Designing Robot Behaviors

Week #6
Prof. Ryan Kastner

Designing Robot Behaviors

<+ Be Creative

< Recognize the Strengths and
Limitations of the Robot

< Know the environment the
robot will be working in

<+ Know available paradigms for
programming robots behaviors

= UCSD

Braitenberg Vehicles

< Valentino Braitenberg wrote a book titled:
Vehicles: Experiments in Synthetic Psychology
(MIT Press)

< Describes several thought experiments that are
centered around the creation of simple vehicles
with very simple control mechanisms that
exhibit seemingly complex behavior

+ [llustrates 1nsights into animal (human) brain

< Shows that vehicles are capable of complex
behavior like Fear, Love, Logic etc.

= UCSD

Law of Uphill Analysis and Downhill Invention

< One central theme underlying Braitenberg's
experiments

+ Trying to postulate the internal structure purely
by observing certain behavior is an uphill (harder)
task

< Trying to create an entity that exhibits a certain
behavior 1s a downhill (easier) task

< A Scribbler can do most of what the robots
Braitenberg described can do

= UCSD

Vehicle 1

< Alive
One Sensor — One Motor /\
< Scribbler

One Sensor — Two motors ; °=

% You can use the center light sensor and connect
what 1t reports directly to both motors of the robot

< Try this:

“motors(c,c) where ‘c’is the value from light sensor

= UCSD

Movement Using Light Sensors

< Light sensors report values in range of 0 — 5000
while motors take values from -1 to 1

< Normalizing (mapping light sensor values to the
range of motor values)

def normalize(v): # normalizes v to range 0.0 to 1.0

def main().
while True:
L = getLight("center")
forward(normalize(L))

= UCSD

Normalizing Sensor Values

< Normalizing 1s transforming a value proportional
to a required range (here 0.0 to 1.0, 1.0 being
brighter light)

< Light Sensor 1s actually a Darkness sensor
Small values for bright light e.g. 50
Larger values for dark light e.g. 3000

def normalize(v):
Normalize v (in the range 0..5000) to 0..1.0, inversely
return 1.0 - v/5000.0

For brightness v = 35 what is the normalized value

= UCSD

Light Sensing

< You can set the ambient light value as the darkest
condition so that you can 1dentify a brighter light, say, a
Flash Light

<+ How:
def normalize(v):
if v> Ambient:
v = Ambient

return 1.0 - v/Ambient
< Either you can set this value or let the Robot sense it

< You can also find the values sensed by left and right
sensors and take an average

= UCSD

‘Coward and Aggressive

< Speed of individual motor depends on the sensor

on one side

% Coward mode:

Left sensor controls Left motor

Right sensor controls Right motor

Ambient = sum(getLight())/3.0 # values from 3 sensors/3

def normalize(v):
if v> Ambient:
v = Ambient

return 1.0 - v/Ambient

Vehicle 2a: Coward

T T

/
=

|

|J l

\\

'v

||J J

= UCSD

Coward and Aggressive

L = getLight("left")
R = getLight("right")

motors(normalize(L), normalize(R))

<+ Aggressive

Vehicle 2b: Aggressive

Left sensor controls Right motor Yy
Right sensor controls Left motor o ‘ \ } '

<+ Repeat as you did before now] X i
L = getLight(“right")
R = getLight(“left")

motors(normalize(L), normalize(R))

RLL Y
2w

Try flashing the light on either side of the robot
<= UCSD |

Mathematical Functions

< Braitenberg suggests using non-monotonic
mathematical functions
Monotonic: More light, faster motor speed; or more
light, slower motor speed

Non-monotonic: the relationship 1s increasing in

proportion to sensory input but only up to a certain
point and after that it decreases

Bell Curve or

f (X) — e_X2 Gaussian Curve

< You can use exp() for &

11

= UCSD

Bell Curve Behavior

def normalize(v):
mean = Ambient/2.0
stddev = Ambient/6.0
if v>= Ambient:

v = Ambient
return exp(-(v - mean)**2 / 2*(stddev**2))

< Other mathematical functions using math library
(from math import *):
Step
Threshold

= UCSD

12

Multiple Sensing

< Adding more sensors makes the robot behavior
more interesting
< Scribbler 1n addition to light sensors has
Stall Sensors (detect if the robot has stopped)
IR sensors and more
< Digital Sensors: Give either On or Off (e.g Stall)
< Try this:

Replace the light sensors with obstacle sensors and
try moving the robot

= UCSD

13

Exercise

<+ How would you design paranoid, shadow fearing,
behavior?

This can be accomplished by moving the right
motor forward and moving the left motor in
reverse direction at the same time.

14

= UCSD

If - else

if <condition>:
<this>
else:
<that>

Else 1f : elif

if <condition-1>:

<this>

elif <condition-2>:

<that>

else:
<other>

How do you use the if, else and elif

while timeRemaining(30):
if #left light is brighter that right light:
turnlLeft(1.0)

else:
turnRight(1.0)

Iry this:
If the left side is brighter go right,
vice versa

15

= UCSD

Light Follower

Light follower
from myro import *
initialize(ask("What port?"))

program settings...

thresh = 50

fwdSpeed = 0.8

cruiseSpeed = 0.5

turnSpeed = 0.7 # left turn, -0.7 will be right turn

def main():
while True:

get light sensor values for left, center, and right
L, C, R = getLight()
decide how to act based on sensor values
if C < thresh:
bright light from straight ahead, go forward
move(fwdSpeed, 0)
elif L < thresh:
bright light at left, turn left
move(cruiseSpeed, turnSpeed)
elif R < thresh:
bright light on right side, turn right
move(cruiseSpeed, -turnSpeed)
else:
no bright light, move forward slowly (or stop?)
move(cruiseSpeed/2, 0)

16

Avoiding Obstacles

Avoiding Obstacles
from myro import *
initialize(ask("What port?"))

program settings...

cruiseSpeed = 0.6

turnSpeed = 0.5 # this is a left turn, -0.5 will be right
turn

def main():
while True:
get sensor values for left and right IR sensors
L, R = getIR()
L=1-L
R=1-R
decide how to act based on sensors values
if L and R:
obstacle straight ahead, turn (randomly)
move(0, turnSpeed)
elif L:
obstacle on left, turn right
move(cruiseSpeed, -turnSpeed)
elif R:
obstacle on right, turn left
move(cruiseSpeed, turnSpeed)
else:
no obstacles
move(cruiseSpeed, 0)

17

Summary

< You now have an 1dea of Psychology

< Programming internal structures in a robot thus
building brains for robot

+ 1f — else ; elseif (elif) statements

= UCSD

18

