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Localization is a crucial requirement for mobile underwater systems. Real-time position
information is needed for control and navigation of underwater vehicles, in early warning
systems and for certain routing protocols. Past research has shown that the localization
accuracy of networked underwater systems can be significantly improved using inter-
vehicle collaboration. More specifically the Maximum Likelihood (ML) position estimates
of a mobile collective can be computed from measurements of relative positions and
motion, albeit in a non-real-time fashion. In this work we extend this solution to compute
the position estimates of a network in real-time and in a distributed fashion. We first
describe a centralized approach to identify key factors that fundamentally limit the perfor-
mance of a real-time solution. Using the centralized approach as a benchmark, we arrive at
a real-time distributed solution that additionally computes the location of vehicles using
information obtained locally by them. We address practical considerations in the imple-
mentation of our algorithm and propose solutions to mitigate computational errors. With
this proposed implementation, we provide insight on how to appropriately plan a deploy-
ment of nodes when collaborative tracking is to be utilized. Lastly, we shed light on
situations where implementing collaborative tracking can hinder the localization perfor-
mance of the network so that these can be avoided.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

There has been a growing interest in operating groups
of autonomous underwater vehicles in a networked fash-
ion, using short to medium range acoustic modems [1].
Location information is critical to such networked mobile
underwater systems for correctly annotating data samples,
control and navigation and in certain data routing proto-
cols. However, since GPS is not available underwater, the
position of vehicles has to be estimated over time.
Most existing solutions based on Kalman or particle fil-
ters are designed for tracking vehicles individually [2,3].
This is achieved by combining measurements of relative
position with respect to known landmarks or beacons
together with estimates of the vehicle’s motion obtained
from on board sensors. These non-collaborative tracking
methods perform poorly in underwater networks where
vehicles have short to medium acoustic communication
range. This is due to the fact that a vehicle may not be
within the communication range of a sufficient number
of beacons or it may move out of range of beacons from
time to time. A solution to this problem involves using
additional measurements for localization, which can be
obtained from communication between vehicles. Such a
collaborative approach has been employed by a number
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of localization techniques such as multi-dimensional
scaling and iterative multi-lateration. However, these tech-
niques have been proposed for stationary networks. They
typically use relative position information (distance, prox-
imity or direction) as geometric constraints on the
unknown location of devices. Since devices are stationary,
the constraints can be considered concurrently to solve for
the unknown locations. In principle these algorithms can
be extended to mobile underwater networks by localizing
time snapshots of the network as suggested in [4–6].
However this requires measurements of relative position
to be obtained concurrently. Further, position estimates
for each snapshot must be computed before there is signif-
icant displacement in the vehicle positions. In reality, due
to practical communication constraints, the use of such
techniques for underwater networks would be severely
limited when deployments are sparse and vehicles are
moving.

Our prior work has shown that in sparse mobile under-
water networks, localization accuracy can be significantly
improved when vehicles collaborate [7], compared to both
individual tracking and collaborative static localization.
We proposed a collaborative solution that tracks a group
of vehicles as a collective by jointly computing the
trajectories of all vehicles using non-concurrent estimates
of inter-node distances together with measurements of
motion from on-board navigational sensors. While there
exist a few collaborative tracking methods that also loosely
follow the same idea, our solution is optimal as it jointly
computes the Maximum Likelihood (ML) positions of all
vehicles over time.

The drawback of this optimal ML solution is that it is
centralized and can only be applied offline, after all
measurements are available at a single location. It serves
applications where position information is only needed
post-facto, but cannot solve the problem of real-time local-
ization. Creating a real-time tracking solution for mobile
underwater networks is a difficult task due to the power
required for inter-node communication and the band
limited acoustic channel of the ocean. Despite these chal-
lenges, our work in [8] modified our existing ML solution
to compute positions in real-time. In this work we first
propose a centralized real-time algorithm which computes
all position estimates at a central location albeit in real-
time. We use this solution to highlight the inherent loss
in localization performance when we go from a non-
real-time to a real-time solution. More practically, we
propose a localized distributed solution for our real-time
tracking that minimizes the communication overhead by
strategically sharing information between vehicles, yet
achieves localization accuracies close to the best case.
The essential problem that we address to this end is to
determine what information to share between vehicles
and when, as well as how to encode information to
minimize the communication overhead.

While the work of [8,7] only considered one set of
trajectories in their analysis, in this work we provide addi-
tional analysis of these techniques by applying them to
different motion models. We find that there are cases
where the collaborative framework for localization does
not perform best, but often it can alleviate many different
Please cite this article in press as: D. Mirza et al., Real-time collaborative
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sources of error in an underwater network and provide
results that are superior to the non-collaborative case.
Ultimately, we propose that careful consideration of the
motion models of the vehicles as well as the positioning
of the beacons must be taken into account when planning
a deployment of vehicles who are collaborating to deter-
mine their position. We provide insight on how these
parameters affect the location accuracy of each vehicle so
that an informed decision can be made on whether or
not to collaboratively localize as well as how to set up a
network to reduce localization error when collaborating.
Before we can delve into this analysis, we will describe
our prior work on non-real-time centralized tracking as
well as centralized and distributed real-time tracking. This
knowledge forms the basis of later analysis on deployment
considerations.
2. Related work

A detailed discussion of how our factor-graph frame-
work relates to other estimation techniques that are tradi-
tionally used for underwater navigation, in robotics as well
in terrestrial sensor networks can be found in our prior
work [7]. A number of real-time and distributed localiza-
tion techniques have been proposed for underwater
networks [4,9,5,6]. Among these DNRL [4] and LSL [6] use
multi-lateration while USP [5] applies iterative bilatera-
tion. To improve the localization accuracy, DNRL proposes
the use of mobile beacons. In LSL a hierarchical (infrastruc-
tured) approach is proposed for localization [6]. These
techniques essentially estimate positions for time snap-
shots of the network using only spatial constraints
(estimates of inter-vehicle distances) and do not account
for vehicle motion. The main drawback compared to our
solution is that they would not work well in sparse net-
works and need more frequent signaling. A more in depth
survey is available in [10]. A comparative performance
evaluation of some of these schemes has been done in [11].

