

Name:__

 1

University of California, San Diego
CSE 30 – Computer Organization and Systems Programming

Fall 2010 – Final
Prof. Ryan Kastner

Name

Student ID

Name of person to
your left

Name of person to
your right

You will lose points if you do not put your name on the top of every page and
complete the all of the above information.

Problem Possible Score

1 20

2 20

3 20

4 40

5 35

6 15

Total 150

Name:__

 2

This page was intentionally left blank.

Name:__

 3

Problem 1: (20 points) Number Representation

(5 points) How many yes/no options (e.g., mustard/no mustard, lettuce/no lettuce, etc.)
do you have to “personalize” your Wendy’s hamburger?

(5 points) If Wendy’s added two additional yes/no options, how many total ways would
one now have to “personalize” your Wendy’s burger? Assume that these two options are
totally independent of the 256 current ways of personalization.

(5 points) Assume that In-N-Out has N ways to personalize their burger. How many bits
do they require to represent all of these personalization options?

(5 points) Knowing the secret In-N-Out menu expands the number of options by 17
times, i.e., there are 17N ways to personalize your burger if you know the secret menu
options. How many bits does this require?

Name:__

 4

Problem 2: (20 points) Arithmetic

Translate the following code into MIPS assembly:

Z = ((A+B)*(C+D))+((E+F)*(G*H))

Assume that variables A-H,Z are in registers $s0-$s8, respectively (e.g., C = $s2).
Also, assume that you cannot overwrite variables A-H since they will all be used later in
the program. You must write the MIPS code exactly as it appears above, i.e., you can not
perform any optimizations (e.g., using transitive, commutative, distributive properties).

For this question, you can use the mul pseudo-instruction. It has this form:

mul $1, $2, $3, where $1 = $2 * $3.
It does the same thing as:
 mult $2, $3

mflo $1

Do not use mult and mflo.

a) (10 points) Assume that you have sequential processor where add and mul take
1 and 3 cycles, respectively. Write the code such that it uses the minimum
number of registers and cycles. How many additional registers (other than $s0-
$s8) does your code require? How many cycles does your code need?

Name:__

 5

b) (10 points) Assume that you have a different type of processor architecture (call it
VLIW) that can perform one add operation and one mul operation during every
cycle. Rewrite the code to take advantage of this and use the minimum number of
cycles. The VLIW processor uses a faster implementation of mul, which only
takes 1 cycle, the same as the cycle time of add. To make it easier to grade,
please write mul and add that are executed in the same cycle on one line, for
example:

mul $1, $2, $3, add $4, $2, $8

How many cycles does your code need?

Name:__

 6

Problem 3: (20 points) String Manipulation

(5 points) Describe succinctly, in English, what the following function does:

char * someFunction(char *src, char uc, int n)
 {
 while (n-- != 0) {
 if (*src == uc)
 return src;
 src++;
 }
 return NULL;
 }

(15 points) Write the C code for the function
char * insert (int pos, char * base, char * insert)

that inserts a copy of the entire contents of insert into base at character position
pos.

main()
{
 char * base = “CSE Computer Organization”;
 char * insert = “30”;
 char * result = insert(3, base, insert);
}

The result string is “CSE30 Computer Organization”.

Name:__

 7

This page was intentional left blank.

Name:__

 8

Problem 4: (40 points) MIPS Reverse Compilation

Consider the following MIPS assembly code:

creeper: add $t0, $0, $0
 addi $t1, $a1, -1
specter: slt $t2, $t0, $t1
 beq $t2, $0, disc_demon
 add $t3, $a0, $t0
 lb $t4, 0($t3)
 add $t5, $a0, $t1
 lb $t6, 0($t5)
 sb $t6, 0($t3)
 sb $t4, 0($t5)
 addi $t0, $t0, 1
 addi $t1, $t1, -1
 j specter
disc_demon: add $v0, $a0, 0
 jr $ra

a) (15 points) Translate the above creeper function into C. Your function header
should list the types of any arguments and return values. Also, your code should
be as concise as possible, without any gotos. We will not deduct points for syntax
errors unless they are significant enough to alter the meaning of your code.

b) (5 points) Describe briefly, in English, what this function does.

Name:__

 9

c) (20 points) Convert the following instructions from the code above into 32 bit
hexadecimal number. Assume that the address of the first instruction (add
$t0, $0, $0) or equivalently the label creeper is located at address
0x00400018.

(5 points) lb $t6, 0($t5)

(5 points) beq $t2, $0, disc_demon

(5 points) j specter

(5 points) addi $t1, $a1, -1

Name:__

 10

Problem 5: (35 points) Data Structures

A list is a series of elements that are sequentially connected to each other. A list node is a
structure that represents a single element of a list. A list node is formally defined as
follows:

A list is simply a series of these nodes connected using pointers.

The C function reverse that completely reverses the ordering of the elements in the list
is shown below. The function takes one argument: a pointer to the first ListNode
object of the list. It returns a pointer to the new first element of the list (which was
previously the last element)

ListNode * reverse(ListNode *aNode)
{
 ListNode * tempNode;

 tempNode = aNode->next; //save the next pointer
 aNode->next = aNode->prev; //switch the prev and next ptrs
 aNode->prev = tempNode;

 if(aNode->prev == NULL) //stop if end of list
 { return aNode; } // has been reached
 else
 { return reverse(aNode->prev); } //otherwise continue
 // recursively
}

a) (5 points) How many bytes is one instance of a ListNode struct?

Name:__

 11

b) (20 points) Write a recursive MIPS assembly code for this C function. You must
follow register conventions as well as standard procedure calling conventions for
full credit on this question. In other words, make no assumptions about the
calling procedure.

• Solutions that are not recursive will not get any credit
• You must follow all register conventions and procedure calling

conventions
• You must only use real MIPS instructions (no pseudoinstructions)
• You must write comments. Code that is not adequately commented will

be penalized.

Name:__

 12

c) (10 points) Translate that following memory layout to the pictorial description of a list.
The head of the list is 0x472AF014.

Address Value Address Value

 0xFFFFFFFF .
.
.

 .
.
.

 0x00000000 0xE123014C
 0x472AF014 0x00123AF0
 0x472AF014 0xE123014C
 0x123ABC00 0x00123AFO

0xE123014C 0x80042AB0 0x123ABC00 0x041ABC28
 .

.

.

 .
.
.

 0x041ABC28 0x472AF014
 0x00123AF0 0x80042AB0
 0x00000000 0x00000000
 0x00000000 0x00000000

0x80042AB0 0x00000003 0x041ABC28 0x00000004
 .

.

.

 .
.
.

 0xE123014C 0x80042AB0
 0x041ABC28 0x00000000
 0x00123AF0 0x123ABC00
 0xE123014C 0x472AF014

0x472AF014 0x00123AF0 0x00123AF0 0xE123014C
 .

.

.

 .
.
.

Name:__

 13

Problem 6: (15 points) Handle Swap

void swap(char **one, char **two) {
 char temp = **one;
 **one = **two;
 **two = temp;
}

Write MIPS assembly code for the swap C function.

• You must follow all register conventions and procedure calling conventions
• You must only use real MIPS instructions (no pseudoinstructions)
• You must write comments. Code that is not adequately commented will be

penalized.

