Designing Robot Behaviors
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Designing Robot Behaviors

<+ Be Creative

< Recognize the Strengths and
Limitations of the Robot

< Know the environment the
robot will be working in

<+ Know available paradigms for
programming robots behaviors
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Braitenberg Vehicles

< Valentino Braitenberg wrote a book titled:
Vehicles: Experiments in Synthetic Psychology
(MIT Press)

< Describes several thought experiments that are
centered around the creation of simple vehicles
with very simple control mechanisms that
exhibit seemingly complex behavior

+ [llustrates 1nsights into animal (human) brain

< Shows that vehicles are capable of complex
behavior like Fear, Love, Logic etc.
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Law of Uphill Analysis and Downhill Invention

< One central theme underlying Braitenberg's
experiments

+ Trying to postulate the internal structure purely
by observing certain behavior is an uphill (harder)
task

< Trying to create an entity that exhibits a certain
behavior 1s a downhill (easier) task

< A Scribbler can do most of what the robots
Braitenberg described can do
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Vehicle 1

< Alive
One Sensor — One Motor /\
< Scribbler

One Sensor — Two motors ; °=

% You can use the center light sensor and connect
what 1t reports directly to both motors of the robot

< Try this:

“motors(c,c) where ‘c’is the value from light sensor
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Movement Using Light Sensors

< Light sensors report values in range of 0 — 5000
while motors take values from -1 to 1

< Normalizing (mapping light sensor values to the
range of motor values)

def normalize(v): # normalizes v to range 0.0 to 1.0

def main().
while True:
L = getLight("center")
forward(normalize(L))
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Normalizing Sensor Values

< Normalizing 1s transforming a value proportional
to a required range (here 0.0 to 1.0, 1.0 being
brighter light)

< Light Sensor 1s actually a Darkness sensor
Small values for bright light e.g. 50
Larger values for dark light e.g. 3000

def normalize(v):
# Normalize v (in the range 0..5000) to 0..1.0, inversely
return 1.0 - v/5000.0

For brightness v = 35 what is the normalized value
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Light Sensing

< You can set the ambient light value as the darkest
condition so that you can 1dentify a brighter light, say, a
Flash Light

<+ How:
def normalize(v):
if v> Ambient:
v = Ambient

return 1.0 - v/Ambient
< Either you can set this value or let the Robot sense it

< You can also find the values sensed by left and right
sensors and take an average
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‘Coward and Aggressive

< Speed of individual motor depends on the sensor

on one side

% Coward mode:

Left sensor controls Left motor

Right sensor controls Right motor

Ambient = sum(getLight())/3.0 # values from 3 sensors/3

def normalize(v):
if v> Ambient:
v = Ambient

return 1.0 - v/Ambient

Vehicle 2a: Coward
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Coward and Aggressive

L = getLight("left")
R = getLight("right")

motors(normalize(L), normalize(R))

<+ Aggressive

Vehicle 2b: Aggressive

Left sensor controls Right motor Yy
Right sensor controls Left motor o ‘ \ } '

<+ Repeat as you did before now ] X i
L = getLight(“right")
R = getLight(“left")

motors(normalize(L), normalize(R))

RLL Y
2w

Try flashing the light on either side of the robot
<= UCSD |




Mathematical Functions

< Braitenberg suggests using non-monotonic
mathematical functions
Monotonic: More light, faster motor speed; or more
light, slower motor speed

Non-monotonic: the relationship 1s increasing in

proportion to sensory input but only up to a certain
point and after that it decreases

Bell Curve or

f (X) — e_X2 Gaussian Curve

< You can use exp() for &
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Bell Curve Behavior

def normalize(v):
mean = Ambient/2.0
stddev = Ambient/6.0
if v>= Ambient:

v = Ambient
return exp(-(v - mean)**2 / 2*(stddev**2))

< Other mathematical functions using math library
(from math import *):
Step
Threshold
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Multiple Sensing

< Adding more sensors makes the robot behavior
more interesting
< Scribbler 1n addition to light sensors has
Stall Sensors (detect if the robot has stopped)
IR sensors and more
< Digital Sensors: Give either On or Off (e.g Stall)
< Try this:

Replace the light sensors with obstacle sensors and
try moving the robot
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Exercise

<+ How would you design paranoid, shadow fearing,
behavior?

This can be accomplished by moving the right
motor forward and moving the left motor in
reverse direction at the same time.
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If - else

if <condition>:
<this>
else:
<that>

Else 1f : elif

if <condition-1>:

<this>

elif <condition-2>:

<that>

else:
<other>

How do you use the if, else and elif

while timeRemaining(30):
if #left light is brighter that right light:
turnlLeft(1.0)

else:
turnRight(1.0)

Iry this:
If the left side is brighter go right,
vice versa
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Light Follower

# Light follower
from myro import *
initialize(ask("What port?"))

# program settings...

thresh = 50

fwdSpeed = 0.8

cruiseSpeed = 0.5

turnSpeed = 0.7 # left turn, -0.7 will be right turn

def main():
while True:

# get light sensor values for left, center, and right
L, C, R = getLight()
# decide how to act based on sensor values
if C < thresh:
# bright light from straight ahead, go forward
move(fwdSpeed, 0)
elif L < thresh:
# bright light at left, turn left
move(cruiseSpeed, turnSpeed)
elif R < thresh:
# bright light on right side, turn right
move(cruiseSpeed, -turnSpeed)
else:
# no bright light, move forward slowly (or stop?)
move(cruiseSpeed/2, 0)
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Avoiding Obstacles

# Avoiding Obstacles
from myro import *
initialize(ask("What port?"))

# program settings...

cruiseSpeed = 0.6

turnSpeed = 0.5 # this is a left turn, -0.5 will be right
turn

def main():
while True:
# get sensor values for left and right IR sensors
L, R = getIR()
L=1-L
R=1-R
# decide how to act based on sensors values
if L and R:
# obstacle straight ahead, turn (randomly)
move(0, turnSpeed)
elif L:
# obstacle on left, turn right
move(cruiseSpeed, -turnSpeed)
elif R:
# obstacle on right, turn left
move(cruiseSpeed, turnSpeed)
else:
# no obstacles
move(cruiseSpeed, 0)
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Summary

< You now have an 1dea of Psychology

< Programming internal structures in a robot thus
building brains for robot

+ 1f — else ; elseif (elif) statements
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