AUV navigation using a single mobile beacon is pro-
posed in [2,3]. Here measurements of vehicle motion are
combined with non-concurrent distance estimates to the
beacon. In addition path planning is done to improve the
tracking performance [3]. A collaborative solution has been
proposed for under-ice AUV tracking where inter-vehicle
estimates of distance and relative velocities (from mea-
surements of Doppler shifts) are used for localization
[12]. Vehicle positions are estimated using a least squares
approach. To minimize the position uncertainty, a subset of
neighbor vehicles are selected as position references via an
exhaustive search method.
3. Non-real-time centralized solution

Our centralized ML solution estimates the position of
vehicles by simultaneously capturing a number of spatial
and temporal constraints. These constraints are the result
of the measurements that the vehicles collect to help them
determine their positions. A first set of measurements,
yielding the ‘spatial’ constraints, are inter-vehicle distance
estimates with neighbors within communication range,
tracking for underwater networked systems, Ad Hoc Netw. (2014),
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collected at different times by sending an acoustic ping and
measuring the time-of-flight, as described by Eq. (1). The
so-called ‘temporal’ constraints are estimates of vehicle
velocity measurements as gathered by the navigational
sensors on-board each vehicle. The temporal constraints
are mathematically shown in Eq. (2). Calculating the
collection of vehicle positions over time within the set of
spatial and temporal constraints is a complex multi-
dimensional estimation problem. To solve it optimally,
we have proposed the framework of factor-graphs. Our fac-
tor-graph solution efficiently computes the individual pdfs
of the position of vehicles at discrete times from the joint
pdf of all the unknown positions given measurements (of
inter-vehicle distances and motion). The factor-graph itself
is a graphical representation of this joint pdf. A detailed
discussion of the complete solution and how these con-
straints are represented is available in our prior work [7].
The theoretical foundations of this technique have been
laid out by Kschischang et. al.[13]. Here we only highlight
the key ideas behind our centralized and offline algorithm.
To do this we use a simplified notation and describe the
factor-graph in terms of a dependency graph. The complete
factor-graph can be reconstructed from the dependency-
graph by replacing each vertex in the dependency graph
by its internal representation as discussed in Section 3.1.

Fig. 1(a) shows the dependency graph for a network of
four vehicles. We have shown the graph for only four vehi-
cles to not overload the figure. The structure of the graph
can be viewed in terms of four chains stacked vertically.
Each chain captures the evolution of the unknown position
of a vehicle over time. Correspondingly, each vertex in a
chain (shown as a hexagon) represents the unknown states
Fig. 1. Centralized non-real-time solution. (a) Dependency graph. (b) Iterative m
the dependency graph for any vehicle i at time tk .

Please cite this article in press as: D. Mirza et al., Real-time collaborative
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(position and velocity) of the vehicle at a particular time
instance. A link between any two vertices exists if there
is a measurement (or a set of measurements) that
relates/constrains those states. Vertices within a chain
are linked by measurements of motion, i.e. the temporal
constraints. Vertices across chains are linked by measure-
ments of inter-node distance, i.e. the spatial constraints.
The triangles represent the position of beacon nodes at
any particular time instance. A link with a triangular vertex
exists if a measurement of distance was made with the
beacon at that time. Note that measurements (of distance
and motion) are obtained in real-time and stored on the
memory banks of the vehicles. However, the depen-
dency-graph described above is constructed in non-
real-time, after all the measurements are available at a
central location.

The links in the dependency graph shown in Fig. 1(a)
establish pathways of information flow across vehicles in
the network as well as back and forth along the temporal
dimension of each chain in the graph. Initially, position
information is only available at the triangular beacon-
vertices (we assume beacons are, for example, buoys on
the surface equipped with a GPS receiver). The sum-
product algorithm that runs on the above described graph
generates this information. When we run the sum-product
algorithm on the graph, information from the beacon
vertices eventually percolates to all the unknown states
(vertices) of the factor-graph along the graph edges as
depicted in Fig. 1(a).

The dependency graph shown above is a simplified
notation used for the actual factor-graph. Next, we describe
how the factor-graph is obtained from the dependency
essage passing for position estimation. (c) Internal structure of a vertex in

tracking for underwater networked systems, Ad Hoc Netw. (2014),
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graph and present the operation of the sum-product algo-
rithm to estimate vehicle positions.

3.1. Constructing the factor-graph from the dependency graph

The unknown positions are computed by running the
sum-product (SP) algorithm (in non-real-time) on the fac-
tor graph. The factor-graph representation is obtained
from the dependency graph shown in Fig. 1(a) by replacing
each hexagonal vertex by its corresponding internal struc-
ture shown in Fig. 1(c).

To describe the internal structure of each vertex we
denote the unknown position of any vehicle i at time tk

as PiðtkÞ. A vertex in the dependency graph is a simplified
notation for a state-variable, PiðtkÞ and a set of transforma-
tion functions (f 1; f 2and f 3), as shown in Fig. 1(c). By
replacing each vertex in the dependency graph with these
elements, the equivalent factor graph is obtained.

The transformation functions f 1; f 2and f 3 are computed
from the statistical characterization of distance and
velocity measurements. We derive these functions from
equations relating the unknown positions of vehicles to
measurements of distance and velocity. A distance mea-
surement obtained at time tk as a result of communication
between two vehicles with positions PiðtkÞ and PjðtkÞ at
that time relates the unknown positions as follows:

zdðtkÞ ¼ PiðtkÞ � PjðtkÞ
�� ��

2 þ eR
k ð1Þ

where zdðtkÞ is the distance measurement, e is the error in
distance estimates with any known pdf.

