory, which has better latency for non-predictable
accesses, such as depth map indexing. We implement a knob
to optionally pre-load the depth map into local memory in
a predictable way. In this case, the depth size must be fixed
(another knob) and the design uses more BRAMs. Lastly,
to prevent a potential memory bottleneck when accessing
voxels, we implement a knob to cache one block of voxels
in local memory for reading and optionally for writing.

Additional Optimizations: We also provide knobs to con-
trol the unrolling factors on various loops. Another knob
controls the placement of a branch condition, which either
groups voxel accesses together or keeps an early branch to
potentially terminate the loop earlier.

B. Ray Casting

The Ray Casting algorithm iterates over the pixels of a 2D
view to project 3D information into that view. For each pixel,
it steps along a 3D ray and reads the distance value from
the hash table until that distance becomes negative. Then
the algorithm refines the location of the surface by stepping
backwards along the ray using interpolated distance values.
Estimations of the starting and ending points of the ray are
pre-calculated in a downsampled min/max input map. The
output is a Voxel Map, an organized point cloud containing
one 3D point per pixel.

Memory Optimizations: The data access pattern is com-
plex and non-contiguous particularly when fetching voxel
data. Consecutive accesses to the same data can be man-
ually cached, and the compiler also provides an automatic
cache mechanism. We provide knobs to enable/disable these
caches, which provides tradeoffs between BRAM usage
and cache speedup. The interpolation fetches 8 different
values for averaging. We provide the option to disable this
interpolation, which may decrease the overall quality of the
SLAM system. Finally, the algorithm ends with a Refine step
that creates another voxel data access. We can disable it with
a knob. These last two knobs are often necessary to save logic
elements and fit the kernel on smaller devices.

Other Optimizations: Just like Depth Fusion, we can also
switch between a for loop and work-items for the outer loop,
and we have the option to fix the 2D image size to simplify
some calculations. We can also remove some coordinate
system transformations and memory accesses by simplifying
the start and end points of the ray. The ray can start at a



Algorithm 1: Combined Algorithm
Input : Depth Map; Visible blocks IDs; Hash table;

Voxel Buffer; Truncation threshold µ
1 for each visible block ID do
2 Fetch block B from hash table
3 From B, fetch pointer to voxel block in voxel buffer
4 for each voxel V = (x, y, z) in the voxel block do
5 (gx, gy, gz)← Calculate global coordinates of V
6 (cx, cy, cz)← (gx, gy, gz) to camera view
7 (i, j)← Project (cx, cy, cz) into 2D image
8 D ← Get depth at (i, j)
9 (w, d)← Fetch weight and distance from V

10 if w 6 wmax or |cz −D| 6 µ then
11 (w′, d′)← New weight and distance
12 Store new voxel V ← (w′, d′)
13 end
14 d← Fetch distance from V
15 if |d| < ProjectionMap[i,j] then
16 cz ← cz + d
17 (x, y, z)← (cx, cy, cz) to global coord.
18 Save (x, y, x) position into Voxel Map
19 ProjectionMap[i,j] ← |d|
20 end
21 end
22 end

depth of 0, and end at the maximum sensor range, which
makes an assumption about the input data. We keep both
options as knobs.

C. Combining Depth Fusion and Ray Casting

Ray Casting provides a view of the fused 3D model at the
current position, and as such, accesses most of the voxels that
have just been updated by Depth Fusion. Thus, it is beneficial
to combine both steps into one coordinated process. However
these two steps process data in opposite directions. Depth
Fusion projects 3D voxels into a 2D view, while Ray Casting
sends rays from the 2D view into the 3D volume. Depth
Fusion is more efficient as it involves less memory accesses
due to the pre-processing step. We create a Combined kernel
by integrating Ray Casting into Depth Fusion. We implement
the uninterpolated and unrefined version of Ray Casting to
avoid significant random accesses to the hash table and the
voxel data. The main issue arises when Depth Fusion projects
multiple points on the same pixel. Because we lose the
sequential aspect of the Ray Casting algorithm, we need a
way to select which distance (d) to keep on each pixel.

The Combined algorithm is presented in Algorithm 1.
There are two computation blocks: the Depth Fusion block
at line 10, and the Ray Casting block at line 15. The Depth
Fusion is similar to the orginal implementation. The Ray
Casting block writes the distance d of the current voxel to
a projection map which is the same size as the 2D image
view. The goal of the projection map is to save only the
smallest d in the projected pixel. When a new distance dnew

is projected into the map, it is saved only if |dnew| < |d|, at
which point the Voxel Map is updated with the new point.
This creates a dependency between iterations that is difficult
to avoid without duplicating the entire projection map.

