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1. 

METHOD AND SYSTEMIS FOR DETECTING 
AND SOLATING HARDWARE TIMING 

CHANNELS 

PRIORITY CLAIMAND REFERENCE TO 
RELATED APPLICATION 

This application claims priority under 35 U.S.C. S 119 from 
prior provisional application No. 61/774,712, filed Mar. 8, 
2013, which is incorporated by reference herein. 

FIELD 

A field of the invention is data security. The invention 
concerns the detection, isolation and evaluation of hardware 
timing channels. The invention is widely applicable to digital 
devices and microprocessor based systems. A particular 
application is to the analysis of embedded computer systems 
to detect timing flows that compromise security or safety 
critical embedded systems. 

BACKGROUND 

Timing channels are a form of a so-called side channel. A 
side channel is created by a circuit element that leaks infor 
mation unintentionally. Side channels can be exploited by 
adversaries to extract secret information or compromise the 
correct operation of high integrity components. For example, 
a side channel can be used to extract a secret encryption key 
or to affect the time in which a braking system in a car 
responds to the press of the brake pedal. 
Modern embedded computing systems, e.g., medical 

devices, airplanes, and automobiles, increasingly rely upon 
embedded computing systems. Such systems often include a 
system-on-chip. A system-on-chip includes multiple cores, 
controllers or processors on integrated single microchip. The 
movement of information in Such systems should be tightly 
controlled to ensure security goals. This is challenging 
because information can flow through timing channels, which 
are difficult to detect. In turn, hardware designs that are insus 
ceptible to timing channels are difficult to provide because the 
designs can’t be effectively tested for possible flaws that 
Support timing channels. 

Seminal work by Kemmerer R. A. Kemmerer, “Shared 
resource matrix methodology: an approach to identifying 
storage and timing channels. ACM Trans. Comput. Syst., pp. 
256-277, 1983, described an informal shared-resource 
matrix to pin-point potential timing channels. Effective at 
higher computing abstractions, this technique becomes diffi 
cult to apply to embedded and application-specific designs. 
A number of Ad-hoc approaches M. Hu, “Reducing tim 

ing channels with fuzzy time in Proceedings of the 1991 
IEEE Symposium on Security and Privacy, pp. 8-20, 1991, I. 
C. Wray, “An analysis of covert timing channels.” in Proceed 
ings of the 1991 IEEE Symposium on Security and Privacy, 
pp. 2-7, 1991 focus on introducing random noise into a 
system to make extracting information stochastically diffi 
cult. These methods make a timing channel harder to exploit 
(lower signal-to-noise ratio), but fail to identify whether a 
channel is timing-based. In addition, previous work using 
GLIFT has shown that strict information flow isolation can be 
obtained in a shared bus J. Oberg, et al., “Information flow 
isolation in I2C and USB. in Proceedings of Design Auto 
mation Conference (DAC) 2011, pp. 254-259, 2011., but the 
work provides no ability to relate information to timing. 

Typical information flow tracking strategies target hard 
ware description languages X. Li et al., Caisson: a hardware 
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2 
description language for secure information flow.” in PLDI 
2011, pp. 109-120, 20. T. K. Tolstrup, Language-based 
Security for VHDL. PhD thesis, Informatics and Mathemati 
cal Modelling, Technical University of Denmark, DTU, 
2007. This can be effective to prevent timing channels from 
developing. However, these languages force a designer to 
rewrite code in a new language. This is especially cumber 
Some when already designed hardware modules need to be 
analyzed. 

Mobile systems and point of sale systems are of particular 
interest for security against information flows, including tim 
ing flows. The uses of mobile devices for trusted and confi 
dential information exchanges continue to accelerate. Point 
of sale merchant systems have also proved vulnerable. Infor 
mation stored and exchanges in these systems can include 
identity and financial account information. 

Mobile phones, including phones having near field com 
munication (NFC) capabilities, incorporate chips that allow 
the phones to securely store confidential information. Sys 
tems that interact with mobile systems, such as point of sale 
systems, also have security domains. Various secure domains 
are typically required to safeguard the flow of sensitive infor 
mation, and to ensure that only specific secure domains have 
access to the information. The Smart Card Alliance has set 
forth guidelines for security in mobile payment platforms in 
Publication No. CPMC-09001, May 2009. Timing channels 
can be used to circumvent many such safeguards. 

There are two general classes of information flows: explicit 
and implicit. Explicit information flows result from two sub 
systems directly communicating. For example, an explicit 
flow occurs when a host and device on abus directly exchange 
data. Implicit information flows are much more subtle. 
Implicit flows generally leak information through behavior. 
Typical implicit information flows show up inhardware in the 
form of timing, where information can be extracted from the 
latency of operations. 

For example, it is known that that side channel timing 
attacks can be used to extract secret encryption keys from the 
latencies of caches and branch predictors, for example. Cache 
timing attacks can obtain the Secret key by observing the time 
for hit and miss penalties of the cache. Branch predictor 
timing channels are exploited in a similar manner, when 
information is leaked through the latency of predicted and 
mis-predicted branches. It has also been recognized that the 
shared bus in modern systems is a source of concern. A 
so-called bus-contention channel has been recognized as per 
mitting covert transmission of information through the traffic 
on a global bus. See, e.g., W.-M. Hu, "Reducing timing chan 
nels with fuzzy time.” Proceedings of the 1991 IEEE Sym 
posium on Security and Privacy, pp. 8-20, 1991. 

Information flow tracking is a common method used in 
secure systems to ensure that secrecy and/or integrity of infor 
mation is tightly controlled. Given a policy specifying the 
desired information flows, such as one requiring that secret 
information should not be observable by public objects, infor 
mation flow tracking helps detect whether or not flows vio 
lating this policy are present. 

In general, information flow tracking associates data with a 
label that specifies its security level and tracks how this label 
changes as the data flows through the system. A simple 
example system has two labels: public and secret. A policy for 
the example system specifies that any data labeled as secret 
(e.g., an encryption key) should not affect or flow to any data 
labeled as public (e.g., a malicious process). Information flow 
tracking can also be extended to more complex policies and 
labeling systems. Information flow tracking has been used in 
all levels of the computing hierarchy, including programming 
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languages A. Sabelfeld and A. C. Myers, "Language-based 
information-flow security.” IEEE Journal on Selected Areas 
in Communications, 2003, operating systems M. Krohn, et 
al., “Information flow control for standardos abstractions in 
SOSP 2007, pp. 321-334, 2007., and instruction-set/mi 
croarchitectures G. E. Suh, et al., “Secure program execution 
via dynamic information flow tracking in ASPLOS 2004, 
pp. 85-96, 2004.. J. R. Crandall et al., “Minos: Control data 
attack prevention orthogonal to memory model.” in MICRO 
2004, pp. 221-232, 2004.. Recently, information flow track 
ing was used by Tiwari et al. M. Tiwari, et al., “Execution 
leases: a hardware-supported mechanism for enforcing 
strong non-interference,” in MICRO 2009, MICRO 42, pp. 
493-504, 2009 at the level of logic gates in order to dynami 
cally track the flows of each individual bit. 

In the technique used by Tiwari et al., called gate level 
information flow tracking (GLIFT), the flow of information 
for individual bits is tracked as the bits propagate through 
Boolean gates; GLIFT was later used by Oberg et al. J. 
Oberg, et al., “Information flow isolation in I2C and USB. in 
Proceedings of Design Automation Conference (DAC) 2011, 
pp. 254-259, 2011. to test for the absence of all information 
flows in the IC and USB bus protocols and by Tiwari et al. 
M. Tiwari, et al., “Complete information flow tracking from 
the gates up,” in Proceedings of ASPLOS2009, 2009 to build 
a system that provably enforces strong non-interference. Fur 
ther, it has been used to prove timing-based non-interference 
for a network-on-chip architecture in the research project 
SurfNoCH. M. G. Wassel et al., “Surfnoc: a low latency and 
provably non-interfering approach to secure networks-on 
chip.” in ISCA, pp. 583-594, ACM, 2013. Since its introduc 
tion, Tiwarietal. have expanded GLIFT to “star-logic.” which 
provides much stronger guarantees on information flow M. 
Tiwari, et al., “Complete information flow tracking from the 
gates up in Proceedings of ASPLOS2009, 2009. Generally, 
GLIFT tracks flow through gates by associating with each 
data bit a one-bit label, commonly referred to as taint, and 
tracking this label using additional hardware known as track 
ing logic, which specifies how taint propagates. 