Next, a velocity measurement, zv ðtkÞ is related to the
unknown position from first principles:

zvðtkÞ ¼
1

jtkþ1 � tkj
P tkþ1ð Þ � P tkð Þð Þ þ eV

k ð2Þ

where eV
k ¼ evx

k ; e
vy

k

� �T
is the error in the velocity measure-

ment with known statistics.
The transformation functions f 1; f 2and f 3 are defined as

follows:

f 1 ¼ pðPiðtkÞjPiðtk�1Þ; zvðtkÞÞ ð3Þ
f 2 ¼ pðPiðtkÞjPiðtkþ1Þ; zvðtkÞÞ ð4Þ
f 3 ¼ pðPiðtkÞjPjðtkÞ; zdðtkÞÞ ð5Þ

The exact definitions of the above conditional distribu-
tions are obtained from Eqs. (1) and (2) and a statistical
characterization of the error terms in these equations.
We have characterized the errors in our simulations to be
uniformly distributed, however any other distributions
can be used to define the above conditionals. For complete-
ness we describe the error in distance estimates are Gauss-
ian: eR

k � U �rRmax;rRmaxð Þ. Further, the error in velocity
measurements are also Gaussian evx

j � U �rVmax;rVmaxð Þ;
evy

j � U �rVmax;rVmaxð Þ.
In Fig. 1(c), the incoming and outgoing messages are

shown by dotted and solid arrows respectively. When the
sum-product algorithm runs on the FG constructed using
the above notation, the functions, f 1; f 2and f 3, operate on
the incoming messages l½Piðtk�1Þ�;l½Piðtkþ1Þ� and l½PjðtkÞ�,
respectively, to compute independent estimates of the
Please cite this article in press as: D. Mirza et al., Real-time collaborative
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pdf of PiðtkÞ, as per Eq. (6). The outgoing message l½PiðtkÞ�
is computed as per Eq. (7).

3.2. Operation of the sum-product algorithm

The sum-product algorithm is essentially an iterative
message passing algorithm. At each iteration, every vertex
in the graph estimates the pdf of its own states based on
incoming messages. (A vertex encapsulates the unknown
states and a set of transformation functions that operate
on incoming messages to compute these estimates as
described in Section 3.1). The pdfs computed for each ver-
tex are then passed on as messages to all neighbor vertices.

At each time instance the SP algorithm does two things.
First, the state-variables are estimated by intersecting the
individual estimates from its function node neighbors,
Eq. (7). Next the SP estimates the function nodes by mar-
ginalizing the local likelihood function of each state-
variable, Eq. (6). This is repeated until convergence. Note
that there are two very distinct notions of time here: the
time represented by states in the graph (which is the time
evolution of the network we are trying to estimate) and the
time post-facto during which we run our algorithm on a
central location (the running time).

lf�xðxÞ ¼
X
�fxg

f ðXÞ
Y

y2ðf Þnfxg
ly�f ðyÞ

0
@

1
A ð6Þ

where the summary operation is defined as:
X
�x1

f ðx1; x2; x3Þ ¼
X

x22A2

X
x32A3

f ðx1; x2; x3Þ

lx�f ðxÞ ¼
Y

h2nðxÞnf
lh�xðxÞ ð7Þ

where X is the set of arguments of function node
f ; nðwÞ n fxg denotes the set of neighbors of a given node
w on the graph excluding the node x.

The key point in the above described factor-graph
solution is that to effectively fuse position information,
messages have to be passed a number of times across each
of the links of the graph as depicted for a small section of
the graph in Fig. 1(b). The solution above runs offline and
centrally after the actual sensing mission is over. Next,
we will explore if and how we can modify this solution
to tackle the problem of real-time tracking in underwater
networks.

4. Real-time tracking

4.1. Centralized real-time tracking

In this first subsection, we try to answer the ques-
tion:what is the fundamental difference between a non-
real-time and a real-time estimation of vehicle positions?
Here we still assume that computation can run in a central
location. While in our offline non-real-time solution
(discussed in Section 3) the factor-graph was constructed
in one shot using all measurements made when vehicles
were underwater, here we propose a dynamic factor-graph
solution that evolves in time to (a) incorporate new
tracking for underwater networked systems, Ad Hoc Netw. (2014),
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Table 1
Simulation parameters.

Tracking granularity, d 2 min
Localization period, TLOC 8 min
Simulation duration, Tsim 8 h
Number of vehicles, NU 8
Number of beacons, NB 1
Area of deployment, A 2 km � 2 km
Maximum depth of deployment, D 100 m
Maximum transmission range, R 500 m
Average speed of vehicles, v 0.5 m/s
Bytes used to represent pdfs internally, Ninternal 512
Bytes used to communicate pdfs, Ncomm 18
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Fig. 3. Cumulative Distribution Function (CDF) of the RMS error as a
function of the smoothing parameter, s. Each curve in the plot shows the
fraction of position estimates (indicated by the y-axis), computed for all
vehicles for the entire simulation duration, with RMS error less than a
given threshold (indicated by the x-axis).
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states (position and velocity), (b) incorporate estimates
of motion and distance with neighbor vehicles as they
become available, and (c) limits the use of future informa-
tion in estimating positions.

We are interested in knowing the positions of vehicles
at discrete times d apart. At any time t, the FG consists of
N chains of vertices representing the unknown states of
all vehicles until that time. A new vertex is added to the tail
of each chain every d(s) as depicted in Fig. 2. In addition,
when a measurement of distance becomes available
between two vehicles i and j, due to a communication
event at time t, a new vertex is inserted to the ith and jth

chain in the graph corresponding to time t and a link is cre-
ated between them. Each new state is also appropriately
linked to previous states in a chain using measurements
of motion. Whenever the FG is updated with a new state
or measurement, the SP algorithm is run on the graph to
compute updated estimates of all states. To obtain position
estimates in real-time, the pdf of any state in the FG corre-
sponding to time t is recorded at that time, before future
measurements become available. In principle we can esti-
mate the vehicle positions semi real-time, by limiting the
extent of future information to a time window s. Essen-
tially, estimates corresponding to any time t are obtained
from the FG at t þ s. This is generally referred to as smooth-
ing. Such a solution would be suitable for applications that
can tolerate some delay in obtaining position estimates.

