CSE 237D Final Report - Baboons on the Move
DEBADITYA BASU, SANANYA MAJUMDER, ZHI WANG, BAIQIANG ZHAO

Baboons are intelligent, social animals that live in troops, and scientists are interested in studying
their group-level decision making. The Baboons on the Move project helps scientists study the social
dynamics of a troop of baboons in Kenya, using drones to record baboon movement and activities. Video
footage from the drones are then post-processed to track individual baboons using computer vision
technology. However, the current implementation takes a huge amount of time for post-processing,
and one of the main reasons is that the implementation uses Python, which is an interpretive language.
It remains unclear whether implementing the algorithms in a machine-level language, such as C++,
can significantly improve the runtime performance. In this project, to speed up the runtime of post-
processing, we complete an implementation in C++ and investigate the feasibility of parallelizing certain
algorithms and implementing them in CUDA. We have achieved a speedup of 30x as compared to
the current Python implementation and set up a testing framework to validate the output results of
the C++/CUDA implementation, so that post-processing can be completed in a reasonable time frame
without compromising on the quality of results.

Key Words: Motion Tracking, Image Restoration, CUDA Programming, Benchmarking, Speedup

1 INTRODUCTION

The behavior of monkeys and apes has always held great fascination for scientists considering that they
have a lot in common with humans, and baboons especially live in groups and display complex behavior
[14, 16]. The Baboons on the Move project [1, 3] has been ongoing for many years and provides a
system to understand the social relations and dynamics of baboon troops located in Kenya.

Specifically, the movement and activities of a troop of baboons are recorded using drones and
post-processed using computer vision algorithms. The algorithms track their movements on all kinds
of terrains along with predicting their movements if they are hidden by obstacles. As a result, the
algorithms involve multiple stages and take a huge amount of time for post-processing. For example, for
a video footage that is only 1-minute long, post-processing can take hours to complete on an average
laptop computer. This makes run-time a significant bottleneck for the project.

As the current codebase is implemented in Python, one potential way to speed up post-processing is
by implementing the core functionalities in a faster language like C++ and CUDA. C++ is a machine
language and statically typed, whereas Python is an interpreted language and dynamically typed, and
hence the code is interpreted at runtime instead of being compiled to machine code at compile time.
CUDA, on the other hand, provides a platform for parallel execution of the code on GPUs and hence is
much faster than both C++ and Python. The parallel execution is supported by the single instruction
multiple threads (SIMT) architecture of the GPUs, which supports execution of the same instruction on
different parts of the data by threads in parallel. This essentially speeds up any computation where the
same operation can be applied to different parts of input independently.

Our goal of the project for this quarter was to complete an implementation of the post-processing
algorithms in C++ and CUDA to improve on the performance while ensuring that functionality is not
compromised. To achieve this, we

2« CSE 237D Final Report

e Inherited some existing code and finished porting the algorithms to C++ and then CUDA.

o Created a testing framework and ensured functionality of the C++ and CUDA implementations.
We were able to match the output to within 70% with the C++ implementation and 70% with the
CUDA implementation.

o Created a benchmarking framework and showed that we were able to achieve a speedup of 2x
with the C++ implementation and 30x with the CUDA implementation.

2 RELATED WORKS

Baboons. Scientists have been studying the behaviors of baboons for decades, and in particular, their
group-level decision making and social dynamics within a troop [6, 17]. These studies are typically
conducted based on first-hand observations by in-field researchers (e.g. [13]), and one disadvantage is
that these observations often only provide a partial view of a troop of baboons [1, 3]. The Baboons on
the Move project aims to provide a different perspective, namely, a global view, by using a drone to take
footage of an entire site and post-processing the video footage using motion detection algorithms [1, 7].

Motion detection of animals. As discussed in [1], motion detection of individual animals from videos
taken by an unstable camera far away from the subjects has been studied by [5]. However, the Baboons
on the Move project focuses on tracking moving subjects as a group and studying their group-level
behaviors. In general, motion detection of animals has been studied in previous works. For example,
Sridhar et al have developed a tool named Tracktor that can track single animals under noisy conditions
[12]. Zootracer [10] is a software developed by Microsoft Research, which allows users to provide
any video recording as an input and tracks animal movements. Walter and Couzin have proposed a
multi-animal tracking system, TRex, and evaluated the runtime and robustness of the system on animals
such as termites and fruit flies [15].