Gate-level information flow tracking (GLIFT) provides the 
ability to test for information flows. See, e.g., Oberg et al., 
“Information Flow Isolation in I2C and USB. DAC 2011, 
Jun. 5-10, 2011. Chip designers can test for information flows 
prior to fabricating a chip with GLIFT. However, GLIFT 
merely provides identification of information flows, and only 
with the single bit tag that is labeled taint. GLIFT tracks each 
individual bit in a system as the bits propagate through Bool 
ean gates. 
GLIFT can be applied, for example, after a design is syn 

thesized into a gate-level netlist. With GLIFT, each gate is 
then associated with tracking logic. The function of the track 
ing logic depends on the function of the gate. The process is 
similar to a technology mapping, where each gate in the 
system is mapped to specific GLIFT logic. The result is a 
gate-level design of a finite state machine (FSM) that contains 
both the original logic and tracking logic. The resulting 
design equipped with tracking logic can be tested for infor 
mation flows. To test for implicit timing flows, GLIFT 
accounts for all possible combinations of tainted data bits, 
and allows information flows to be observed. A designer can 
than make appropriate modifications to the chip design. Since 
GLIFT targets the lowest digital abstraction, it is able to 
detect and capture information leaking through time. How 
ever, GLIFT fails to provide any ability to separate timing 
information from functional information. Accordingly, a 
hardware designer using GLIFT would be unable to deter 
mine with a suspect flow is director indirect. 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
The Bus Covert Channel 

Shared buses, such as the inter-integrated circuit (IC) pro 
tocol, universal serial bus (USB), and ARM’s system-on-chip 
AMBAbus, lie at the core of modern embedded applications. 
Buses and their protocols allow different hardware compo 
nents to communicate with each other. For example, they are 
often used to configure functionality or offload work to co 
processors (GPUs, DSPs, FPGAs, etc.). As the hardware in 
embedded systems continues to become more complex, so do 
the bus architectures themselves. The complexity makes it 
difficult to identify potential security weaknesses. 

In terms of Such security weaknesses, a global bus that 
connects high and low entities has inherent security prob 
lems. An example is a denial-of-service attack. In such an 
attack, a malicious device starves a higher integrity device 
from bus access. Another example is bus-Snooping, in which 
a low device can learn information from a higher one. An 
inefficient and expensive solution that has been used to avoid 
these problems involves designers building physically iso 
lated high and low buses. 
The covert channels associated with common buses are 

well researched. One Such channel, the bus-contention chan 
nel W.-M. Hu, “Reducing timing channels with fuzzy time.” 
in Proceedings of the 1991 IEEE Symposium on Security and 
Privacy, pp. 8-20, 1991. arises when two devices on a shared 
bus communicate covertly by modulating the amount of 
observable traffic on the bus. For example, if a device A 
wishes to send information covertly to a device B, it can 
generate excessive traffic on the bus to transmit a 1 and 
minimal traffic to transmit a 0. Even if A is not permitted to 
directly exchange information with B, it still may transmit 
bits of information using this type of covert channel. 
The two most well-known solutions to the bus-contention 

channel are clock fuzzing W.-M. Hu, “Reducing timing 
channels with fuzzy time in Proceedings of the 1991 IEEE 
Symposium on Security and Privacy, pp. 8-20, 1991. and 
probabilisitic partitioning J. W. Gray III, “On introducing 
noise into the bus-contention channel in Proceedings of the 
1993 IEEE Symposium on Security and Privacy, pp. 90-98, 
1993.]. Clock fuzzing utilizes a skewed and seemingly ran 
dom input clock. The fuzzy clock makes it stochastically 
difficult for two covert devices to synchronize. This technique 
has limited appeal because it reduces the bandwidth of the 
bus J. W. Gray III, “On introducing noise into the bus 
contention channel.” in Proceedings of the 1993 IEEE Sym 
posium on Security and Privacy, pp. 90-98, 1993.). Probabi 
listic partioning permits devices to access the bus in isolated 
time slots in a round-robin fashion. Two modes are chosen at 
random: Secure and insecure. In insecure mode, the bus oper 
ates in the standard fashion where devices contend for its 
usage. In Secure mode, the bus is allocated to each device in a 
time-multiplexed round-robin manner. The contention phase 
burdens bandwidth also. 
Cache Timing Channel 
CPU caches in modern processors have been demonstrated 

to be highly susceptible to hardware timing channels D. 
Gullasch, et al., "Cache games—bringing access-based cache 
attacks on AES to practice.” in Proceedings of the 2011 IEEE 
Symposium on Security and Privacy, pp. 490-505, 2011. 
Caches are typically built from faster and higher power 
memory technologies, such as SRAM, and sit between slower 
main memory (typically DRAM) and the CPU core. 
The non-deterministic latencies of caches are a direct 

Source of timing channels. When a memory region is refer 
enced that is currently stored in the cache (a cache hit), the 
time to receive the data is significantly faster than if it needs 
to be retrieved from main memory (a cache miss). Many data 
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encryption algorithms. Such as the advanced encryption stan 
dard (AES), use look-up tables based on the value of the 
secret key. Since a look-up table will return a value in an 
amount of time that is directly correlated with whether or not 
the value is already cached, observing the timing of interac 
tions with the look-up table produces valuable information 
about the secret key. 

This vulnerability has been previously demonstrated to 
permit complete extraction of the secret key via different 
attacks. The attacks include trace-driven O. Aciigmez et al., 
“Trace-driven cache attacks on AES (short paper).” in ICICS, 
pp. 112-121, 2006, time-driven D. J. Bernstein, "Cache 
timing attacks on AES. Technical Report, 2005. D. A. 
Osvik, et al., "Cache attacks and countermeasures: the case of 
aes,' in Proceedings of the 2006 The Cryptographers' Track 
at the RSA conference on Topics in Cryptology, pp. 1-20, 
2006., and access-driven D. Gullasch, et al. “Cache 
games—bringing access-based cache attacks on AES to prac 
tice.” in Proceedings of the 2011 IEEE Symposium on Secu 
rity and Privacy, pp. 490-505, 2011. Trace-driven attacks 
require an adversary to have detailed cache profiling infor 
mation. The adversary therfore requires physical access or 
another wire to obtain fine granularity cache information. 
Time-driven attacks collect timing measurements over sev 
eral encryptions by a remote server and correlate their run 
ning time to the value of the Secret key. This type of attack has 
been shown capable of extracting a complete 128-bit AES key 
D. J. Bernstein, "Cache-timing attacks on AES. Technical 
Report, 2005.). Access-driven attacks exploit knowledge 
about which cache lines are evicted. In particular, a malicious 
process observes the latency of cachemisses and hits and uses 
these patterns to deduce which cache lines are brought 
in/evicted, which in turn leaks information about the memory 
address (e.g., the secret key in AES table look-ups). This type 
of cache attacks has applications beyond just encryption, Such 
as on virtulized systems T. Ristenpart, et al., “Hey, you, get 
off of my cloud Exploring information leakage in third-party 
compute clouds.” in Proceedings of CCS 2009, pp. 199-212, 
2009.). 
Most previous work on timing channels has focused on 

techniques for identifying timing and storage channels in 
larger systems, but not specifically in hardware designs. Prior 
efforts have reduced or eliminated specific timing channels. 
Little work concerned systematic testing techniques for iden 
tifying Such channels. 
Wray R. A. Kemmerer, “Shared resource matrix method 

ology: an approach to identifying Storage and timing chan 
nels.” ACM Trans. Comput. Syst., pp. 256-277, 1983. 
describes analysis of timing and storage channels in the VAX 
Virtual Machine Monitor. The timing channels are specific to 
the VAXVMM and a systematic testing method for identify 
ing the channels is not described. 
Kemmerer R. A. Kemmerer, “Shared resource matrix 

methodology: an approach to identifying storage and timing 
channels. ACM Trans. Comput. Syst., pp. 256-277, 1983. 
presents a shared matrix methodology for identifying timing 
channels. A matrix is created that compares shared resources, 
processes, and resource attributes. Based on these fields and 
Some proposed criteria for a timing and storage channel, the 
matrix can be analyzed to determine whether or not a shared 
resource can be used as a side channel. This technique there 
fore requires the designer to construct such a matrix and 
determine the shared resources, but ultimately still does not 
provide a general technique for detecting timing channels in 
hardware. 

Clock fuZZing is a technique for timing channel mitigation 
in secure systems W.-M. Hu, “Reducing timing channels 
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6 
with fuzzy time in Proceedings of the 1991 IEEE Sympo 
sium on Security and Privacy, pp. 8-20, 1991.I. Clock fuzzing 
works by presenting the system with a seemingly random 
clock to make it stochastically difficult for two objects to 
synchronize. Clock fuZZing is ineffective because it reduces 
the bandwidth of the timing channel and does not eliminate it 
entirely. 
More recent work has focused on hardware information 

flow tracking. Dynamic information flow tracking (DIFT). 
E. Suh, et al., “Secure program execution via dynamic infor 
mation flow tracking” in ASPLOS 2004, pp. 85-96, 2004. 
tags information that comes from potentially untrusted chan 
nels and tracks them throughout a processor. This tag is 
checked before branches in execution are taken, and the 
branch is prevented if this information originated from an 
untrusted source. As demonstrated by Suh et al., DIFT is quite 
effective at detecting buffer overflow and format-string 
attacks, but works at too high of an abstraction to track infor 
mation through timing channels. A similar tracking system.J. 
R. Crandall et al., “Minos: Control data attack prevention 
orthogonal to memory model in MICRO 2004, pp. 221-232, 
2004. keeps an integrity bit on information and uses this bit 
to prevent potentially malicious branches in execution. 
Another example M. Dalton, et al., “Raksha: a flexible infor 
mation flow architecture for software security.” in ISCA 2007, 
pp. 482-493, 2007 is a DIFT style processor that allows 
security policies to be reconfigured. Others have described a 
hardware security language X. Li, et al., "Caisson: a hard 
ware description language for secure information flow, in 
PLDI 2011, pp. 109-120, 2011. that aids hardware designers 
by using programming language type-based techniques to 
prevent unintended information flows and eliminate timing 
channels. 