We implemented our centralized real-time tracking
solution in the NS2 simulator [14]. The simulation set up
is described later in Section 4.3 with parameters given in
Table 1. In this section we evaluate the localization perfor-
mance as a function of the smoothing delay, s. Fig. 3 shows
the cdf of the RMS error in position estimates for different
values of s. In the figure, the performance of the offline
solution corresponds to s ¼ 1 and that of the real-time
tracking corresponds to s ¼ 0. Notice the loss in perfor-
mance as we go from a non-real-time solution to a real-
time one. This is due to the fact that the real-time solution
does not use any future measurements for estimating the
unknown states. However, as time elapses information
flows backward (along the horizontal links of the graph)
to refine past position estimates. Fig. 3 also shows the gain
in localization performance as the smoothing parameter, s
is increased. We observe that the performance of the
semi-real-time tracking coincides with that of the non-
real-time solution for s ¼ 75 min which is a fraction of
the total simulation time of 8 h.

While the simulation results suggest that we can get
better localization accuracy by using estimates slightly in
the past, in reality we would still need to take into account
the fact that the vehicle has moved during the interval
s. Therefore, past (refined) estimates have to be interpo-
lated to the present time. However, this is what our
Fig. 2. Evolution of dynamic FG. (a) FG

Please cite this article in press as: D. Mirza et al., Real-time collaborative
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tracking algorithm does in an optimal way using naviga-
tional measurements. Therefore, applications that are
interested in knowing where a vehicle is ‘now’ in order
to make location-based decisions cannot leverage from
the parameter s. This is true for most applications such
as navigation and control, routing and so on. However,
refining past estimates would be useful for annotating data
samples with position information and batch processing
them in semi-real time. The smoothing delay is one of
the parameters that inherently limits the performance of
a real-time and distributed solution. In Section 4.2 we will
discuss other such factors.

As shown in Fig. 3, the improvement in the accuracy as
a function of the smoothing delay diminishes for large
at time t. (b) FG at time t þ d.

tracking for underwater networked systems, Ad Hoc Netw. (2014),
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enough delays. This is because current updates do not
affect past estimates if we go far back enough in time.
We therefore limit the number of past states in the
dynamic FG to be within a time window T. As new states
are added to the FG, states older than t � T are removed
from it to limit the computation.
4.2. Distributed real-time tracking

In this section we address the problem of performing
the tracking in a distributed fashion, i.e. How can we split
the computation on different vehicles in order to jointly
estimate the vehicle positions?

Our factor-graph solution actually lends itself quite
naturally to a distributed solution. For a network with N
vehicles, we can view the centralized graph (shown in
Fig. 1(a) for N ¼ 4) as N communicating subgraphs. This
decomposed view of the centralized factor-graph is pre-
sented in Fig. 4. Since each vehicle is primarily interested
in its own position, it would naturally implement the
subgraph corresponding to its own states as highlighted
in the figure. A vehicle also maintains copies of the position
states of other vehicles corresponding to times when a dis-
tance measurement was obtained with them as depicted in
Fig. 2. If at a later time, more accurate estimates of these
states are communicated to the vehicle, it incorporates this
information into its FG.

A direct consequence of implementing the subgraphs
on different vehicles is that the message-passing algorithm
has to now operate over the actual underwater acoustic
network and information needs to be transferred between
vehicles. This poses a number of challenges on the opera-
tion of the sum-product algorithm compared to the cen-
tralized case. To achieve the best case performance in a
distributed setting, a vehicle has to share updates about
Fig. 4. Decomposed view of centralized dependency graph.

Please cite this article in press as: D. Mirza et al., Real-time collaborative
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all its states (past and current) with those vehicles that
had obtained a distance measurement to it. This is equiva-
lent to passing messages over all links of the centralized
FG. However, in a distributed setting, messages can only
be passed over the active communication links of the phys-
ical acoustic network. The problem is that since vehicles
are moving, past states cannot be shared with those vehi-
cles that have gone out of communication range.1 We have
depicted the problem that arises in the distributed case in
Fig. 5(a). The figure shows the network topology for three
vehicles A;B and C at times t1 and t2. At time t1;B communi-
cates with A and shares its current position state, PBðt1Þ.
Vehicle A also estimates its distance to B at the same time
and incorporates this information in its factor-graph as
shown in Fig. 5(c). Later at time t2;B gets new position infor-
mation from vehicle C, which improves its past estimate at
t1. Now in a centralized solution, this updated information
would have been passed to the subgraph of vehicle A, over
the link created at t1 as shown in Fig. 5(b). However, in
the distributed scenario this is not possible because A and
B are no longer in communication range.

To achieve the best localization performance in the dis-
tributed case, we propose that vehicles share their states
with those that are multiple hops away. To do so they peri-
odically broadcast their current and past position states as
well as forward the states of other vehicles. This addresses
the problem described in Fig. 5 because when B improves
its past estimate, PBðt1Þ at a later time t2, it routes this
improved estimate to A. The limitation of this scheme com-
pared to the centralized solution is that updates cannot be
shared with vehicles that are not reachable via multihop.
Nevertheless it gives the best possible real-time distrib-
uted localization performance (by construction) and serves
as a performance baseline. In the remainder of the paper
we will propose ways to minimize the energy overhead
of the distributed tracking.
4.3. Distributed tracking with local information sharing