Optimizations: This implementation mostly uses the same
knobs as Depth Fusion with some restrictions. We restrict
the outer and inner loops to be implemented as for loops
only. We add the possibility of implementing the inner
loop as work-items, which in the OpenCL model creates a
race condition on the projection map. On FPGA, this race
condition occurs depending on the depth of the pipeline,
which can create a small loss of precision in the result. We
also add a knob to use either local or external memory for
the projection map.

D. Iterative Closest Point (ICP)

ICP aligns the current depth map with the Voxel Map
from Ray Casting. It finds pairs of corresponding points
by projecting them into a common 2D frame and rejecting
candidate pairs based on threshold values. The distance and
angle between pairs of points are turned into a system of
equations represented by two triangular matrices H and ∇.
These matrices are summed together over all points and
solved on the CPU to update a global transformation matrix.
ICP has the option to solve for rotation or translation only,
which uses smaller H and ∇ matrices. We propose a number
of optimizations for the FPGA implementation.

Interpolation: The 3D points and 3D normals from the
depth map and Voxel Map can be read with bilinear inter-
polation. These interpolations can be disabled with knobs.

Branching: This kernel has a lot of branches and therefore
a lot of control logic. It contain branches to differentiate
between long and short iterations, i.e., whether we solve
for rotation and translation, or only one component. We
implement a knob to disable these branches, and fully
calculate the matrices even for short iterations. This helps
reduce the resource utilization.

Accumulation: This kernel has a lot of data dependency
between each iteration due to the matrices needing to be
summed together. We implement multiple shift registers to
decrease this dependency. To balance between speed and
logic utilization, we provide knobs to enable shift registers
and control their size. In the case where we do not use shift
registers, we implement knobs which unroll the computation
and accumulation of the matrices to decrease the latency.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we analyze the effects of the various
hardware optimizations to provide insight on how to design
architectures for real-time dense SLAM systems. To ground
our design process in reality, we focus on two different
FPGA platforms – an embedded FPGA SoC and a higher
performance PCIe FPGA system.

A. Experimental Setup

We implement the full end-to-end dense SLAM system
on: 1) a Terasic DE1-SoC board with a Cyclone V FPGA



TABLE I: Summary of the knobs for all four algorithms, along with their names used in Section V

Depth Fusion Ray Casting ICP Combined

Name Description Name Description Name Description Name Description

ComputeUnits Num. compute units Interpolate Enable interpolation PointInterpolation Point interpolation - Same knobs as
Depth FusionXyzLoop Inner loop type Refine Enable refine step NormalInterpolation Normal interpolation

EntryIdLoop Outer loop type IndexCache Voxel access cache NablaSumtype How ∇ is summed
EntryIdNumWI Outer loop num. WI HashCLcache Hash access cache

(auto)
HessianSumtype How H is summed SdfLocal Projection map

cacheHardcodeSize Hardcode depth size Branch Enable branching
CacheVoxels Voxels block cache VoxelCLcache Voxel access cache

(auto)
NablaUnroll ∇ sum - unroll factor

XyzLoopFlat Flatten inner loop HessianUnroll H sum - unroll factor
XyzUnroll Unroll inner loop HardcodeSize Hardcode image size ShiftRegister Size of shift registers
EntryIdUnroll Unroll outer loop UseWi Outer loop type
DepthLocal Depth map cache Minmax Simplify start/end

of rayBranchPos Condition placement

and a dual-core ARM Cortex A9 processor, and 2) a Terasic
DE5 PCIe board with a Stratix V FPGA, connected to a
workstation with an x64 quad-core i7-4790K CPU.

We write all of our kernels using OpenCL, compile them
with the Intel FPGA OpenCL SDK v16.1, and integrate
them into the InfiniTAMv2 code base. Each combination of
knobs in our kernels produces a unique design. We choose
reasonable values for knobs by selecting mostly powers of
two and values likely to generate a small design, considering
the smallest FPGA. In total, we have compiled more than 480
unique designs across all algorithms for the DE1 FPGA, and
more than 2600 for the DE5 FPGA.

For most of our experiments, we fix the input depth map
size to QVGA (320x240), with a few designs compiled for an
input size of 320x180. To test and measure the performance
of the kernels, we use the following benchmarks from
the standard TUM RGB-D SLAM dataset [23]: fr1/desk,
fr1/360 and fr1/room. We also use a custom dataset (Cave)
made from data collected with a Google Tango tablet in an
underground cave environment. We set the TSDF voxel size
to 1 cm, which is comparable to the depth resolution of the
sensor used in the benchmarks.