Runtime comparison of programming languages. In this project, we complete a C++/CUDA implemen-
tation of the same algorithms and compare the runtime performance of it with the existing Python
implementation. We note that general comparative analysis of different languages has been done by
many researchers [8, 18], and runtime of Python and C++ has been compared, for example, on the
N-Queens problem [4]. For CUDA and GPU programming, [11] provides a detailed introduction.

3 TECHNICAL MATERIAL
3.1 Overview of the Stages

Get video | | Preprocess | Motion n Save i Draw || Testand | | Display
frame frame Detection Baboons Regions Exit Progress
Fig. 1. Stages

The stages for processing the video footage include calls to OpenCV APIs and data structures in the
C++ and CUDA implementations, with reference to the original implementation in Python [1].

CSE 237D Final Report - Baboons on the Move « 3

(1) Get video frame: The input video file sequence is opened and the frames are read in a loop till
the end of file.

(2) Preprocess frame: The frame is then pre-processed in two steps - first it is converted from RGB
to gray color scale, and then blurred using the Gaussian filter.

(3) Motion Detection: This is the main stage for detection of the movements of the baboons. First,
feature detection is applied on the pre-processed frame to obtain keypoints and their descriptors.
The descriptors of current and historical (previous) frames are then matched and the best
matches are passed for computing the transformation matrix for the frame. The transformation
is then applied to the frame and rescaled such that it shares the origin with the historical frames.
Following this, the historical frames are combined using intersections and the background
is obtained from their union. This background is then subtracted from the current frame to
compute the moving foreground. Noise is removed from the frame through erosion and dilation
operations. Finally, the contours of the baboons are detected from the frame and bounding boxes
are generated.

(4) Save Baboons : The coordinates of the bounding boxes generated are saved in this stage so that
the testing framework can utilize it to carry out quality of results analysis.

(5) Draw Regions: This stage is used to embed the bounding boxes over the detected baboons in the
input video. It opens up a graphical window to display the embedded video corresponding to
the current frames that are being processed.

(6) Test and Exit: This stage checks whether the user wants to end the processing and if affirmative,
it closes all the GUIs running while terminating the processing and gives an output of the
benchmarking results of the different stages.

(7) Display Progress: The progress of the processing of the frames out of the total number of frames
detected in the input video is displayed here.

Fig. 2. Python - Frame 9, large bounding boxes (13)

4 « CSE 237D Final Report

Fig. 3. C++- Frame 9, large bounding boxes (13)

3.2 Testing

For testing the correctness of the output in the implementations, we have created a testing framework
based on the library Pandas in Python. The framework takes the outputs corresponding to C++/ CUDA
and the Python implementation at the end of the "Motion Detection" stage using the "Save Baboons"
stage. The outputs are stored in the form of coordinates of the bounding boxes which correspond to the
detected baboons in a particular frame.

The framework takes these stored coordinates as inputs and takes either the C++/CUDA or Python
implementation as the reference depending on which one has detected more baboons. Since the OpenCV
implementation of APIs might be different in C++/CUDA as compared to Python, C++ implementation
was generating some very small bounding boxes which were not always corresponding to baboons.
This was most probably due to difference in the noise filtering implementation in C++ and Python.
So as a workaround, we rejected the bounding boxes which were below a certain threshold. It then
goes on to find the coordinates from the other implementation which closely resembles the bounding
boxes in the reference implementation. This way the framework is able to generate the metric Closely
Matching Bounding Boxes (CMBBs). This gives us a good description of the quality of equality of results
as a higher percentage of CMBBs indicates that both implementations are detecting similar number of
baboons.

The second aspect of the framework reports the quality of the CMBB results. The framework uses
the metric Intersection of Union (IOU) to compare the results from both the implementations. It takes
the coordinates of the most closely resembling bounding box from outputs of both the implementations
and computes the overlap and union area to determine the IOU. The framework reports the average
IOU for all the CMBB between the C++/CUDA and Python implementation. An IOU higher than 60%
for a frame is considered a good matching.