In the previous section, we presented the best distrib-
uted real-time solution. However, since underwater acous-
tic communication is resource intensive and the vehicles
are energy-constrained, we now consider ways to make
our distributed solution more practical. To limit the
communication, we propose schemes that only use local
information obtained from communication with immedi-
ate neighbors. In the first scheme, each vehicle periodically
shares its current and all past position states with its
immediate neighbors. In the second scheme we further
reduce the amount of information transmitted by vehicles
by having them periodically communicate only their current
position state to their immediate neighbors. We next com-
pare the performance of the tracking solutions presented
so far using the simulation setup described in [8].
1 Note that a similar problem exists in the centralized formulation
because all measurements have to be routed to a single location, while
there may be times when no route is available. However, in our simulations
we assume that measurements are always available at a single location for
centralized tracking. This was done to carry out a logical study of the factors
that affect the performance of the distributed solution.

tracking for underwater networked systems, Ad Hoc Netw. (2014),
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Fig. 5. (a) Network topology at times t1 and t2. FG at time t2. (b) Centralized tracking. (c) Distributed tracking.
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Simulation setup: We implemented all the elements of
our real-time, centralized and distributed FG tracking in
NS2 using the NSMiracle extensions for simulating under-
water network protocols [14]. We simulated a network
with 8 mobile vehicles and 1 beacon. The vehicles were
placed in a 2 km � 2 km area. The beacons resided on the
surface, while the vehicles were at different depths. We
used the mobility model proposed in [7] where vehicles
follow smooth curves. Vehicles transmitted localization
updates every TLOC(s). While our proposed information
sharing schemes can be used with any MAC protocol,
we chose a TDMA MAC. The simulation parameters are
summarized in Table 1.

Using the above described simulation set up we com-
pared the performance of our offline solution (see Section
3), real-time centralized (see Section 4.1), real-time
distributed (best case) (see Section 4.2) and the real-time
distributed tracking solutions with local information
sharing (described earlier in this section). The CDF of
RMS error in position estimates for the different tracking
solutions is shown in Fig. 6. As the results show the
maximum loss in performance occurs when we go from
an offline solution to a real-time one.

While there is some benefit in forwarding updates over
multiple hops, the energy overhead of doing so is substan-
tial. However, we can come very close to the best case
distributed performance by sharing past estimates with
immediate neighbors. For these simulations, the results
suggest that if performance is the key requirement with
nominal constraints on energy a good compromise solu-
tion may be to share current and past states with immedi-
ate neighbors. However, if energy is of primary concern,
then periodically sharing only the current state with
immediate neighbors is sufficient.
Please cite this article in press as: D. Mirza et al., Real-time collaborative
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To get a better understanding of the relative benefit of
the different schemes, we evaluated their performance
when the number of beacons, NB and number of vehicles
NU were varied. Later in Section 6, we provide a more
in-depth discussion of how this affects the localization
performance.

Fig. 7 shows the CDF of the RMS error in position
estimates for the different tracking solutions as well for
the non-collaborative case where vehicles only use mea-
surements with beacons for position estimation. These
results show that there is significant gain in localization
accuracy from inter-vehicle collaboration. Further, this
gain increases with the number of vehicles because of
tracking for underwater networked systems, Ad Hoc Netw. (2014),
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Fig. 7. Performance of real-time centralized, real-time distributed (best case) and real-time distributed tracking solutions with local information sharing for
networs with (a) one beacon and 6 unknown nodes, (b) one beacon and 10 unknown nodes, (c) two beacons and 6 unknown nodes, (d) two beacons and 10
unknown nodes.
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the additional constraints obtained from inter-vehicle dis-
tance estimates. Among the collaborative schemes, sharing
past (refined) position states with other vehicles improves
localization performance when there is only one beacon in
the network. For the networks with one beacon, when the
network connectivity is very low (NU ¼ 6), sharing past
states with only immediate neighbors almost achieves
the best case performance. However, when the connectiv-
ity improves (NU ¼ 10), past states have to be shared over
multiple hops for the best case performance. This is
because under conditions of low network connectivity
vehicles that would benefit from past position updates
are not reachable via multihop. This also explains the per-
formance difference between the real-time centralized and
the best case distributed solutions for NB ¼ 1 and NU ¼ 6.
However, we observed that when the number of beacons
is increased (NB ¼ 2), the performance of the different
information sharing schemes almost overlap, showing
little gain in sharing past estimates over single or multiple
hops. Nevertheless we still observe a significant gain over
the non-collaborative case.

There may be times when the best performance is
needed, which requires vehicles to share updates about
past position estimates over single and multiple hops.
However, we observed that in most cases, it is sufficient
Please cite this article in press as: D. Mirza et al., Real-time collaborative
http://dx.doi.org/10.1016/j.adhoc.2014.10.008
to periodically share only the current position estimate
with neighbors.
5. Implementation details

5.1. Message representation

The sum-product algorithm operates efficiently on the
pdf of discrete random variables while both position and
velocity are most naturally defined over continuous space.
To address this problem, we approximate the true pdf
of states by piece-wise constant distributions that are uni-
formly weighted over 2D grids [7]. We have shown in our
prior work that if these distributions are binary weighted,
the entire sum-product algorithm can be implemented in
binary logic which significantly reduces the computation
overhead [7].

To enable vehicles to control their energy consumption
without significantly deteriorating their localization accu-
racy we propose to decouple the representation used when
communicating pdfs over the wireless channel from that
used internally by vehicles. A more in depth description
of the proposed solution and how pdfs of different granu-
larities can be compared can be found in our prior work
tracking for underwater networked systems, Ad Hoc Netw. (2014),
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[8]. The key point is that we can adapt the number of bytes
used to communicate pdfs over the wireless channel,
without significantly deteriorating the performance of
the algorithm. This is summarized in Fig. 8 where we com-
pare the localization performance for various values of
Ncomm, the number of bytes used to represent communi-
cated pdfs and Ninternal, the number of bytes used to repre-
sent pdfs local to the nodes. The conclusion we can draw
from this figure is that we maintain sufficient accuracy
when only transmitting 18 bytes of data for each pdf and
maintaining an internal pdf of 512 bytes. This low commu-
nication overhead is key for a practical implementation of
this system. There is a trade off between the number of
grid points used to represent pdfs internally, Ninternal, and
the computation overhead of the algorithm. The number
of grid points is inversely related to the size of each grid.
In the next section we will discuss why and how the grid
size adversely affects the accuracy of the algorithm and
propose an implementation to counter this effect as much
as possible under practical constraints.
5.2. Implementation of the factor graph for effective
information fusion

While uniformly weighted piecewise constant distribu-
tions minimize the computation and energy overhead of
the sum-product algorithm, they deteriorate the accuracy
of position estimates by introducing rounding errors. In
this section we present why these errors are introduced
and provide an approach that minimizes their effect.