We record the running time of different modules of
InfiniTAM. Due to the limited amount of shared memory that
can be allocated on the SoC board, our kernels are configured
to handle a limited amount of data in the 3D model. We run
each benchmark for a specific number of frames (fr1/desk:
595; fr1/room: 700; fr1/360: 440; cave: 400). Below we
present the results of this design space exploration, com-
bining FPGA logic utilization and running time.

B. FPGA SoC Design

Here we describe a fully functional dense SLAM system
running on a small Cyclone V FPGA SoC. Consequently,
we want to focus on designs that have low resource usage
while still maintaining real-time performance. To do this, we
perform comprehensive analysis of the design spaces for the
different dense SLAM components.

Fig. 3 illustrates the design spaces on one of our bench-
marks (room). Fig. 3(a) shows the total frame rate of the
application when running different designs of different mod-
ules on FPGA, and Fig. 3(b) shows the throughput measured
individually on each design.
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Fig. 3: Design spaces of InfiniTAM running on the DE1
board with the Room benchmark. (a) plots the throughput of
the entire application when running the selected algorithm on
FPGA; (b) plots the throughput of individual algorithms. The
y axis shows the logic utilization of individual algorithms.

ICP has the worse individual throughput overall and does
not contribute to decrease the total running time of the ap-
plication. The best versions of Depth Fusion and Raycasting
both increase the total throughput and the Combined algo-
rithm provides the highest total throughput. This highlights
the benefit of combining Depth Fusion and Ray Casting into
a single kernel as the individual kernels cannot both fit on
the device.

Throughput: Table II presents the lowest running times
for each benchmark, on the dual-core ARM processor with
OpenMP (Baseline) and with one module accelerated on
FPGA. We use RaycastO3, which is the Ray Casting al-
gorithm without the interpolation and refine steps. As we
implement these optimizations on FPGA, we also transpose
them to CPU for a fair comparison. The Combined algo-



TABLE II: Comparison of the lowest running times of
different kernels running on the DE1 SoC board. Each row
compares the algorithm running on the ARM processor of
the DE1 (top, in ms) and on the FPGA (bottom, in ms).

Cave Desk 360 Room

Depth
Fusion

702.25 425.75 573.90 508.89
18.09 (38.8×) 13.47 (31.6×) 16.80 (34.2×) 15.71 (32.4×)

RaycastO3 522.66 538.92 455.15 448.64
35.21 (14.8×) 30.49 (17.7×) 26.53 (17.2×) 28.34 (15.8×)

Combined 1224.91 964.67 1029.05 957.53
78.29 (15.6×) 89.41 (10.8×) 85.08 (12.1×) 84.92 (11.3×)

ICP 348.35 537.88 508.22 557.56
265.84 (1.3×) 357.57 (1.5×) 330.29 (1.5×) 368.87 (1.5×)
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Fig. 4: Comparison of the average total frame rate between
different versions of the application running on the DE1:
running on ARM only, or the best versions accelerated on
the FPGA. We present the results for different benchmarks.

rithm is compared to the added time of Depth Fusion and
RaycastO3 on ARM.

The Depth Fusion algorithm presents the highest acceler-
ation (up to 38×, or 34× for the TUM benchmarks). ICP is
not very well accelerated because the designs implementing
shift registers could not fit on this device, but the Combined
kernel, replacing two of the three main algorithms, is accel-
erated more than 10×.

Fig. 4 shows the average throughput in frames per second
(FPS) for each benchmark. We compare the different baseline
versions (without modifications, with RaycastingO3, with
the Combined algorithm) and the fastest FPGA versions.
We achieve the best throughput with the Combined kernel,
but Depth Fusion and Ray Casting are also faster than the
baseline. We can achieve up to 1.55 FPS at 320x180, and
up to 1.22 FPS at 320x240, which is faster than the CPU
version (up to 0.49 and 0.65 FPS respectively).

LASSO Analysis: We perform a statistical analysis to
better understand the impact of knobs on each design space.
We use the LASSO operator [24] which creates a least
square regression model over the knob values that best fits
the objective curve (throughput, logic). LASSO can create
sparse models by forcing knobs with a small contribution
to the model to zero with an alpha parameter (a larger
alpha will force more coefficients to zero). We perform a
cross-validated search for the alpha that yields a model with
the smallest Mean Squared Error (MSE). The result of this
analysis is a coefficient for each knob, which represents a
relative contribution for this knob to the linear model. A

TABLE III: LASSO analysis of throughput on the DE1 SoC
board for the Room benchmark. We take the models with the
minimum mean squared error (MSE), and show the 5 knob
features with the largest contribution to that model. The knob
names are summarized in Table I.