CSE 237D Final Report - Baboons on the Move « 5

Table 1. Testing Results

C++ over Python | CUDA over Python
% of CMBBs 77 76
IoU of CMBBs 72 70
|Python C+t cupA

topleftx topleft.y bottomleft.x bottomleft.y topleftx toplefty bottomleft.x bottomlefty topleft.x topleft.y bottomleftx bottomlefty
1410 1248 1448 1269 1417 1245 1449 121 1415 1244 1453 1273
1425 671 1451 704 1428 668 1453 703 1428 GEE 1453 708
1520 1372 1547 1392 1536 1281 1557 1311 1535 1280 1557 1311
1529 1278 1556 1313 1805 1297 1626 1316 1607 1297 1626 1316
1604 1297 1626 1319 1746 1435 2783 1469 2305 1383 2336 1402
2303 1379 2339 1404 2305 1382 2337 1402 2746 1437 2783 1469
2493 1198 2509 1213 2801 1514 2842 1553 2801 1514 2843 1554
2740 1434 2779 1470 2835 1612 2854 1631 2858 1186 2925 1213
2835 1612 2857 1639 2955 1504 2979 1533 2956 1501 2983 1538
2884 1181 2843 1230 2976 1288 2009 1311 2972 1285 2999 1311

Fig. 4. Python - Frame 9, large bounding boxes (13)

3.3 Benchmarking

To identify areas of improvements, we decided to benchmark different sections of the implementations.
As a starting point, we tried to benchmark different stages of the algorithm to do a comparison
between the C++ and Python stages. To do an apple to apple comparison we had to refactor the code
implementation in C++ to match the stages of python implementation.

We used standard timer calls available in C++ and Python to benchmark different stages. The bench-
marking of individual stages in both Python and C++ helped us to identify the stages which were
significantly slowing down the entire execution process. Additionally, we could identify the stages that
were taking more than expected time in C++ and we decided to optimize them for runtime.

BENCHMARKING

8000
7000
6000
5000
4000

3000
2000
1000
0 —
CH++

Cuda

RUNTIME (ms)

Python
CODE IMPLEMENTATION

B Compute Transformation Matrices M Total

Fig. 5. Comparison of runtimes with the 3 implementations

6 « CSE 237D Final Report

Table 2. Benchmarking Results

Python C++ CUDA

Blur Gray 5.87 ms | 2.83ms | 0.43 ms

Compute Transformation Matrices runtime | 4826 ms | 2635 ms | 30 ms
Total runtime 6998 ms | 3657 ms | 228 ms

The graph above shows the comparison of the stage that took the most runtime (Compute Transfor-
mation Matrices stage) and the total runtime of the 3 implementations. For the CUDA part, the runtime
for Compute Transformation Matrices stage is very small in comparison so it’s not visible on the graph.

3.4 Refactoring Existing Code for Improved Runtime Performance

We identified one stage under motion tracking, "Compute Moving Foreground", for which the Python
implementation has a faster runtime than the C++ implementation. The stage is based on an algorithm
proposed in [9], which uses a weight matrix and a history of dissimilarity to detect moving objectives
in foreground (see Section III.C).

After carefully examining both implementations, we conjecture that the Python implementation
is faster due to its usage of the NumPy library for various matrix operations which likely takes
advantage of internal optimizations within the library. To improve the runtime performance of the C++
implementation, we refactored the code by making the matrix operations more efficient. Specifically,
we store certain intermediate results to avoid redundant and inefficient matrix operations. Furthermore,
instead of consecutively calling existing bitwise operations on cv::Mat objects, we manually iterate
through the matrices in an efficient way [2] to perform multiple operations simultaneously along the
way so that the runtime performance can be improved.

Further benchmarking shows that our optimization improves the C++ runtime performance on
computing moving foreground from 111ms to 77ms, achieving a 1.44x speedup.

3.5 Parallelization

For implementing the code in CUDA, we first identified those stages which took most time. Amongst
that we found that in the motion detection stage, the part to find the baboons, using feature matching
and homography took up around 70% of the runtime. This involves a lot of computation using matrices
and hence was the best stage to implement in CUDA because the threads can compute parts of the
matrices parallelly.

In our CUDA implementation, instead of the OpenCV APIs, accelerated OpenCV CUDA versions
of the APIs were used. This requires the OpenCV module to be built with the CUDA flag enabled.
This module provides a set of classes and functions to utilize CUDA computational capabilities. It is
implemented internally using the NVIDIA CUDA runtime APIs and supports only NVIDIA GPUs.