Gate level information flow tracking (GLIFT) has been 
developed by the present inventors and colleagues. GLIFT 
M. Tiwari, et al., “Execution leases: a hardware-supported 
mechanism for enforcing strong non-interference.” in 
MICRO 2009, MICRO 42, pp. 493-504, 2009 works by 
tracking each individual bit in a hardware system. It is a 
general technique that has been applied to build an execution 
lease CPUM. Tiwari, et al., “Crafting a usable microkernel, 
processor, and I/O system with strict and provable informa 
tion flow security.” in Proceedings of ISCA 2011, pp. 189 
200, 2011. and to analyze information flows in bus protocols 
J. Oberg, et al., “Information flow isolation in I2C and USB. 
in Proceedings of Design Automation Conference (DAC) 
2011, pp. 254-259, 2011... Recently, information flow track 
ing has also been used in hardware design languages. This 
work is effective at helping hardware designers to build 
secure hardware, but fails to provide a general technique for 
testing for timing channels. 

SUMMARY OF THE INVENTION 

A preferred method for detecting a timing channel in a 
hardware design includes synthesizing the hardware design 
to gate level. Gate level information flow tracing is applied to 
the gate level of the hardware design via a simulation to 
search for tainted flows. If a tainted flow is found, a limited 
number of traces are selected. An input on the limited number 
of traces is simulated to determine whether the traces are 
value preserving with respect to taint inputs, and to determine 
that a timing flow exists if the traces are value preserving with 
respect to the taint inputs. 
A preferred method for detecting a timing channel in a 

hardware design includes synthesizing the hardware design 
to gate level. Gate level information flow tracing is applied to 
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the gate level of the hardware design via a simulation to 
search for tainted flows. If a tainted flow is found, a limited 
number of traces are selected. An input on the limited number 
of traces is simulated to determine whether the traces are 
value preserving with respect to taint inputs, and to determine 
that a timing flow exists if the traces are value preserving with 
respect to the taint inputs. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIGS. 1A-C respectively illustrate an example AND gate, 
a partial truth table for the tracking logic of an AND gate, and 
tracking logic for an AND that has been modified to gate level 
for tracking via a method of the invention; 

FIG. 2 illustrates classes of information flows in hardware 
designs that can be identified through the invention and physi 
cal phenomena that are not considered; 

FIG. 3 is a flowchart illustrating a preferred method to 
isolate timing channels; 

FIGS. 4A & 4B show the inputs and outputs of a fast 
multiplier of a system S that takes in two multi-bit inputs A 
and B and two single-bit inputs, fast and a clockinput clk, and 
outputs P:=AxB, the system first picks an ALU to use based 
on the value of fast and then uses that ALU to perform the 
multiplication; 

FIGS. 5A-5C illustrate standard IC configurations and 
how the configurations can (FIG. 5B) covertly communicate 
a 1 to S by sending an acknowledgement or (FIG. 5C) can 
communicate a 0 covertly to S by sending a negative-ac 
knowledgement; 

FIG. 6 shows adding strict time-partitioning of the I°C bus 
via an arbiter, such that the bus is only accessed by S and S 
in mutually-exclusive time slots; 

FIGS. 7A-7C illustrate a typical CPU caches and opera 
tions along with the Vulnerabilities to malicious processes; 

FIG. 8 is a block diagram of a simple MIPS-based CPU in 
which the cache is replaced by one which contains the origi 
nal cache and its associated tracking logic to conduct an 
analysis of the invention in which a testbench drives the 
simulation of the processor to capture the output traces. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

Another preferred method for detecting a timing channel in 
a hardware design receives a hardware design. At least one 
portion of the hardware design is synthesized with gate level 
primitives. Tracking logic is added including the gate level 
primitives to monitor information flow through the gate level 
primitives. Sets of inputs to the gate level primitives including 
added taint inputs are tracked to identify information flows by 
generating outputs from the gate level primitives for every 
clock tick while changing only taint inputs. Timing flows are 
separated from informational flows by conducting input to 
output deterministic traces to isolate functional flows in the 
information flows. 
A preferred method for detecting a timing channel in a 

hardware design includes synthesizing the hardware design 
to gate level. Gate level information flow tracing is applied to 
the gate level of the hardware design via a simulation to 
search for tainted flows. If a tainted flow is found, a limited 
number of traces are selected. An input on the limited number 
of traces is simulated to determine whether the traces are 
value preserving with respect to taint inputs, and to determine 
that a timing flow exists if the traces are value preserving with 
respect to the taint inputs. 
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8 
A preferred method for detecting a timing channel receives 

a hardware design and receives or generates a set of test taint 
inputs. Response of the hardware design to the test taint 
inputs is simulated while tracking flow of information 
through the design. A search is conducted for differences 
between timing flows that don't affect outputs in the hardware 
design and functional flows that do affect outputs in the hard 
ware design in response to said simulating. The steps are 
repeated, if needed, to identify possible timing flows in the 
hardware design. In a preferred embodiment simulating 
includes an initial pre-processing of the hardware design. The 
pre-processing can include synthesizing at least a portion of 
the hardware hardware design. The receiving or generating 
can include selecting a Subset of input deterministic traces for 
the tracking logic. The hardware design can be, for example, 
a design in a hardware description language, and the synthe 
sizing synthesizes the design into a gate level netlist, and the 
tracking logic is added to every gate level primitive in the 
netlist. 

Simulating can include tracking additional signals not 
specified in the hardware design. Additional signals comprise 
modified versions of signals specified in the hardware design. 
The additional signals can track taint of signals specified in 
the hardware design. 

Simulating can include finding a Subset of taint inputs that 
cause a changing in the timing of outputs without changing 
output values. Finding can begin with selecting input traces 
which differ in values of security critical inputs. Finding can 
begin with a random selection of input traces. Finding can 
begin with selecting input traces aided by information pro 
vided by a hardware designer. 

Preferred embodiments of the invention use GLIFT, but 
unlike prior GLIFT, provides a fully deterministic testing 
method for detecting hardware timing channels to make 
secure hardware easier to design and test. The invention pro 
vides a method for testing for timing channels in computer 
hardware. Preferred methods of the invention focus on the 
hardware design itself, so that a system can be built with a 
secure root-of-trust, thus providing security assurance for the 
higher abstractions. Preferred embodiments of the invention 
can be directly applied to existing hardware cores without 
requiring code rewriting. 

Preferred embodiment methods and analysis tools use 
gate-level information flow tracking to detect information 
flows within a system. If information flows exist, then the 
flows are tested to determine whether the flows are merely 
timing flows or if the flows are functional flows. A functional 
flow is analyzed as a flow that for a given set of inputs to a 
circuit system or domain affects values output by the circuit 
system or domain. A timing flow exists when changes in the 
input affects how long a computation takes to execute. 
A fully deterministic framework is provided by methods 

and systems of the invention to identify functional flows in 
detected information flows. The framework can confirm or 
rule out the existence of functional flows, and thereby convert 
hardware information flow tracking to an unambiguous tech 
nique to identify and effectively isolate timing flows. The 
framework has been demonstrated in two example applica 
tions: a shared bus (IC) and a cache in a MIPS-based pro 
cessor (reduced instruction set architecture from MIPS Tech 
nologies), both of which were written in Verilog HDL and 
then simulated in a variety of Scenarios. The experiments 
show that methods of the invention can separately identify 
timing and functional. 

Preferred methods and systems of the invention modify 
GLIFT to provide a fully deterministic model that isolates 
timing information from other flows of information. The 
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model is completely specified to separate timing and func 
tional flows. An embodiment of the invention demonstrates 
that a shared bus, for example, can be analyzed to identify 
timing flows and determine if the flows are in threat model are 
system dependent. 

Preferred methods and systems of the invention provide a 
hardware design test method and system that can examine a 
hardware to test the design for the potential existence of 
timing channels that might contradict design goals, e.g. by 
adversely affecting intended confidentiality or integrity goals 
for a particular core in a system-on-chip or a security domain 
in a multi-security domain system. A method and system of 
the invention can determine whether or not an information 
leak is a timing or direct threat. 
An example hardware design test method and system can 

be applied, for example, to test the design of hardware system 
caches and the interaction of caches with various cores 
against concerns related to timing-based interference. A par 
ticular application would benefit a hardware designer, for 
example, that is designing a system-on-chip and wishes to 
isolate high-integrity cores from less trusted third-party ones, 
while still allowing resource sharing. A design can be tested 
with the invention prior to fabrication to reveal timing signal 
Vulnerabilities. A designer can then modify a design to miti 
gate timing effects that the less trusted cores have on the high 
integrity ones. In some situations, identified timing flows 
might be of no concern. The attack space of the cache or the 
timing effects on high-integrity cores could be demonstrated 
through the testing as being outside the threat model of the 
designer. Regardless, this invention provides hardware 
designers with the ability to identify these timing channels. In 
other situations, the designer can discover threats requiring a 
design change. The test method and system provides an accu 
rate evaluation tool to test threat models. 

