

Name:__

 1

Problem 1: (20 points) Short Answers

a) (3 points) Which of the following is not a job of the linker? (Choose one answer)

_____________relocation

_____________compute branch offsets

_____________combine .o files

_____________resolve external symbols

b) (5 points) Consider the following assembly language program segment, which
loads $t0 with the larger of $a1 and an integer labeled by value.
.data
value: .space 4 #4 bytes storage for variable value

 .text

lui $at, upper half of value
lw $t1, lower half of value ($at)
slt $at, $t1, $a1
beq $at, $0, t1greater
add $t0, $0, $a1
j gotmax
t1greater:
add $t0, $0, $t1
gotmax:
...

The table below lists some of the statements in the program segment. Indicate which of
the statements listed below will be represented by an entry in the relocation table.

Statement Will it contribute an entry to the
relocation table?

lui $at, upper half of value
lw $t1, lower half of value($at)
beq $at,$0,t1greater
j gotmax
add $t0, $0, $t1

c) (3 points) Moore’s Law and Registers

Name:__

 2

MIPS was invented in 1985 with 32 integer registers. According to Moore's Law,
named after Intel founder Gordon Moore, the number of transistors per
microprocessor doubles every 1.5 years. Thus, microprocessors should have approx
32,000 times the number of transistors today as they could in 1985. It would seem
that we could easily build microprocessors with, say, 1K registers or more.

Select all the reasons why MIPS has not increased the number of integer registers
from 32 to 1K.
1. There is no need for more than 32 registers, as compilers have difficulty using the

32 registers in the MIPS architecture now.
2. Due to the importance of binary compatibility, new MIPS processors must be able

to execute old MIPS instructions, and it would be very hard to find room for 1K
registers in the original MIPS instruction format.

3. 32 registers are much smaller than 1K registers, and since smaller is faster, the 32
registers makes it easier to build fast microprocessors than if there were 1K
registers.

4. Moore's Law applies to Intel microprocessors, not MIPS microprocessors hence
the hypothesis is false. The MIPS chip would be too expensive if it had 1K
registers.

d) (3 points) What do the acronyms CISC and RISC stand for? What is the

difference between the two?

e) (3 points) Name the 4 regions of a program’s memory space

f) (3 points) Name the 5 classic components of a computer

Name:__

 3

Problem 2: (15 points) Representations

a) (5 points) Translate the decimal number 33.0625 to a 32 bit IEEE 754 single
precision floating-point number

b) (5 points) Translate the 32 bit IEEE 754 single precision floating-point number
0xBE500000 to decimal fraction number. 2 points partial credit if the number is
correct but not in decimal fraction form.

c) (5 points) Translate the hexadecimal number 0x3C041001 to a MIPS
instruction using register names, e.g. $s0, $t0, …

Name:__

 4

 Problem 3: (45 points) Compilation

a) (20 points) Frabjous Day

’Twas brillig, and the slithy toves
Did gyre and gimble in the wabe:

All mimsy were the borogoves,
And the mome raths outgrabe.

Beware the Jabberwock, my son!

The jaws that bite, the claws that catch!
Beware the Jubjub bird, and shun

The frumious Bandersnatch!

He took his vorpal sword in hand:

Long time the manxome foe he sought –
So rested he by the Tumtum tree,

And stood awhile in thought.

And, as in uffish thought he stood,

The Jabberwock, with eyes of flame,
Came whiffing through the tulgey wood

And burbled as it came!

001, 010! 001, 010! And through and through
The vorpal blade went snicker-snack!

He left it dead, and with its head
He went galumphing back.

“And hast thou slain the Jabberwock?

Come to my arms, my beamish boy!
O frabjous day! Callooh! Callay!”

He chortled in his joy.

Twas brillig, and the slithy toves

Did gyre and gimble in the wabe:
All mimsy were the borogoves,

And the mome raths outgrabe.

As one might imagine, the hero’s father was rather nervous while his son was out
hunting. Alice helpfully offers to write a program to help him determine if the day will be
frabjous or most unhappy. If his beamish boy remembers to carry the vorpal sword and
first happens across the jabberwock, the day will be quite frabjous. On the other hand, if
the boy should happen to stumble across a frumious Bandersnatch, he is doomed.

Alice wrote the following program in C and converted the snickersnack function to
MIPS assembly language obeying standard MIPS calling conventions. Unfortunately, she
was called away by the Queen of Hearts before she could complete the
isFrabjousDay function. Help the father by finishing the code on the next page. Be
sure to save and restore only the necessary registers so the code executes quickly.

int snickersnack(int target, int weapon)
{

return target && weapon;
}

Name:__

 5

int isFrabjousDay(int bandersnatch, int jabberwock, int
vorpal)
{

int frabjous = 0;
if (snickersnack(jabberwock, vorpal) != 0) frabjous = 1;
else if (bandersnatch != 0) frabjous = -1;
return frabjous;

}

Write your MIPS assembly language code here for isFrabjousDay:

Name:__

 6

b) (25 points) Minding your p's and q's

Below is a segment of C code:

char *p, *q, x = 'a', y = 'b';
p = &x;
q = &y;
*q = *p++;
q = p;

Translate the above C code into MIPS assembly code. Assume that the variable are all
stored on the stack in the order that they are declared in the code (i.e. p is stored at 0($sp)
and so on). The integer ASCII code for ‘a’ and ‘b’ are 97 and 98, respectively. For
those that are interested, the ASCII code for ‘A’ and ‘B’ are 65 and 66, respectively.