For the primary data container in this implementation, class cv::gpu::GpuMat was used in place of
cv::Mat. The interface is similar in both the classes but a major advantage provided by the former is
that it keeps the data in the GPU memory. This provides an increase in performance because the data
transfer for CPU to GPU memory can become a bottleneck due to the slow bandwidth on the connecting
network compared to the computation throughput on the GPU. Without much change to the stages in

CSE 237D Final Report - Baboons on the Move « 7

the C++ implementation, using the CUDA versions of the APIs provided significant speedup. The stages
to which these were applied are- preprocessing stage (blur the gray frame using Box filter), feature
detection to obtain keypoints and their descriptors, matching of descriptors of current and historical
frames, noise removal with erosion and dilation. Since we didn’t have access to a GPU locally, we ran
the CUDA implementation through Kubernetes on the Nautilus cluster, which has a variety of NVIDIA
GPUs.

4 MILESTONES

e Milestone 1 (MVP): Port the algorithms to C++ following the CLI Chart
— Compile a list of stages. Divide the algorithms/stages among group members
— Create a testing framework for C++ codebase to ensure functional correctness
Progress: Done

Milestone 2 (MVP): Performance benchmarking and optimization
— Compare the runtime of each stage between C++ and Python code bases
— Optimize the C++ codebase to ensure minimum performance improvement
Progress: Done

Milestone 3 (Early Stretch Goal): Refactoring existing implemented code
— Perform feasibility study on parallelizable algorithms with CUDA
Progress: Done

Milestone 4 (Long Stretch Goal): CUDA Implementation of the algorithms
- Divide the algorithms/stages among group members
— Testing the CUDA implementation for performance benchmarking Deliverable: Compare
the runtime for the stages with the Python and C++ code
Progress: Done

Revisions:

We removed this part of Milestone 4 - Feasibility study of Kalman filter [17] for multi-baboon
motion tracking and prediction. In our project specification, it was considered an ultimate stretch
goal, which we would attempt to complete if time permitted. It was also understood that this
part of the project would be research-oriented and open-ended. After carefully examining our
progress and planning for the remaining milestones, we decided to not pursue this part of the
milestones, and prioritize on completing our MVP and early stretch goals.

5 CONCLUSION

We were able to complete what we had set out to achieve at the beginning of the quarter - complete the
porting of all the stages from Python implementation to C++/CUDA implementation to improve the
runtime of post processing of the video for detection of the baboons. Based on the Python implementa-
tion, we modified the existing implementation of the C++ code and refactored it to achieve around 2x
improvement in runtime over the Python implementation. Additionally, we ported the code to CUDA,
and could achieve a significant speedup of 30x over the Python implementation. At present, the CUDA
implementation takes around 230ms to process a single frame from the input video.

8 « CSE 237D Final Report

Another aspect of the project was to maintain the accuracy of the outputs across the implementations;
for that we were able to generate a testing framework which could help us track the correctness of the
outputs across the implementations. We used Closely Matching Bounding Boxes (CMBB) and Intersec-
tion of Union (IoU) as the metrics for the quality of equality of outputs. In the final implementation, in
comparison between C++/CUDA and Python, we have achieved higher than 70% average CMBB and
IoU, which is considered a good match.

For future work for the project, we would like to display output with the bounding boxes for the
CUDA implementation. An application to manage the GUI is needed to open up the display window
for the output and we were unable to access that from the Nautilus cluster which we used to run the
CUDA implementation. Additionally, we would like to explore if any other stage can be implemented
in CUDA for better performance. Regarding the quality of outputs, since we have a good IOU, we can
try to figure out the reasons for not having an ideal CMBB and work on implementations focusing on
the noise filtering stage in C++/CUDA that will improve the CMBB further.

REFERENCES

[1] Christopher L. Crutchfield, Jake Sutton, Anh Ngo, Emmanuel Zadorian, Gabrielle Hourany, Dylan
Nelson, Alvin Wang, Fiona McHenry-Crutchfield, Deborah Forster, Shirley C. Strum, Ryan Kastner,
and Curt Schurgers. 2020. Baboons on the Move: Enhancing Understanding of Collective Decision
Making through Automated Motion Detection from Aerial Drone Footage. (2020).