Preferred methods of the invention can be implemented via 
computer code stored on a nontransient medium. Methods of 
the invention can also be implemented in hardware devices 
and systems that connected to microprocessors or other 
devices being evaluated for timing channels. Those knowl 
edgeable in the art will appreciate that embodiments of the 
present invention lend themselves well to practice in the form 
of computer program products. Accordingly, it will be appre 
ciated that embodiments of the present invention may com 
prise computer program products comprising computer 
executable instructions stored on a non-transitory computer 
readable medium that, when executed, cause a computer to 
undertake methods according to the present invention, or a 
computer configured to carry out such methods. The execut 
able instructions may comprise computer program language 
instructions that have been compiled into a machine-readable 
format. The non-transitory computer-readable medium may 
comprise, by way of example, a magnetic, optical, signal 
based, and/or circuitry medium useful for storing data. The 
instructions may be downloaded entirely or in part from a 
networked computer. Also, it will be appreciated that the term 
“computer as used herein is intended to broadly refer to any 
machine capable of reading and executing recorded instruc 
tions. It will also be understood that results of methods of the 
present invention may be displayed on one or more monitors 
or displays (e.g., as text, graphics, charts, code, etc.), printed 
on Suitable media, stored in appropriate memory or storage, 
etc. 

Preferred embodiments of the invention provide a frame 
work for testing hardware for side channels by identifying 
whether information can be leaked based on how long a 
hardware component takes to execute its normal function. 
Embodiments of the invention leverage GLIFT. GLIFT tracks 
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10 
flow of information through logic gates using a single bit label 
in hardware to monitor the security level of each individual 
data bit. Preferred embodiments provide a fully deterministic 
model in conjunction with GLIFT to identify these informa 
tion flows. The preferred methods further identify functional 
flows using a fully deterministic model. Intuitively, a func 
tional flow exists for a given set of inputs to a system if their 
values affect the values output by the system (for example, 
changing the value of a will affect the output of the function 
f(a; b):=a+b), while a timing flow exists if information about 
the input can be learned from the latency of the execution. 
While GLIFT will tell the designer only if any such flow 
exists, the fully deterministic model determines whether or 
not the system contains specifically functional flows. Used in 
conjunction GLIFT, this method permits determination of 
whether timing flows (and therefore channels) exist. If 
GLIFT determines that a flow does exist but the method can 
demonstrate that no functional flow exists, then the method 
determines that a timing flow must exist. Methods of the 
invention have been tested to Successfully identify a timing 
channel in a processor cache. 
The invention is generally applicable to industries that 

require security (trusted platforms, secure storage, network 
devices, etc.) and/or integrity (real-time operating systems, 
critical embedded system controllers, etc.) would benefit 
greatly from the present invention. Most any system that 
relies on embedded microcontrollers/cores would benefit, 
including, for example, medical equipment, automobiles, air 
planes, and building security systems. Methods of the inven 
tion can formally validate security and integrity properties 
spanning across hardware and Software, enabling more effi 
cient solutions while maintaining system integrity. 

Before introducing deterministic methods of the invention, 
formal definitions are first set forth. First, time is defined with 
respect to the system clock. 
Definition 1. 
The clock is a function with no inputs that outputs values of 

the form be{0, 1}. A clock tick is the event in which the 
output of the clock changes from 0 to 1. A time t is the number 
of clock ticks that have occurred. T is the set of possible 
values oft. 

With this definition, some stateless hardware component 
will output a stream of ticks, and a separate stateful compo 
nent will measure the number of ticks and can be used to keep 
track of time. 
Definition 2. 

For a set Y, a discrete event is the paire:=(y,t) for yeY and 
te.T (recall is the set of all possible time values). Functions 
that recover the value and time components of an event are 
val(e) y and time(e)=t respectively. 
Definition 3. 

For a value neN and a set Y, a trace A(Y.n) is a sequence 
of discrete events {e, (yet), "that is ordered by time; i.e., 
time(e)<time(e) for all i, 1sisin, and such that val(e)6Y. 
time(e)6T for all i, 1sisn. When the values of Y and n are 
clear, they are omitted and the trace is simply A. 
The definition of event is broad, such that any value at any 

time can be considered an event. By example, a system that 
outputs some value on every clock tick that is run fork clock 
ticks with each output recorded, results in a trace of size k. 
Redundant events in which the system outputs the same value 
for many clock ticks while performing some computation are 
not of interest. In this case, only the value of the output 
changes produces an event of interest. This can be defined as 
a distinct trace. 
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Definition 4. 
For a trace A(Yn), the distinct trace of A is the largest 

Subsequence d(A) CACY.n) such that for all e, , e,6d(a) it 
holds that val(e)zval(e). 

Constructing the distinct trace d(A) of A is straightforward. 
First, include the first element of A in d(A). Next, for each 
subsequent event e, check whether the last evente' in d(A) is 
such that val(e)val(e); if this holds, then skip e (i.e., do not 
include it) and if it does not then adde to d(A). As an example, 
consider a trace of two-bit values A=((00,1), (002), (0.1.3), 
(014), (11.5), (10.6)). Then the distinct trace d(A) will be 
d(A):-((00,1). (013), (11.5), (10.6)), as the values at time 2 
and 4 do not represent changes and will therefore be omitted. 

With these definitions in hand, a finite state machine sys 
tem F can be defined that takes as input a value X in some set 
X and returns a value Y in some set Y. To be fully general and 
consider systems that take in and output vectors rather than 
single elements, assume that XXX . . . XX, and that 
Y=Yx . . . XY, for some m,nal, which means that an input 
X looks like X(x1, . . . . X) and an output y looks like 
t(y1,...,y). To furthermore acknowledge that the system 
is not static and thus both the inputs and outputs might change 
over time, we instead provide as input a trace A(X.k) for some 
value k, and assume our output is a trace A(Yk). 
Definition 5. 
A finite state machine (FSM) F is defined as F=(X,Y. S., 8, 

O), where X is the set of inputs, Y the set of outputs, and S the 
set of states. Ö:XxS->S is the transfer function and C.: 
XxS->Y is the output function. 

With circuit implementations offinite state machines, both 
Ö and C. are represented as combinational logic functions. In 
addition, both ö and C. can be called on a trace. B=O(A.so) 
generates a trace of output events B (eo, e, ... e) during the 
execution on input trace A starting in state so. This notation 
describes C. executing recursively; it takes a state and trace as 
input and executes to completion producing an output trace. 
When the starting state is assumed to be the initial state, the 
notation C(A) is used. 
Of concern are flows of information from a specific set of 

inputs (the Subset of inputs which are of Security concern). 
Preferred embodiments formalize how to constrain the oth 
ers. Recall that an information flow exists for a set of inputs to 
the system F if their values affect the output (either the con 
crete value or its execution time). One way to then test 
whether or not these inputs affects the output is to change 
their value and see if the value of the output changes; con 
cretely, this would mean running F on two different traces, in 
which the values of these inputs are different. In order to 
isolate just this set of inputs, however, it is necessary to keep 
the value of the other inputs the same. To ensure isolation, 
Preferred embodiments define what it means for two traces to 
be value preserving. 
Definition 6. 

For a set of inputs {x} and two traces ACX.k)–(e. . . . . 
e) and A(X.k)' (e.,..., e), the traces are value preserving 
with respect to I if for all e,6A and e, SA it is the case that 
time(e) time(e), and if Val(e)=(a . . . . a) and val(e) 
(a1, ..., a,), thena, a, for all if I. 

If two traces are value preserving, then by this definition 
the only difference between them is the value of the tainted 
inputs {x, Taint can be, as an example, secret data that 
would be tainted and then tracked to ensure that it is not 
leaking to somewhere harmful. In this example, the set of 
secret inputs would be the set I. 

For use in the invention, Preferred embodiments provide 
formal definitions of tracking logic and taint. First, it is impor 
tant to understand how a “wire' in a logic function is tainted. 
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Definition 7 (Taint) 

For a set of wires (inputs, outputs, or internals) X, the 
corresponding taint set is X. A wire X, for X (X. . . . . 
X. . . . , X)6X is tainted by setting X-1 for X6X, and 
X, (X-1, . . . , Xits X,t). 

In this definition, the elements of X and X, are given as 
vectors; i.e., an element X6X has the form X=(X, . . . X) for 
nel. For single-bit security labels, X6X and its corresponding 
taint vector X,6X, are the same length. 

With the definition for taint, preferred embodiments can 
formally define the behavior of a tracking logic function and 
information flow with a tracking logic function. 
Definition 8 (Tracking Logic) 

For a combinational logic function f:X->Y, the respective 
tracking logic function is f:XXX->Y, where X, is the taint 
set of X and Y, the taint set of Y. If f(x1,..., x)=(y1,...,y). 
then f(x1,..., X, X1, ..., X, )-(y1,...,ym), where y, 1 3 as 

indicates that some tainted input x, (i.e., an input x, such that 
x 1) can affect the value of y, 
Definition 9 (Information Flow) 

For a combinational logic function f:X->Y and a set of 
inputs {x} an information flow exists with respect to an 
outputy, if f(x,)-(y1,...,y,-1. 1, y1,...,y), where each 
entry of x is 1 ifie1 and 0 otherwise. If there exists an index 
jSuch that y1, an information flow exists. 