Name:__

 7

Problem 4: (40 points) MIPS Reverse Compilation

Consider the following MIPS assembly code:

stewie:

lb $t2, 0($a0)
beq $t2, $0, quagmire
slti $t0, $t2, 97
bne $t0, $zero, brian
addi $t1, $zero, 122
slt $t0, $t1, $t2
bne $t0, $zero, brian
addi $t2, $t2, -32
sb $t2, 0($a0)

brian:
addi $a0,$a0, 1
j stewie

quagmire:
jr $ra

a) (20 points) Assume that an array A is located somewhere in memory, and the

base address of A is stored in $a0. Describe concisely what the code does.
Specifically, at the end of execution, what will be stored in array A? You will be
given partial credit if you simply translate the above code into C code, without
describing exactly what it does.

Name:__

 8

b) (20 points) Convert the following instructions from the code above into 32 bit
hexadecimal number. Assume that the address of the first instruction (lb $t2,
0($a0)) is located at address 0x00400028.

(5 points) beq $t2, $0, quagmire

(5 points) j stewie

(5 points) lb $t2, 0($a0)

(5 points) addi $t1, $zero, 122

Name:__

 9

Problem 5: (45 points) Binary Tree Data Structure

Assume that we are using a binary tree as a data structure for some random task. The
binary tree holds an integer value and has two pointers; one to the left subtree and one to
the right subtree. The TreeNode structure for this data structure is as follows:

struct TreeNode {
 int value;
 struct TreeNode * left;
 struct TreeNode * right;
 } * BinaryTree;

An example binary tree is as follows:

value: 1
left: right:

value: 2
left: right:

value: 3
left: right:

value: 8
left: 0 right: 0

value: 1
left: 0 right: 0

value: 7
left: 0 right: 0

value: 15
left: 0 right: 0

tree

In the above figure, we have a three level, balanced binary tree. The variable ”tree” is
a pointer to the root TreeNode. It is not necessary for the tree to be balanced. For
instance, we could remove the bottom right node with the value 15 and make this an
unbalanced tree. Each TreeNode can have 0, 1 or 2 children, but no more than 2.

Each TreeNode structure holds some value that is somehow pertinent to the random
problem, but not important for you to solve this problem. The left and/or right
variable holds the value of NULL, which is equal to 0, if it does not have any subtrees.

a) (5 points) Assuming we compile to the MIPS processor discussed in class, what
is the size of a single TreeNode structure, i.e. what value would a call the
sizeof(struct TreeNode) return?

Name:__

 10

b) (15 points) Given the following data layout in memory and knowing that the
variable tree = 0x1000, draw a sketch similar to the one above of the binary
tree represented below. All the values are noted in hexadecimal format.
Address Value
0xFFFF .

.

.
 0x3AD0
 0xB844

0xEAB0 0x0A00

.

.

.
 0x0000
 0x0000

0xB844 0xEAB0

.

.

.
 0x0000
 0x0000

0x9400 0xEAB0

.

.

.
 0x9400
 0x0000

0x64AC 0x1000
 .

.

.
 0x0000
 0x0000

0x3AD0 0x64AC
 .

.

.
 0x64AC
 0xEAB0

0x1000 0x9400

.

.

.
 0xB844
 0xEAB0

0x0030 0x1000

Name:__

 11

c) (25 points) Below is a recursive function called sum_tree that traverses the tree
and returns the sum of all of the values in the tree.

int sum_tree(BinaryTree tree)
{
 int sum = tree->value;
 if(tree->left != NULL)
 sum += sum_tree(tree->left);
 if(tree->right != NULL)
 sum += sum_tree(tree->right);
 return sum;
}

Convert sum_tree to MIPS assembly. You must exactly translate the code above,
i.e. you should not try to optimize it and it must be recursive. Also, you must follow
all of the MIPS procedure conventions. Failure to do either of these will result in a
significant loss of points.

Name:__

 12

Extra Credit: (5 bonus points) History of the Computing World: Part I

1. The following people have all won Turing Awards. Describe the primary reason
that they won the award, i.e. briefly describe what is on their Turing award
citation.

a) John Backus

b) Stephen A. Cook

c) John Cocke

d) Dennis M. Ritchie

e) Donald E. Knuth

2. Church hypothesized that “A function of positive integers is effectively calculable
only if recursive.”. While Turing hypothesized “Logical computing machines
[Turing's expression for Turing machines] can do anything that could be
described as "rule of thumb" or "purely mechanical". Turing later proved that
these theses were equivalent. For an A+ in this class and a PhD degree in CS
(after fulfilling all the other class requirements), prove the Church-Turing thesis.
Feel free to use extra sheets of paper.