[2] OpenCV 2.4.13.7 documentation. 2022. How to scan images, lookup tables and time measurement
with OpenCV. https://docs.opencv.org/2.4/doc/tutorials/core/how_to_scan_images/how_to_scan_
images.html#the-efficient-way/. [accessed 06-08-2022].

[3] UCSD E4E. 2022. Baboons on the Move. https://e4e.ucsd.edu/baboons-on-the-move/. [accessed
06-08-2022].

[4] Pascal Fua and Krzysztof Lis. 2020. Comparing python, go, and c++ on the n-queens problem.
arXiv preprint arXiv:2001.02491 (2020).

[5] Lars Haalck, Michael Mangan, Barbara Webb, and Benjamin Risse. 2020. Towards image-based
animal tracking in natural environments using a freely moving camera. Journal of neuroscience
methods 330 (2020), 108455.

[6] Torben Hagerup, Kurt Mehlhorn, and J. Ian Munro. 1993. Maintaining Discrete Probability
Distributions Optimally. In Proceedings of the 20th International Colloquium on Automata, Languages
and Programming (Lecture Notes in Computer Science, Vol. 700). Springer-Verlag, Berlin, 253-264.

[7] Joshua Kang and Christie Wolters. 2020. Baboons on the Move. UCSD CSE 237D Final Report
(2020).

[8] Lutz Prechelt. 2000. An empirical comparison of ¢, c++, java, perl, python, rexx and tcl. IEEE
Computer 33, 10 (2000), 23-29.

[9] Kumar S Ray and Soma Chakraborty. 2017. An efficient approach for object detection and tracking
of objects in a video with variable background. arXiv preprint arXiv:1706.02672 (2017).

[10] Microsoft Research. 2014. Zootracer. https://www.microsoft.com/en-us/research/project/
zootracer/. [accessed 06-08-2022].

[11] Jason Sanders and Edward Kandrot. 2010. CUDA by example: an introduction to general-purpose
GPU programming. Addison-Wesley Professional.

https://docs.opencv.org/2.4/doc/tutorials/core/how_to_scan_images/how_to_scan_images.html##the-efficient-way/
https://docs.opencv.org/2.4/doc/tutorials/core/how_to_scan_images/how_to_scan_images.html##the-efficient-way/
https://e4e.ucsd.edu/baboons-on-the-move/
https://www.microsoft.com/en-us/research/project/zootracer/
https://www.microsoft.com/en-us/research/project/zootracer/

CSE 237D Final Report - Baboons on the Move « 9

[12] Vivek Hari Sridhar, Dominique G Roche, and Simon Gingins. 2019. Tracktor: image-based auto-
mated tracking of animal movement and behaviour. Methods in Ecology and Evolution 10, 6 (2019),
815-820.

[13] Shirley Strum, Deborah Manzolillo Nightingale, Yvonne de Jong, and Juan Manuel Sandoval. 2008.
Guess who’s coming to dinner. Swara Magazine October-December (2008), 24—-29.

[14] Sabine Stueckle and Dietmar Zinner. 2008. To follow or not to follow: decision making and
leadership during the morning departure in chacma baboons. Animal Behaviour 75, 6 (2008),
1995-2004.

[15] Tristan Walter and Iain D Couzin. 2021. TRex, a fast multi-animal tracking system with markerless
identification, and 2D estimation of posture and visual fields. Elife 10 (2021), e64000.

[16] Sherwood Larned Washburn and Irven DeVore. 1961. The social life of baboons. Scientific American
204, 6 (1961), 62-71.

[17] Greg Welch, Gary Bishop, et al. 1995. An introduction to the Kalman filter. (1995).

[18] Farzeen Zehra, Maha Javed, Darakhshan Khan, and Maria Pasha. 2020. Comparative analysis of
C++ and Python in terms of memory and time. (2020).

	Abstract
	1 Introduction
	2 Related Works
	3 Technical Material
	3.1 Overview of the Stages
	3.2 Testing
	3.3 Benchmarking
	3.4 Refactoring Existing Code for Improved Runtime Performance
	3.5 Parallelization

	4 Milestones
	5 Conclusion
	References