To understand how the tracking logic is used, consider a 
function with public and secret labels; then a labelx is 1 if x, 
is secret, and 0 otherwise. When considering a concrete 
assignment (a1, . . . a,) with each a, being 0 or 1, running 
f(a1, ...,a) will produce the data output (y1,...,y,,...,y), 
and running f,(a, . . . . a. a. . . . . a) will indicate which 
tainted input can affect the values of which outputs (by out 
putting y=1 if a tainted input affects the value of y, and 0 
otherwise). With references to the sample function, if some 
outputy 1 fromf, a secret input affects the outputy, off. If 
y, is public, then this flow would violate the security policy. 

Typically, each individual gate and flip-flop is associated 
with Such tracking logic in a compositional manner. In other 
words, for each individual gate (AND, OR, NAND, etc.), 
tracking logic is added monitors the information flow through 
this particular gate. By composing the tracking logic for each 
gate and flip-flop together, an entire hardware design consist 
ing of all the original inputs and outputs can be formed, with 
the addition of security label inputs and outputs can be pro 
vided. Care must be taken to derive the tracking logic for each 
gate separately, however, as the way in which the inputs to a 
gate affect its output vary from gate to gate. 
As an example, consider the tracking logic for a AND gate 

as shown in FIGS. 1A-1C. By definition, if some input of a 
AND gate is 0, the output will always be 0 regardless of the 
other inputs. Thus, with inputs x=1 and X=0 with security 
labels X=1 and x=0 as shown in FIGS. 1 B-1C, then the 
output will actually be untainted even though X-1, because 
the value of X has no observable effect on the output of the 
gate (again, because X 0 and thus the output will be 1 regard 
less). By building a truth table for every gate primitive, track 
ing logic can be derived in this manner and stored in a library. 
The tracking logic can then be applied to the gate in a manner 
similar to technology mapping. As an example of how to 
compose these tracking logics, considera2-input multiplexer 
(MUX), which is composed of two AND gates and a single 
OR gate where the output of the AND gates feed the inputs of 
the OR gate. First, the tracking logic for each AND gate and 
the single OR gate is generated. Then, the output of the 
tracking logic for each AND gate is fed as inputs to the 
tracking logic for the OR gate. 
To apply modified GLIFT of the invention, a hardware 

description of the design is written in a hardware description 
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language (HDL), such as Verilog or VHDL, and this descrip 
tion is then synthesized into a gate-level netlist using tradi 
tional synthesis tools such as Synopsys' Design Compiler. A 
gate-level netlist is a representation of the design completely 
in logic gates and flip-flops. Next, the GLIFT logic is added in 
a compositional manner, i.e., forevery gate in the system, add 
associated tracking logic which takes as input the original 
gate inputs and their security labels and outputs a security 
label. Given a security policy such as the confidentiality 
example (i.e., secret inputs should not flow to the public 
output), GLIFT can then be used to ensure that the policy is 
not violated by checking that the output of the tracking logic 
f, is not 1. It is important to remember that if, is defined to 
report 1 iffa tainted input can actually affect the output. In 
other words, it will report 1 if at any instant in time a tainted 
input can affect the value of the output. 
One of GLIFT's key properties is that it targets a very low 

level of computing abstraction; at Such an abstraction, all 
information becomes explicit. In particular, because GLIFT 
tracks individual bits at this very low level, it can be used to 
explicitly identify timing channels. 
A clear understanding of timing channels can be aided by 

a definition of a timing channel familiar to hardware design 
ers. Preferred embodiments define specifically a timing-only 
flow as an input that affects only the timestamp of output 
events and not the values. To be clear, preferred embodiments 
are concerned with timing leaks at the cycle level. Stated 
differently, preferred embodiments assume that an attacker 
does not have resources for measuring 'glitches' within a 
combinational logic function itself. Rather, an attacker can 
only observe timing variations interms of number of cycles at 
register boundaries. With these assumptions, it can be dem 
onstrated that the present modified version of GLIFT can 
capture Such channels and identify timing only flows. 
Definition 10. (Timing-Only Flow) 

For a FSMF with input space X and output function C., a 
timing-only flow exists for a set of inputs {x}, if there exists 
some value keT and two input traces ACX.k) and A(X.k)' such 
that A and A' are value preserving with respect to I, and for 
B=C.(A)val and B'-O.(A') it is the case that val(e)-val(e) for 
all eed(B) and e, ed.(B) and there exist eed(B) and e, ed 
(B) such that time(e)ztime(e). 

This definition captures the case in which a set of inputs 
affect only the time of the output. In other words, changing a 
Subset of the tainted inputs will cause a change in the time in 
which the events appear on the output, but the values them 
selves remain the same. Before this definition can be used to 
prove that GLIFT captures timing-only channels, the GLIFT 
FSMF, must be defined. 

Referring back to Definition 5, a FSM consists of two 
combinational logic functions C. and 6. Thus, there exists 
tracking logic functions C, and Ö, according to Definition 8. 
Using this property, preferred embodiments can define the 
GLIFT FSM F, which will be used to prove that GLIFT 
detects timing-only flows. 
Definition 11. 

Given a FSM F=(X,Y, S, Ö, C.), the FSM tracking logic F, 
is defined as F(X, X,Y, S, S, Ö, C.) where X and S are the 
same as in F. S., is the set of tainted States, X, is the set of 
tainted inputs, Y, is the set of tainted outputs, 6, the tracking 
logic of 6 and C, the tracking logic function of C. 

With these definitions are in place, one can prove that 
GLIFT can detect timing-only flows. 
Theorem 1. 
The FSM tracking logic Fofa FSMF captures timing-only 

channels. 
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Proof. 

Suppose there exists a timing-only channel for a finite state 
machine F with respect to the set of tainted inputs I. By 
Definition 10, this means there must exist value-preserving 
traces A(X.k) and ACX.k)' (such that, for B=O.(A) and B'-O. 
(A'), val(e)=val(e) for all e,6d.(B) and e, Sd.(B), but there 
existeed(B)andeed(B) such that time(e)-time(e). Since 
eed(B) implies that eeB (and likewise for e,,), this means 
that BZB'. 
F generates an output every clock tick, so for all eeB and 

e,6B', time(e)-time(e), and thus there must exist some 
e,6B and e, SB' such that val(e) zval(e) (because BzB"). By 
Definition 6, all input values remain the same for all iÉI, such 
that the only difference between them is in the tainted inputs, 
and thus the difference in output must have been caused by a 
tainted input. By Definition 8, C, would thus have an output of 
(y1,. . . . . y =1,...,y), as the value ify, in the output of C. 
was affected by a tainted input. By Definition 9, this means 
GLIFT has indicated an information flow must exist. As the 
only possible flow is timing-based, this statement of GLIFT 
thus captures timing-only flows. 

Since GLIFT operates at the lowest level of digital abstrac 
tion, all information flows become explicit. Thus, if at any 
instant in time a tainted input can affect the value of the 
output, GLIFT will indicate so by definition. At the FSM 
abstraction, as defined in Definition 10, this type of behavior 
often presents itself as a timing channel. This proof demon 
strates that GLIFT applied with the invention can in fact 
identify these types of information flows. The next step is to 
separate timing flows from functional flows. 

In FIG. 2, GLIFT allows system designers to determine if 
any information flows exist within their systems even those 
through timing-channels. At the digital level, there are two 
possible types of flows which are designated as functional 
flows and timing. A functional flow exists for a given set of 
inputs to a system if their values affects the values output by 
the system (for example, changing the value of a will affect 
the output of the function f(a,b):=a+b), while a timing flow 
exists if changes in the input only affect how long the com 
putation takes to execute. GLIFT in the prior art only can't 
separate flows, and demonstrates only that timing and/or 
functional flows exist. The invention provides a fully deter 
ministic model for determining whether or not a system con 
tains specifically functional flows. Applying GLIFT, methods 
of the invention determine what type of flow is occurring. If 
GLIFT determines that no flow exists, then there is no flow. If 
GLIFT instead determines that a flow does exist but one can 
demonstrate that no functional flow exists, then the method 
identifies that a timing flow must exist. In another case, 
GLIFT determines that a flow exists and the method deter 
mines that a functional flow does exist. In this instance the 
method identifies the existence of functional flows, but does 
not separately identify timing flows. 
Finding Function Flows 
A testing framework is shown in FIG. 3. Here GLIFT is 

modified to find functional flows to isolate timing informa 
tion. If GLIFT determines that there is no flow, then there is no 
functional nor timing information flow. If, however, GLIFT 
determines there is a flow and no functional flow is identifies, 
then the method determines that the information flow 
occurred from a timing channel. A proof begins with the 
strongest possible definition and then weakens it to make it 
more amenable to testing techniques familiar to hardware 
designers. In FIG. 3, generally, synthesis 10 of a hardware 
design is conducted, and then GLIFT logic is applied 12 to a 
gate netlist. Simulation is conducted 14 to identify tainted 
flows 16. The separation between functional and timing flows 
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in preferred embodiments only chooses 18 a pair of selected 
traces, though more can be selected to strengthen the method 
at the cost of some added overhead. Simulation is conducted 
on the traces and events are logged 20. A search for different 
events 22 determines if there is a difference 24 at an output as 
a result of a change in input. If there is, then timing flows can 
be identified because functional flows exist. Otherwise, a 
timing flow is unambiguously identified. 
Definition 12 (Functional Flow) 

For a deterministic FSMF with input space X and output 
function C, a functional flow exists with respect to a set of 
inputs {x}, if there exists some value keT and two input 
traces A(X.k) and ACX.k)' such that A and A' are value pre 
serving with respect to I, and for B:=C.(A) and B':=C.(A') it is 
the case that there exists e.e.d(B) and e, Sd(B') such that 
val(e) zval(e). 