The local factor graph of each vehicle essentially fuses
distance estimates to neighbor vehicles, obtained at differ-
ent times, to compute the pdf of all the states specified by
the vertices of the graph. Each distance measurement (in
combination with an estimate of the position of the neigh-
bor vehicle) provides an independent estimate of the posi-
tion of the vehicle at the time that it was obtained. In
principle the measurements of the vehicle’s motion allow
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Please cite this article in press as: D. Mirza et al., Real-time collaborative
http://dx.doi.org/10.1016/j.adhoc.2014.10.008
these estimates to be translated to any past or future
time, t where they are fused. The translation in time is
mathematically given by

PðtjziÞ ¼ PðtijziÞ þ vðti; tÞjti � tj þ ev jti � tj ð8Þ

where zi denotes the distance estimate obtained at time
ti; PðtijziÞ denotes the estimate of the position of the vehicle
at time ti due to the distance measurement obtained at ti

alone, vðti; tÞis the estimate of the vehicle’s average veloc-
ity in the interval ðti; tÞ and ev is the error in velocity
measurements.

As the error term in the above equation shows there is
additional uncertainty in the translated position estimate
PðtjziÞ since measurements of the vehicle’s motion are
not exact.

In practice, the translation step given by Eq. (8) is per-
formed numerically by the SP algorithm. This introduces
a rounding error every time a translation is performed
because the true pdf is approximated by the binary
weighted piecewise constant pdfs (that were described in
the previous section). In effect the true pdf of any state is
smeared every time information is passed from one state
in the graph to an adjacent state. The extent of smearing
at each stage depends on the grid size of the representa-
tion. Further, the rounding errors introduced due to grid
size have a cumulative effect when information available
in one state has to pass through many intermediate states
(that do not provide additional information) in order to be
merged with information available in a different state in
the graph.

To further elucidate the effect of intermediate states
and grid size on rounding errors, consider the example
factor-graph shown in Fig. 9 where distance estimates
are obtained at two time instances t1 and t6. Each of these
measurements provides an independent estimate of the
position of the vehicle at the time that it was obtained
denoted as Pðt1jz1Þ, and Pðt6jz6Þ respectively. Now to obtain
the final estimates of the positions at times t1 and t6 posi-
tion information obtained at time t1 has to be translated to
t6 and vice versa. In essence we need to compute Pðt6jz1Þ
and Pðt1jz6Þ. These estimates can be obtained as per
Eq. 8. However, the factor-graph in Fig. 9 shows that there
are 4 intermediate states between t1 and t6. These states do
not have any measurements of distance associated with
them and are solely present because the application
requires an estimate of the vehicle’s position at these
times. Since the SP algorithm computes the pdf of any state
using only that of its neighbor states, rounding errors are
added at every intermediate state when Pðt1jz1Þ is trans-
lated to t6. Therefore, these errors have a cumulative effect.

To minimize the cumulative effect of rounding errors
the size of the grids used to represent pdfs must be very
small and far more grid points are required which increases
the computation overhead. This problem becomes spe-
cially pronounced when distance measurements become
available very intermittently compared to the tracking
granularity, d. To address this issue we propose an alter-
nate implementation of the factor-graph that was earlier
presented in Section 4. Note that logically our solution still
follows the one presented in Section 4 to estimate posi-
tions in real time.
tracking for underwater networked systems, Ad Hoc Netw. (2014),
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We refer to states corresponding to times when at least
one distance measurement is available as informative
states. All other states are referred to as empty states. In
our proposed implementation the pdfs of the unknown
states are computed in two steps as shown in Fig. 10. We
first define the factor-graph over all informative states.
The implementation of this step for the original factor
graph shown in Fig. 2(b) is presented in Fig. 10(a). Note
that in this step aggregating the motion measurements
over the intervals between the informative states elimi-
nates the empty states. The sum-product algorithm is then
executed on this factor-graph to estimate the pdf of all
informative states. By eliminating the intermediate empty
states, the effect of rounding errors are minimized when
combining distance estimates obtained at different times.

Next we interpolate between the informative states
(using motion measurements) to compute the pdf of all
other states. The factor-graph corresponding to this step
(for the original FG, Fig. 2(b)) is shown in Fig. 10(b). As
shown in the figure, the pdf of each state in the interval
ðt1; t2Þ is computed using the estimates at t1 and t2 and
the appropriate aggregated motion measurements. Simi-
larly, states in the interval ðt2; t3Þ are computed from the
position estimates at t2 and t3 and those later than t3 are
computed using the estimate at t3 alone.

We now evaluate the performance of our proposed FG
implementation versus the one where all the unknown
states are estimated in one shot. In order to isolate the
effect of intermediate empty states on the localization
accuracy from all other parameters that affect performance,
we simulated a scenario where only one vehicle was
tracked using distance estimates from beacons. A measure-
ment of distance was made with a beacon every 36s. Three
beacons were used for tracking. The vehicle position was
estimated every 3s. Keeping the maximum number of grid
points used to represent the pdf of position estimates the
same, we compared the RMS error in position estimates
obtained over 20 min of simulation time using the FG
implementation shown in Fig. 2 and the proposed imple-
mentation shown in Fig. 10. The cumulative distribution
function (cdf) of the RMS error in estimates for the two
implementations is shown in Fig. 11(a) and the RMS error
versus time is shown in Fig. 11(b). From these results we
Fig. 10. Proposed implementation. (a) FG for estimating informative st
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observe that the localization accuracy improves signifi-
cantly using our proposed implementation.