Depth Fusion (Min MSE = 0.0075) Raycasting (Min MSE = 0.0010)

Knob Coef Knob Coef

XyzLoop2 0.130 UseWI 0.261
CacheVoxels2 0.067 VoxelClcache2 0.152
CacheVoxels 0.031 Minmax 0.075
XyzUnroll2 0.031 IndexCache,UseWi 0.071
CacheVoxels,XyzLoopFlat -0.023 HashClcache2 0.055

ICP (Min MSE = 0.0054) Combined (Min MSE = 10−6)

HessianUnroll 0.336 XyzLoop2 0.155
NablaUnroll 0.040 XyzLoop 0.051
Branch NablaSumtype 0.023 XyzLoop,VoxelCache -0.001
NablaSumtype 0.022 XyzFlat 0.001
HessianUnroll,NablaSumtype 0.016 VoxelOutUnroll2 -0.001

larger coefficient indicates a higher correlation between the
knob value and the constructed model. We focus our analysis
on the throughput factor and we only present a summary
of the results. Our complete data and scripts for a deeper
analysis is available in our repository.

For each algorithm, we choose as inputs all the knobs
and their 2nd degree polynomial interactions to account for
the non-linearity of certain knobs. We compute the model
for multiple alpha, and find the model with the best MSE.
Using the knobs without polynomial interactions leads to a
higher MSE for most design spaces, which indicates a certain
degree of non-linearity in the influence of knobs over the
hardware architecture. We present the knobs with the highest
coefficients for the models with the lowest MSE in Table III.

The dominant knobs are directly related to the implemen-
tation of a loop (XyzLoop in Depth Fusion / Combined;
UseWI in Ray Casting). Using work-items has a great
influence on the throughput when compared to using a for
loop. The compiler is able to infer a better pipeline with
work-items without dependency between iterations and an
minimal initiation interval. Other important knobs are gener-
ally related to memory caching. Depth Fusion, Raycasting,
and Combined all benefit from caching depth or voxel data in
the local memory and these mechanisms have a large impact
on the running time. The ICP and Combined algorithms are
notably different. In the case of ICP, using shift registers
to sum large vectors together requires a large amount of
resources, and the designs using this optimization cannot
fit on the small FPGA. As a result, the remaining designs
are very sensitive to the amount of unrolling that is used to
paralellize the vector accumulation. This situation leads to a
much slower running time (Table II). The Combined kernel
is also quite complex and certain memory optimizations
do not fit on the Cyclone V FPGA. Consequently, the run
time is largely dominated by the loop implementation knob:
using work-items speeds up the algorithm, while other knobs
impact the running time very little.



(a)

0 20 40
Total Throughput (Hz)

20

40

60
Lo

gi
c 

U
ti

liz
at

io
n 

(%
)

Depth Fusion
Raycasting
Combined
ICP

Entire application throughput

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Throughput (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

Lo
gi

c 
U

ti
liz

at
io

n 
(%

)

0 200

30
40

0 100

40

60

0 100

30
40
50

0 1000

40

60

Individual algorithm throughput

Fig. 5: Design spaces of InfiniTAM running on the DE5
board with the Room benchmark.

C. PCIe FPGA Design

We compile the algorithms on a DE5 board with a
Stratix V FPGA, which is about 7 times larger than the DE1
FPGA (comparing Logic Elements, as defined by Intel). We
perform a design space exploration to understand how the
algorithms scale to a larger device, especially with respect
to runtime.

Fig. 5 shows the design spaces of individual algorithms
and of the entire application running on the Room bench-
mark. The differences with the DE1 design spaces are mostly
due to the designs that do not fit on the smaller device.
The logic utilization is generally low because most of the
optimizations were focused on reducing this value to fit on
the SoC chip. ICP produces a particularly different design
space. There is a clear tradeoff between running time and
logic utilization, which means that the most efficient designs
have a high utilization and cannot be implemented on a
smaller FPGA. The ICP algorithm clearly takes advantage
of the increased number of registers on the Stratix V FPGA.
Because it is computation-bound, it can be drastically sped
up by using a large number of shift registers. Fig. 5(a)
highlights the most efficient design tradeoffs for the entire
application. While the application is not optimized for the
DE5 board, we can see that using the Combined designs is
generally faster.