According to Definition 12, if there is some functional flow 
from this set of inputs to the output, then there exist input 
traces of some size k that will demonstrate this flow; i.e., if a 
different output pattern is observed by changing only the 
values of these particular inputs, then their value does affect 
the value of the output and a functional flow must exist. In 
practice, however, this definition carries a large overhead: a 
system designer wanting to isolate timing flows by ensuring 
that no functional flows exist would have to look, for every 
possible value of k, at every pair of traces of size k in which 
the value of this set of inputs differs in some way; only upon 
finding no such pair for any value of k would the designer be 
able to conclude that no functional flow exists. An altered, 
relaxed definition can provide some guarantees (albeit 
weaker ones) about the existence of functional flows, without 
requiring an exhaustive search (over a potentially infinite 
space). 
Definition 13 (Functional Flow) 

For a deterministic FSMF with input space X and output 
function C, a functional flow exists with respect to a set of 
inputs {x}, and an input trace ACX.k)ifthere exists an input 
trace ACX.k)' such that A and A' are value preserving with 
respect to I and for B:=C.(A) and B':=C.(A') it is the case that 
there exists e.ed(B) and e, 6d.(B) such that val(e)zval(e). 

Instead of only examining the set of inputs, the definition 
also considers fixing the first trace. If one constructs a second 
trace given this first trace to ensure that the two are value 
preserving, then comparing the distinct traces of the output 
will tellus if a functional flow exists for the trace. Once again, 
however, the method considers what a system designer would 
have to do to ensure that no functional flow exists: given the 
first trace A, the designer would have to construct all possible 
traces A'; if the distinct traces of the outputs were the same for 
all Such A', then the designer could conclude that no func 
tional flow existed with respect to A. Once again, this search 
space might be prohibitively large, so another meaningful 
relaxation of the definition is provided. 
Definition 14 (Functional Flow) 

For a deterministic FSMF with input space X and output 
function C, a functional flow exists with respect to a set of 
inputs {x}, and input traces A(X.k) and A(X.k)' that are 
value preserving with respect to I if for B:=C(A) and B':=C. 
(A') it is the case that there exists e.e.d(B) and e, Sd(B') such 
that val(e)zval(e). 

While this definition provides the weakest guarantees on 
the existence of a functional flow, it allows for the most 
efficient testing, as all that is required is to pick only two 
traces. In addition, the guarantees of this definition are not as 
weak as they might seem: they say that, given the output B, by 
observing B' as well, no additional information about the 
inputs {x}, is learned than was learned just from seeing B. 
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While this does not imply the complete lack of any functional 
flow, it does provide evidence toward that conclusion. This 
can be strengthened via methods of the invention by running 
the procedure with additional, carefully selected pairs of 
traces. For example, when testing timing information flows in 
a processor cache when performing data encryption. The 
traces should be chosen such that the secret key is different. In 
general, if the choice of traces is not clear, a pair of random 
traces may be chosen for the analysis. By selection a small set 
of pairs, a high level of guarantee is provided with a very 
Small search space. 
The system F can be deterministic, and can be imple 

mented more efficiently than might first be apparent. Only 
flows detectable by GLIFT are of interest. Physical processes 
that can be used to generate randomness, such as the current 
power Supply or electromagnetic radiation, are therefore not 
considered explicitly. Randomness can be addressed, how 
ever, in the form of something like a linear feedback shift 
register (LFSR), which is in fact deterministic given its cur 
rent state; the randomness produced by an LFSR can there 
fore be held constant between two traces by using the same 
initial state. 
An Example: Fast/Slow Multiplier 
To build intuition for how the present model determines 

whether or not a functional flow exists, consider a simple 
multiplier system. 
Shown in FIGS. 4A and 4B, the system consists of a pair of 

two-input multipliers, one fast and one slow. On inputs A, B, 
and fast, the system will use fast to determine which of the 
hardware multipliers to use. For both A and B, there is a clear 
functional flow from the input to the output, as P:=AxB. The 
input fast, however, has no effect on the value of the output P. 
as it simply selects whether to perform a fast or slow multiply. 
There is therefore no functional flow from fast to the output, 
but there is a clear timing flow. The latency with which P is 
computed is highly dependent on the value of fast. 
To confirm that the flow from fast must be timing rather 

than functional, this input is evaluated through the present 
methods. Using as F, the system in FIGS. 4A and 4B, the input 
space can be defined as X:=Z, Z. {0,1}); i.e., all tuples 
consisting of two integer values and one bit, and the present 
output space to be Y:=Z. Of interest, is whether or not a 
functional flow exists for fast, so this is defined to be the 
present set of inputs. Picking values Ao and Bo for A and B 
respectively, and setting the first trace to be A:= ((A, B, 0). 
to): i.e., the single event (at an arbitrary time to) in which A 
and Bo are multiplied using the slow ALU. Then set the 
second trace to be A':-((A, B, 1), to), and run these two 
traces to obtain output traces B=(Pt) and B'=(P't'). As A and 
Bo were the same for both traces, P=P" and thus val(e)=val 
(e) for alle,6d.(B) and e, Sd.(B), meaning no functional flow 
exists with respect to these two traces. This also provides 
evidence that no functional flow exists for fast at all, although 
further testing would likely be required to rule out this func 
tional flow completely. 
Detecting Timing Flows in IC 

This example application of the invention effectively 
shows that finding hardware timing channels in practice is 
non-trivial, and testing for them benefits from Some intuition 
(for example, knowing which traces to pick). Both clock 
fuZZing and probabilistic partitioning discussed in the back 
ground have proven to be effective at reducing, the bus 
contention channel. The prior techniques sacrifice bandwidth 
and do not provide a deterministic method to establish 
whether information might leak through timing channels 
associated with the bus architecture. The invention provides a 
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use of GLIFT to prove that certain information flows in IC 
occur through timing channels. 
The inter-integrated circuit (IC) protocol is a simple 

2-wire bus protocol first proposed by Philips I2c manual.” 
http://www.nxp.com/documents/application note? 
AN10216.pdf, March 2003.). We chose to look specifically at 
I°C because of both its wide usage in embedded applications 
for configuring peripherals and its However, the techniques 
presented here are applicable to more Sophisticated architec 
tures or protocols. 

FIGS. 5A-5C illustrate standard IC configurations and 
how the configurations can (FIG. 5B) covertly communicate 
a 1 to by sending an acknowledgement or (FIG. 5C) can 
communicate a 0 covertly by sending a negative-acknowl 
edgement. In the IC protocol FIGS.5A-5C, a “master 30 of 
the bus initiates a transaction by first sending a start bit by 
pulling down the data line (SDA) with the clock line (SCL) 
high. "Slaves' 32, 34 on the bus then listen for the master to 
indicate either a read or a write transaction. For write trans 
actions, the master first sends a device address indicating a 
write and the device that matches this address responds with 
an acknowledgement (ACK). At this point, the master can 
transmit an internal register address (Sub-address for the 
device) and the actual data. The transaction terminates with 
the master sending a stop bit. A similar behavior occurs for a 
read transaction, except here data transfers from a slave to the 
master. Since I'C shares a common bus, there is the potential 
for several different covert channels, in addition to the bus 
contention channel. To explore these different channels, 
methods of the invention were considered with respect to 
three configurations of the IC bus to discover the potential 
ways in which information can be communicated covertly. 
The flows in each of these covert communications can be 
classified as either a functional or timing flow according to the 
invention. 

Case 1: global bus: A global bus scenario, wherein multiple 
devices contend for a single bus, is the most general and 
commonly found bus configuration. Consider the example in 
which two devices wish to communicate covertly on the IC 
bus as shown in FIGS. 5A-5C. At first glance, there exists an 
obvious information flow in this architecture since the 
devices themselves can “snoop' the bus. For example, a 
device S can send an acknowledgement to the master to 
covertly transmit a 1 to another device S, conversely, it can 
send a negative-acknowledgement to send a 0. Since S. 
observes all activity on the bus, it can simply monitor which 
type of message S. sends and thus determine the communi 
cated bit. While this is not the only type of flow, it is used for 
simplicity. 
To put the present model to use on this scenario, the system 

shown in FIGS.5A-5C was designed in Verilog by construct 
ing IC Master and Slave controllers. The slave and master 
RTL descriptions were synthesized down to logic gates using 
Synopsys' Design Compiler. For each gate primitive in the 
system, appropriate GLIFT logic was added. The result is a 
system which contains a master and two slaves, each of which 
also has tracking logic associated with it. A test scenario was 
executed having the master perform a write transaction with 
S and S send an acknowledgement by simulating it in Mod 
elSim 10.0a, a Verilog simulator. The GLIFT logic indicates 
a flow to S. At this stage, the method identified that some type 
of information flow exists, but it is not clear if this was a 
functional or timing flow. 