In summary, for real-time tracking the FG implemented
by each vehicle will conceptually evolve as described in
Section 4 however we implement it as explained in this
section. In addition, the grid size used to represent pdfs
internally is kept small by using signifcantly larger number
of bytes to represent these pdfs internally compared to the
number of bytes used to communicate these pdfs between
vehicles. This essentially translates to choosing a much
larger value for the parameter Ninternal compared to the
parameter Ncomm.
6. Deployment considerations

For the simulations in this section we compare non-
collaborative localization to sharing the current state with
a 1-hop neighbor (shortened to ‘‘Collaborative’’ for the
remainder of this section) because it was shown in our
previous work [8] that the localization accuracy obtained
by this scheme was the same as sharing all information with
all reachable nodes. We specifically investigate how key fac-
tors, namely, direct communication with beacons, network
connectivity, and inaccuracies in the position estimates
limit the scenarios where the proposed collaborative algo-
rithm outperforms a non-collaborative approach.
6.1. Dependence on proximity to beacon

Since position information always percolates into the
network starting at a beacon, one of the factors that
naturally determines the error in position estimates is
the proximity of nodes to beacons. In this section we quan-
tify the impact of direct communication with beacons on
the localization (relative to other factors). To do this we
simulated a scenario with 6 unknown nodes and one
beacon. The trajectory of one of the unknowns is shown
in Fig. 12(a). The trajectory of other nodes followed a
similar pattern, however each track was generated inde-
pendent of the others. The trajectory shown in Fig. 12(a)
is color coded into three segments to indicate the level of
connectivity of the node to the beacon and to other nodes
ates. (b) FG for estimating empty states from informative states.
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in the network. The segments of the trajectory in red
correspond to times when the node was within the
communication range of the beacon, the segments in green
correspond to times when it was within the communica-
tion range of at least another node and the segments in
black correspond to times when it was not within the
communication range of any node.

For the above described scenario we tracked the loca-
tion of all unknowns in real-time using both collaborative
and non-collaborative localization. To quantify the impact
of direct communication with a beacon on the localization
accuracy, we separated the position estimates obtained
during an entire simulation into two sets. The first set
corresponded to estimates obtained at times when a node
communicated directly with a beacon (the red segments of
the trajectory in Fig. 12(a)) and the second set consisted of
times when the node could not receive any beacon signal
(the green and black segments of the trajectory in
Fig. 12(a)). The cdf of the RMS error in estimates for both
sets are shown in Fig. 12(b).

Fig. 12(b) shows the relative benefit of collaborative
tracking to non-collaborative tracking based on direct
proximity to beacons. We observe that there is a much
greater disparity in the localization performance between
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the non-collaborative and collaborative frameworks when
nodes are not in the range of the beacon compared to when
they are. If a node is in the range of beacons, there is not
much gain from using collaboration. However, if it is out
of range of beacons significant gains can be obtained by
leveraging the localization information of other nodes.
Notice that this gain can only occur when collaboration
provides the nodes good information, i.e. the collabora-
tion nodes are in communication with a beacon. While
the specific trajectory is not important, what is important
is whether or not a node can receive good information
from other nodes when they are collaborating. We will
see examples later where sharing bad information can
actually hurt the localization performance of a specific
node.

The results support what we intuitively expect: the
error in position estimates is least when a node is in the
direct communication range of a beacon. Additionally,
we observe that both in the case of collaborative and non-
collaborative localization, there is significant disparity in
the error when nodes are within the range of the beacon
compared to when they are not. This indicates that a key
factor in determining the position accuracy of a node is
whether or not it is within the communication range of a
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beacon and the benefit of direct communication with a
beacon outweighs the gains from inter-node collaboration.

Based on the above findings we would like to develop
the importance of a node periodically receiving localization
information from a beacon. Addressing this question
relates to strategizing the placement of beacons in a net-
work, as the number of available beacons is increased.

6.2. First hand versus second hand information

In this section we consider the following question: If the
number of beacons available for tracking is increased, would it
be better to distribute them uniformly or non-uniformly over
the area of deployment?

We consider the above question because when the spa-
tial distribution of beacons is not uniform we expect the
error of a subset of the nodes to be minimized. In principle
these nodes can then localize other nodes in the network
that have less frequent (or no access) to beacons. On the
other hand when the beacons are uniformly distributed
in the network we expect all nodes to achieve approxi-
mately the same level of accuracy. Since most nodes do
not have an information advantage over others, we would
also expect little gains from collaboration in such a
scenario.

To investigate the above conjectures we considered two
simulation scenarios shown in Fig. 13(a) consisting of six
stationary beacons and two unknowns that are always
within the communication range of each other. In one of
the scenarios all six beacons were arranged linearly in a
non-staggered fashion such that the bottom node (whose
trajectory is shown in blue) is always within the range of
a beacon and the top node never hears a beacon. In the
second scenario the beacons were placed in a staggered
fashion, such that the bottom (blue) track intersects the
communication range of three of the beacons and the top
(green) track intersects the communication range of the
other three beacons. We considered the localization error
of the top (green) track to compare the benefit of receiving
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information from a beacon and a neighboring node (the
staggered beacon arrangement) to the case where we only
receive information from a neighboring node who receives
information from twice as many beacons (the non-
staggered beacon arrangement). The cdf of the RMS error
in the position estimate of the top track is shown in
Fig. 13(b). The results show that the staggered beacon
arrangement provides much better localization accuracy
for the top node compared to the non-staggered arrange-
ment. We also observe that there is little gain from collab-
oration in the staggered case. This is because in this case
the errors in the position estimates of both nodes are com-
parable. Consequently, there is little gain from sharing
these estimates. However, in the non-staggered arrange-
ment where the top node never hears a beacon there is
noticeable gain from communicating with the bottom
node.