We also compare the throughput improvement from the
best designs on the DE1 to the designs on the DE5. We
extend the design space exploration of individual kernels
and compile two other types of bitstreams: one containing
Depth Fusion, Ray Casting and ICP (DF+RC+ICP), and
one with the Combined kernel and ICP (Combined+ICP). A
full design space exploration of multiple kernels would lead
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Fig. 6: Comparison of the best frame rate for individual
algorithms and the entire application. We compare the best
results on both DE1 and DE5 hardware setups, including the
processor and FPGA results. On the DE5, we use bitstreams
implementing either multiple algorithms (ICP+DF+RC /
ICP+Combined) or only one (indiv.).

TABLE IV: LASSO analysis of throughput on the DE5.

Depth Fusion (Min MSE = 0.010) Raycast (Min MSE = 0.003)

Knob Coef Knob Coef

XyzLoop2 0.047 HashCLCache2 0.152
XyzLoop,DepthLocal -0.039 UseWI 0.116
ComputeUnits,DepthLocal -0.039 Minmax 0.088
EntryidLoop,DepthLocal -0.034 IndexCache2 0.085
CacheVoxels 0.029 Minmax2 0.055

ICP (Min MSE = 0.007) Combined (Min MSE = 0.0016)

HessianSumtype 0.056 XyzLoop2 0.061
NablaSumtype 0.054 SdfLocal,XyzLoop -0.024
NablaSumtype,ShiftRegister 0.047 SdfLocal,XyzUnroll -0.012
HessianUnroll 0.038 SdfLocal,XyzFlat 0.012
HessianUnroll,HessianSumtype 0.033 XyzUnroll -0.010

to millions of unique combinations, so we only compile a
few combinations of Pareto-optimal designs. We report the
best performance of each algorithm for the different types
of bitstreams (DF+RC+ICP, Combined+ICP), and individual
algorithms in Fig. 6. In this figure, we compare the best
throughput results between the DE1 FPGA, DE1 processor,
DE5 FPGA, and DE5 processor, for individual algorithms
and the entire application on the Room benchmark. Depth
Fusion is improved by 3.6×, Ray Casting 4.8×, Combined
13.1×, and ICP is accelerated by 425.2×. The entire appli-
cation runs at up to 44 FPS.

LASSO Analysis: We perform a LASSO analysis on these
design spaces to better understand the importance of knobs
on larger and more complex architectures. Table IV presents
the summary of our LASSO analysis on the Room bench-
mark. In general, the throughput is harder to model on these
larger spaces. There are more knob values and interactions,
and as a result, the MSE is slightly higher for all algorithms.
The general principles defined from the DE1 LASSO anal-
ysis still apply, as the type of loop implementation still has
a great influence on the throughput, and memory caching is
another useful optimization. The Combined algorithm has a
large data dependency which is removed when using work-
items, which tends to change the accuracy result. ICP is
much less memory bound, and this fact is reflected in the
knob coefficients, which tend to give weights to the knobs
affecting the summation of data.



D. Real-Time Experiments
To test our implementation in a real environment using a

complete system, we use a Google Tango tablet as both a
depth camera and a screen to display real-time feedback. The
Google Tango implements a light network client that only
sends depth data and receives an image for display. The DE1
board receives, processes, and sends the data back through
the wired/wireless network. We run the fastest Combined
kernel from our design space exploration on the FPGA. We
scan an office desk for about 1 minute (100 frames) and
obtain the result shown in Fig. 1. In average, each frame
took 505 ms to process (almost 2 FPS).

VI. CONCLUSION

We have described implementations of dense SLAM on
an FPGA, outlining the potential hardware optimizations
for the sub-algorithms (Tracking, Depth Fusion, and Ray
Casting). We parameterized them to create a vast set of
FPGA architectures, and analyzed the resulting design spaces
to adapt them to two different FPGA platforms. We have built
functional dense SLAM systems on two FPGA platforms.
Our complete end-to-end system on the FPGA SoC achieves
up to 2 FPS, and 44 FPS on a higher performance PCI-
e FPGA. We expect that these numbers would be largely
increased by using newer SoC boards currently on the
market.

Design space exploration has provided insightful informa-
tion about hardware tradeoffs for dense SLAM. Our analysis
showed that the representation of loops in OpenCL for FPGA
has a profound impact on the run time. Additionally, it
benefits greatly from memory cache optimizations.

We have made our entire project open-source, which
includes our full system implementations, OpenCL code, and
design space exploration results. We hope that it provides the
community a way to expand these results to more types of
FPGA hardware, gain useful knowledge in creating hard-
ware accelerated dense SLAM applications, and facilitates
research on FPGA design space exploration tools.
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