Since the devices can directly observe all interactions on 
the bus, one might expect this to be a functional flow. The 
method of the invention was used to show exactly that. The 
output was abstracted to y=(SCL.SDA) of the present model 
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since these are the only two signals observable by S. (recall 
that SCL is the clock line and SDA the data line). In addition, 
the input traces were abstracted by the present system as 
A(X.k):=(S 1 sendingNACK) and A(X.k):= (S_1 sendin 
gACK); running these through the system produced two out 
put traces Ac and Ao Ao, was collected by logging the 
discrete events that occurred when S. failed to acknowledge a 
write transaction from the master (thus intending to covertly 
transmit a 0). A related trace A, in which S, does acknowl 
edge the write, was obtained. By analyzing these traces, the 
method identified events eed(A) and e, ed(A) (recall 
that d(A) and d(A) are the distinct traces of Ag, and Aci, 
respectively, as defined in Definition 4) such that val(e)aval 
(e). As a result, from Definition 14 of a functional flow, a 
functional flow must exist. Recall, however, that this does not 
mean that there exists only a functional flow. Since GLIFT 
indicates that there exists a flow, it may be the case that 
information flows from S to S through both functional and 
timing channels. 
The next case discusses how Such a functional flow can be 

easily prevented using time-multiplexing of the bus in a man 
ner having some similarities to probabilistic partitioning J. 
W. Gray III, “On introducing noise into the bus-contention 
channel.” in Proceedings of the 1993 IEEE Symposium on 
Security and Privacy, pp. 90-98, 1993.). 
A seemingly easy Solution to eliminate this information 

flow presented in Case 1 is to add strict partitioning between 
when devices may access the bus, as shown in FIG. 6. An 
arbiter 36 is added to control slave access. Here, slaves on the 
bus may view the bus only within their designated time slots; 
this prevents devices from observing the bus traffic at all 
times. In this method, partitions are over-conservative by 
allowing the bus to be multiplexed between statically set time 
slots. In terms of probabilistic partitioning, the case in which 
the system is running in secure mode is tested. Of interest is 
the same scenario as before: S wishes to transmit informa 
tion covertly with S; now, however, the bus-contention chan 
nel is eliminated, as partitioning has made contention impos 
sible. 

Because the bus-contention channel has been ruled out, 
one might think that a covert channel between S and S- no 
longer exists. Nevertheless, information can still be commu 
nicated covertly through the internal state of the master; to 
therefore transmit a covert bit, Sneed only leave the master 
in a particular state before its time slot expires. For example, 
many bus protocols have a time-out period in case a device 
fails to respond to a request. If S leaves the master in Such a 
state prior to its time-slot expiring, Scan observe this state in 
the following time slot and conclude, based on the response 
time from the master, whether a 0 or a 1 is being transmitted: 
if the master's response time is short, S can conclude S. 
wishes to communicate a 1, and if the response time is long it 
can conclude a 0. Although this type of covert channel is quite 
subtle, the present model can prove that this information flow 
occurs through a timing channel. 
To make use of the present model, the Verilog master, slave, 

and arbiter (as shown in FIG. 6) were again synthesized into 
gates and the design annotated with GLIFT logic exactly as in 
Case 1. The same scenario as Case 1 was executed by having 
the master request a write to S during SS allocated time slot 
and having S either acknowledge or not to covertly transmit 
a 1 or 0 respectively. After tainting the data out of S, the 
GLIFT logic indicated that there is indeed information flow 
ing from S to S. ASS can access the bus only afterS's time 
slot has expired, this flow must occur through the state of the 
master. 
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To prove that this is not a functional flow, abstract this 
system in the same manner as Case 1, except we now use 
y=(SDAs,SCLs), where SDAs, and SCLs, are the wires 
observable by S. In the same manner as Case 1, set input 
traces A(X.k):=(S 1 sendingNACK) and A(X.k):= (S_1 
sending.ACK) to collect output traces Arpa and Arpa, 
respectively. Following the present model, it was applied to 
find the existence of an event eed(A) and 
e, d(Ap) such that val(e)aval(e.); it found, however, 
that no such events existed for this particular testing scenario. 
As discussed above, this provides evidence for the absence of 
a functional flow; although it does not completely rule out the 
existence of Such a flow, because we have chosen the input 
traces to represent essentially opposite events (sending a 
negative-acknowledgement and sending an acknowledge 
ment), if a functional flow did exist then it is very likely it 
would be captured by these two traces. The present method 
determines, therefore, that because GLIFT did indicate the 
existence of some information flow and strong evidence was 
provided that a functional flow does not exist, this flow is from 
a timing-channel. 
The work of Oberget al. J. Oberg, et al., “Information flow 

isolation in I2C and USB. in Proceedings of Design Auto 
mation Conference (DAC) 2011, pp. 254-259, 2011 using 
GLIFT for the IC channel indicated that all information 
flows are eliminated when the master device is reset back to a 
known state on the expiration of a slave's timeslot. In particu 
lar, this implies that no timing channels can exist, and thus the 
attack from Case 2 no longer applies. In practice, this trusted 
reset would need to come from a trusted entity such as a 
secure microkernel; the present method will therefore assume 
for the testing purposes that this reset comes from a reliable 
Source once this Subsystem is integrated into a larger system. 
With this assumption, this scenario was validated by adapting 
the test setup in Case 2 to incorporate the master being 
restored to an initial known state once SS time slot expires. 
The slave, master, and arbiter Verilog modules were again 

synthesized into logic gates, and the GLIFT tracking logic 
was applied. Running this test scenario, GLIFT shows that 
there is no information flowing from S to S. At this point, 
one could conclude that no information flow exists (either 
functional or timing), but for the sake of completeness the 
present model is used to test the existence of a functional flow 
for this test case. 

In the same manner as Case 2, abstract the output 
y=(SDAs,SCLs). Create input traces A(X.k):=(S_1 send 
ingNACK) and A(X.k):= (S_1 sending ACK) to log output 
traces Arpa and Arpa, respectively. As expected, 
d(Arpad(Arpia), which is strong evidence that a func 
tional flow does not exist. 
As is demonstrated by these three cases, identifying the 

presented covert channels is not necessarily intuitive; further 
more, hardware designers are likely to easily overlook these 
problems when building their bus architectures or designing 
secure protocols. By combining the tracking logic of GLIFT 
with the present model, the invention provides a method for 
hardware engineers to systematically evaluate their designs to 
determine whether or not techniques such as those used in 
Case 3 can in fact eliminate covert channels such as the ones 
presented in Case 1 and Case 2. 
Overheads 

To provide an understanding of the associated overheads 
with these techniques, simulation times needed to execute 
them are provided. Simulation times were collected by using 
ModelSim 10.0a and its built-in time function. The simula 
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tions were run on a machine running Windows 764-bit Pro 
fessional with an Intel Core2 Quad CPU (Q9400) (a) 2.66 
GHz and 4.0 GB memory. 
As seen in Table 1, there is not a significant difference 

between simulating the designs with GLIFT logic and the 
base register-transfer level (RTL) designs. This is likely due 
to the small size of the designs and the relatively short input 
traces required for these particular tests. The overheads asso 
ciated with GLIFT become more apparent below when iden 
tifying timing channels associated with a CPU cache. 

Although two input traces are considered for each case, 
Table 1 presents the present simulation times for only a single 
input trace. As mentioned, designers may wish to check even 
beyond two traces to gain more assurance that a functional 
flow does not exist. Since the simulation time of a particular 
input trace is independent of the others, the results for a single 
trace can be scaled to consider more traces. 
Cache Timing Channel 
At a high-level, an access-driven cache timing attack first 

flushes the cache using some malicious process. Next, a secret 
process uses a secret key to perform encryption. Finally, the 
malicious process tries to determine which of the cache lines 
were brought into the cache in the encryption process. Since 
the key is XORed with part of the plaintext before indexing 
into a look-up table, the malicious process can correlate fast 
accesses with the value of the secret key. As noted by Gullasch 
et al. D. Gullasch, et al., "Cache games—bringing access 
based cache attacks on AES to practice.” in Proceedings of the 
2011 IEEE Symposium on Security and Privacy, pp. 490-505, 
2011., this attack assumes that the secret and malicious pro 
cess share physical memory. An attack in which the Secret and 
malicious process do not share physical memory would 
require slightly different behavior from the malicious pro 
CCSS, 

TABLE 1 

Simulation times in milliseconds associated with the three presented 
cases for IC, and for a single trace. GLIFT imposes a small 

overhead in the simulation time for these test cases. 