Additionally, we considered the case shown in Fig. 14(a)
where the beacon range is extended so that the bottom
node intermittently receives updates from two beacons
at a time to further reduce its error. In this case there is
an additional improvement in the accuracy of the top track
when the tracking is done collaboratively as shown in
Fig. 14(b). This indicates that we can increase the location
accuracy of both nodes by increasing the number of
beacons used to localize one of them. However, this gain
is clearly inferior to allowing the top node to receive
location information from a beacon directly.

6.3. Redundant information

In this section we would like to understand how much
collaboration is really useful and when. We evaluate
whether a node can improve its estimate when communi-
cating with nodes traveling in similar trajectories. To do
this we consider the networks of Fig. 15, where one node
is never in communication range of a beacon while the rest
of the nodes are in range of the beacon at some point
during the simulation. In the first case, Fig. 15(a), there
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are 2 nodes following similar trajectories. The bottom node is in
range of the beacon for a portion of the simulation while the
top node can only receive localization information by commu-
nicating with the bottom node. The other case presented in
Fig. 15(b) is different from Fig. 15(a) in that there are now five
nodes that receive a signal from the beacon and can communi-
cate with the node that never hears a beacon.

The results of these simulations are shown in Fig. 15(c),
plotted only for the node that can never communicate
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with the beacon. These results show that the collaborative
case with only a two-node network provides the best
localization accuracy. In fact, the collaborative result
performs worse than the non-collaborative case in the
six-node network. This brings up an interesting consider-
ation about the proposed collaborative localization frame-
work. When nodes have poor estimates of their positions
the collaborative localization will actually decrease the
localization accuracy of each node. In other words, sharing
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bad information produces worse results than sharing no
(or less) information. This effect is due to practical limita-
tions on the implementation of the algorithm rather than
an inherent property of the algorithm.

The fact that the six node network performed worse
than the two node network can be explained by revisiting
the discussion of Section 5.2. In the above considered
simulation scenarios, the five bottom nodes’ localization
accuracy decreases when they leave the proximity of the
beacon, yet they are still receiving ranging information
from each other. Each time new range information is
received by a node from a neighboring node, an additional
state is inserted into the factor graph. As such the addi-
tional states introduced in the graph are not informative
since all nodes have similar errors and these errors are
growing monotonically. This causes us to go from our
desired case of Fig. 10 to the case we were trying to get
away from in Fig. 9. The introduction of these uninforma-
tive intermediate states causes our solution to suffer the
rounding errors discussed in Section 5.2. As explained
earlier in that section, these rounding errors are a result
of representing the estimated pdfs using only a finite and
nominal number of grid points. As such this effect would
not come into play if the pdfs could be represented with
infinite accuracy. The above simulation scenario was
specifically chosen to show that when all nodes in the net-
work have poor estimates of their positions, sharing redun-
dant information does not provide any benefit, but rather
can hurt the localization accuracy of the nodes due to prac-
tical limitations in the implementation of the algorithm.

Our simulation results show that direct communication
with beacons, network connectivity and inaccuracies in the
position estimates limit the scenarios where the proposed
collaborative algorithm outperforms a non-collaborative
approach. To summarize our conclusions:

1. The localization accuracy of any node is primarily
determined by the extent of time it is in direct commu-
nication with beacons. If multiple beacons are available
it is more beneficial to distribute them in such a way
that all vehicles have an equal opportunity to periodi-
cally hear at least one beacon

2. If a node is in the range of beacons, there is not much
gain from using collaboration. However, if it is out of
range of beacons significant gains can be obtained by
leveraging the position estimates of other nodes.

3. Collaboration is beneficial when nodes do not have
direct communication with beacons, however, due to
practical limitations of the factor-graph algorithm,
nodes with large and growing position errors should
refrain from sharing their estimates with others.

7. Conclusion

In this paper we reviewed a low overhead collaborative
tracking solution for underwater mobile networks that
estimates the location of vehicles in real-time and in a dis-
tributed fashion. We identified key factors that fundamen-
tally limit the performance of real-time (centralized and
distributed) solutions, quantifying their effects via simula-
tions. We also showed that in certain scenarios, vehicles
Please cite this article in press as: D. Mirza et al., Real-time collaborative
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need to share information over multiple hops for best case
performance. However, in our proposed scheme they only
use information that is obtained locally. We further tested
the collaborative localization framework against different
motion models and concluded that in a network where
nodes follow more predictable trajectories, the localization
performance can be most significantly enhanced by strate-
gically placing beacons so that all vehicles have the oppor-
tunity to periodically hear a beacon. The collaborative
scheme is less suited to such networks, where there is little
disparity in the localization accuracy of vehicles due to
sufficiently frequent communication with beacons. How-
ever, networks where the vehicles move in an unpredict-
able fashion are less amenable to a strategic placement of
beacons. For such networks significant gains are possible
by using our proposed collaborative solution. Even still,
the collaborative approach does have its limitations. In
poorly designed networks, where nodes experience
extended outages in beacon communication as a group,
the collaborative localization framework can do more
harm than good. By avoiding inter-node communication
during these times, the collaborative localization can effec-
tively expand the network, allowing good position esti-
mates to nodes who temporarily or even permanently
are not in range of a beacon.
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Appendix A

This paper is an extension of our previous work on
collaborative tracking [8], published in the International
Conference on Underwater Networks and Systems (WUW-
Net’12). In this paper we have made two key additions
compared to the conference version:

1. An in depth discussion of the implementation of the
Factor-Graph Algorithm, presented in Section 5.2

2. Deployment considerations that can significantly im-
pact the localization accuracy of the network, presented
in Section 6. In this section we have identified and ana-
lyzed scenarios where our collaborative approach shows
significant gains, as well as those that highlight the
limitations of our approach

The materials presented in both Sections 5.2 and 6 have
not appeared in any previous publication.
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