Case 1 Case 2 Case 3 

GLIFT 223.95 ms 230.29ms 222.40 ms 
RTL 210.45 ms 211.72ms 219.04 ms 

FIGS. 7A-7C are a depiction of this attack. Assume a 
malicious process M and secret process V (for victim). First, 
as seen in FIG. 7A, M flushes all contents of the cache. Next, 
as seen in FIG. 7B, V subsequently runs AES using a secret 
key as input for a short duration; this process fills the contents 
of the cache. Now, in FIG.7C, Mreads memory locations and 
observes the latency of each access. Since M and V share 
physical memory, M will receive memory responses with 
lower latency if V accessed this data prior to the context 
switch, as it will already reside in the cache. Because the 
secret key used by Visan index into look-up tables, the access 
latencies of M (i.e., a cache hit or miss) directly correlate with 
the value of the secret key. 
Identifying the Cache Attack as a Timing Channel 
As the above attack critically requires on the timing infor 

mation available to M, it can clearly be identified as a type of 
timing attack. to the invention can test and prove that any 
information flows are timing-based. 
A complete MIPS based processor written in Verilog was 

developed to test this scenario. The processor is capable of 
running several of the SPEC 2006 J. L. Henning, “Spec 
cpu2006 benchmark descriptions. SIGARCH Comput. 
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Archit. News, pp. 1-17, 2006 benchmarks including mcf. 
specrand, and bzip2, in addition to two security benchmarks: 
sha and aes, all of which are executed on the processor being 
simulated in ModelSim SE 10.0a (a commercial HDL simu 
lator). All benchmarks are cross-compiled to the MIPS 
assembly using gcc and loaded into instruction memory using 
aVerilog testbench. The architecture of the processor consists 
of a 5-stage pipeline and 16K-entry direct mapped cache 
(1-way cache). A direct-mapped cache is used for the experi 
ments for ease of testing, but note that this analysis would 
apply directly to a cache with greater associativity. 

FIG. 8 is a block diagram of a simple MIPS-based CPU 40 
in which the cache is replaced by a GLIFT cache 42 which 
contains the original cache 44 and its associated tracking 
logic 46 to conduct an analysis of the invention in which a 
testbench 48 drives the simulation of the processor to capture 
the output traces. GLIFT logic is applied directly to the cache 
system. Hardware modules associated with the cache (cache 
control logic and the memory itself) are removed and synthe 
sized to logic gates and flip-flops using Synopsys' Design 
Compiler using their and ordb library; this library contains 
basic 2-input ANDs, ORs, inverters and flip-flops, and thus 
the resulting design contains only these primitives. Each gate 
and flip-flop in the design is then process and its associated 
tracking logic is added in a compositional manner. Each gate 
and flip-flop is processed linearly and the GLIFT logic asso 
ciated with their function (AND, OR, etc.) is added. This new 
“GLIFTed' cache is re-inserted into the register-transfer level 
(RTL) processor design in the place of the original RTL 
cache. This is shown in FIG.8. The input and output to the 
cache system include address and data lines and control sig 
nals (write-enable, memory stall signals, etc.); each such 
input and output is now associated with a taint bit which will 
be essential to testing whether or not information flows from 
the victim process V to the malicious process M. 

To execute the test scenario, the same procedure is fol 
lowed as in the access-driven timing attack previously dis 
cussed by having malicious and victim executions share the 
cache. Have M first flush the cache by resetting all data in the 
cache. Then have V execute AES with all inputs to the cache 
marked as tainted (i.e. secret). Subsequently, have Mexecute 
and observe whether or not information from V flows to M. As 
expected, it is observed that as M reads from memory loca 
tions, secret information immediately flows out of the cache. 
The method therefore knows that a flow exists, but at this 
stage it is still ambiguous whether the flow is functional or 
timing. 

To identify exactly which type of channel was identified by 
GLIFT, leverage the benefits of the present model by working 
to identify a functional flow; as previously discussed, if no 
functional flow is detected, then the flow must be from a 
timing channel. To fit the present model, abstract the output of 
the cache as y=(data) to indicate the cache output observ 
able by M (note that, in particular, stall is not included in this 
output, as it cannot be observed directly by M). Following the 
present model, two traces are: A (X.k):=(V using K 1) and 
A(X.k):=(Vusing K. 2); i.e., the cases in which V encrypts 
using two different keys. These were simulated and all of the 
discrete events captured by ModelSim were logged to obtain 
to output traces A and A2, by definition of y, these output 
traces contain all events observable by M. After collecting 
these traces, the method then checked whether or not a func 
tional flow exists for these particular traces by looking for the 
existence of events eed(A) and e, ed(A2) such that val 
(e)aval(e). For these particular traces, no such pair of events 
were found. Again, although the fact that no functional flow 
exists with respect to these particular traces does not imply 
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the lack of a functional flow for any traces, it does lend 
evidence to the theory that the flow must be timing-based 
rather than functional (and additional testing with different 
keys would provide further support). 
Overheads 
As for IC, the overheads associated with the present tech 

nique were estimated by measuring simulation time. The 
measurements were collected using ModelSim 10.0a and its 
built in time function running on the same Windows 764-bit 
Professional machine with an Intel Core2 Quad CPU 
(Q9400) (a) 2.66 GHz and 4.0 GB of memory. The time for the 
secret process (V) to run AES on a secret key K was mea 
Sured followed by a malicious process (M) attempting to 
observe which cache lines were evicted. This measurement 
was repeated for both the design with and without GLIFT. For 
completeness, the same process was repeated for the second 
input traces; namely when V executes AES using K followed 
by Mattempting to observe which cache lines were evicted. 
The resulting times from these simulations can be found in 
Table 2. 
As Table 2 shows, there is a substantial overhead (s6x) for 

using GLIFT to detect whether or not a flow exists. Further 
more, since the behavior of M is fixed between both input 
traces and the only value changing is the secret key, the results 
clearly show that a timing channel exists with regards to the 
cache, as the execution time for AES on K2 is longer than that 
of K, the existence of Such a timing channel was also iden 
tified by GLIFT and the present model 

With more and more embedded systems governing the 
most critical aspects of our lives, the need to provide strong 
information flow guarantees becomes essential. Using exist 
ing techniques, we can do quite well at identifying these 
information flows, even those through timing channels. The 
simiulations show that where prior techniques fail, timing and 
functional flows can be efficiently distinguished, allowing 
designers to make informed decisions about whether or not to 
be concerned with information flows identified by hardware 
information flow tracking techniques. In many cases, the 
designer is likely to be more concerned by timing channels 
than by functional flows, while in other cases the existence of 
timing channels might cause little concern. 
The simulations and testing showed the usefulness of the 

present invention applied to a shared bus and cache, and 
artisans will appreciate the broader applicability. The 
examples showed how information flows can indeed be iden 
tified as timing-based with a modified approach that applies 
gate level information flow tracking. While in some cases the 
present method does not provide any definite guarantees, it 
does provide strong evidence to rule out the existence of 
functional flows. The present framework can therefore pro 
vide strong evidence for the existence of timing channels. 

While specific embodiments of the present invention have 
been shown and described, it should be understood that other 
modifications, Substitutions and alternatives are apparent to 
one of ordinary skill in the art. Such modifications, substitu 
tions and alternatives can be made without departing from the 
spirit and scope of the invention, which should be determined 
from the appended claims. 

Various features of the invention are set forth in the 
appended claims. 

The invention claimed is: 
1. A method for detecting a timing channel in a hardware 

design, the method comprising: 
receiving a hardware design; 
synthesizing at least one portion of the hardware design 

with gate level primitives; 
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adding tracking logic to the gate level primitives to monitor 
information flow through the gate level primitives; 

simulating sets of inputs to the gate level primitives includ 
ing added taint inputs to identify information flows by 
generating outputs from the gate level primitives for 
every clock tick while changing only taint inputs; 

isolating timing flows from information flows by conduct 
ing input-to-output deterministic traces to isolate func 
tional flows in the information flows. 

2. The method of claim 1, wherein said separating com 
prises selecting a Subset of input deterministic traces for the 
tracking logic. 

3. The method of claim 2, wherein the subset is selected by 
changing the value of only the security critical inputs ran 
domly or by a designers choice. 

4. The method of claim 1, wherein said simulating com 
prises finding a Subset oftaint inputs that cause a change in the 
timing of outputs without changing output values. 

5. The method of claim 4, wherein said finding begins with 
selecting input traces which differ in values of security criti 
cal inputs. 

6. The method of claim 4, wherein said finding begins with 
a random selection of input traces. 
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7. The method of claim 4, wherein said finding begins with 

selecting input traces aided by information provided by a 
hardware designer. 

8. The method of claim 1, wherein said hardware design 
comprises a design in a hardware description language, said 
synthesizing the design into a gate level netlist, and the track 
ing logic is added to every gate level primitive in the netlist. 

9. A method for detecting a timing channel in a hardware 
design, the method comprising: 

synthesizing the hardware design to gate level; 
applying gate level information flow tracing to the gate 

level of the hardware design via a simulation to search 
for tainted flows: 

wherein the simulation includes simulating sets of inputs to 
gate level primitives including added taint inputs to iden 
tify tainted flows by generating outputs from the gate 
level primitives for every clock tick while changing only 
taint inputs; and 

if a tainted flow is found, selecting a limited number of 
traces, simulating an input on the limited number of 
traces, determining whether the traces are value preserv 
ing with respect to taint inputs, and determining that a 
timing flow exists if the traces are value preserving with 
respect to the taint inputs. 
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