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Abstract

Electric grid infrastructures are often ad-hoc in developing countries. This leads to a wide range of future
scalability and grid-related problems; if the grid infrastructure is not well established, then grid expansion
and electrification is hard; if there is no documentation, then there are no easy solutions to problems that
arise. Traditional documentation methods require a lot of manual labor, time, and money, to which these
efforts might be negligible with the volatility of the grid foundation, due to its unstructured and ad-hoc
nature. We propose GridInSight 2.0, a system that is able to autonomously collect and document electricity
grid information via computational imaging; street lights contain electricity sensitive information, which can
be captured through commodity cameras. By capturing and recording a variety of light bulb waveforms called
Bulb Response Functions (BRFs) in the lab, we are able to extract phase information and classify these BRFs
based on their signature waveform and bulb type. This project focuses on geolocating street lights, building
off of being able to uniquely identify street lights in the real world; this will allow us to generate a detailed
grid mapping of any city’s electric grid infrastructure that is purely based upon street light information. This
methodology will provide efficient problem solving and expansion of grid-related problems in developing
countries, which can also be applied to developed countries.
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1 Introduction

The grid infrastructure in developing countries is ill-maintained. Based upon an ad-hoc fashion, most of the
electricity infrastructure is poorly documented and unstructured, which causes problems down the line for
infrastructure expansion and grid-failure debugging. Solutions to this problem include the traditional method
for electric grid documentation, which requires physical labor to measure and record the current health at
various points within the grid. Yet doing so in the long term is unaffordable, manual, and unscalable; as the
grid expands, the methods by which a grid is maintained need to evolve to provide a more efficient solution
towards grid health monitoring and grid expansion.

One solution involves computational imaging on the electric grid – cheap computing that will passively
monitor and document electrical properties of the grid infrastructure, ultimately providing knowledge of the
grid structure that can be used to both fix problems that arise and expand on the current infrastructure. To
do so, we intend to construct an electric grid phase mapping purely extracted from images and cameras, in
which this mapping can be used to isolate the power lines running throughout the grid. All modern electricity
systems are divided into three phases—sinusoidal-based electricity that is delayed by parts of three with respect
to the grid frequency—which can be extracted from a rolling shutter camera in the real world. Our system
consists of a pre-built database of light bulb signature waveforms, which is used to extract the phases of street
lights. In addition to extracting the phases of street lights, we also intend to uniquely identify street lights and
interpolate their geospatial location (i.e. GPS location); if we image street lights all throughout a city but can
only link phase information with respect to the original image, how do we amass all this information between
images into a cohesive grid mapping?

To this end, we intend to use commodity cameras to image street lights, which contain electric-grid-
sensitive information; these cameras include the use of smartphone cameras that local people already possess
or have access to. From this we can extract phase information based on a method developed in [1], which we
have done so in [2]. In this paper, I tried to measure depth with camera images, with the intent to measure the
distance away from the camera to the street light. Doing so will allow us to obtain GPS location (either through
the smartphone GPS information or an external sensor), which can be used to generate a grid mapping from
camera images. The information obtained from street lights can be used to create a phase mapping of the
electric grid – acquiring ground truth information about the grid enables more efficient grid debugging as well
as grid expansion, both of which are problematic for developing countries. Progressing the methods to ensure
proper grid health and grid expansion is fundamental to progressing society as a whole, a particular issue
that renders developing countries in a “developing” state. Furthermore, our proposed method to monitor the
infrastructure in developing countries is applicable to developed countries as well; the issue is less prominent
in developed countries, but is nonetheless still present. Our application aims to be applicable for modern and
future grid infrastructures for years down the line.
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2 Background, Related Work, and Project directions

The bulk of my work was based off of [3]; their application intends to extract the GPS location of irrigation
canals through a stereo camera setup, just as I intended to do with street lights. I had conducted experiments
very early on in the quarter regarding depth estimation in meters. With a rough estimate of how far away
my intended objects were, in addition to the results from mathematical triangulation for depth estimation,
my initial results seemed fairly accurate; later in the paper, I will discuss all the problems with this initial
assumption. Thus, after reading the white paper and finding that my initial results were acceptable (without
ground truth data), I felt ready to move onto a more accurate solution: image rectification.

Without going into the details, image rectification allows for more accurate depth estimation results from
triangulation with a stereo camera setup. The setup by [3] includes a StereoPi [4] camera and external sensors
for future GPS geolocation from image features (e.g. inertial measurement unit (IMU) sensor). The current
work and analysis includes calibrated the cameras (e.g. undistorted images, rectified images), in addition to
intermediary depth estimation results. Rather than replicating the entire system built in [3], I tried to take
bits and pieces of their implementation and apply that to our application. The main difference initially was the
stereo camera setup – [3] purchased a stereo camera kit [3], and our application intends to use smartphone
cameras.

The reason for using smartphones is catering towards our application in developing countries – with the
advent of smartphone accessibility, smartphones are more available to design a system around than a specific
system that requires manual work to set up. In order to convince locals to participate in grid maintenance
with their personal smartphones, the system requires low maintenance and low effort for setting up. Ideally
(and currently unrealistically), we should be able to use any two smartphones that can download an app
and run software that automates the grid mapping process. In practice and reality, that goal requires more
nuanced factors that we have not yet accounted for. As a result, our initial directions included building a
system that involved smartphones (and hence their cameras), such that this system can be deployed with the
readily available smartphones that local people might possess. However, after speaking with Ben Ochoa, a
computer vision expert at UCSD, we realized a need for system simplicity – get the system working first. This
will be further discussed in Section section 5.

As a result, we initially attempted the more complex route with smartphone cameras, due to the nature
of our application. [3] used a SterePi setup with an automated camera calibration system [5], which I could
not rely on because we did not possess that setup. It is noted that the authors of [3] had offered to build an
identical setup for us, but (naively) I had refused the offer because (1) I thought I knew what I was doing,
(2) I was not confident enough to rely on another system and apply that system to our work (especially at the
cost of lab funding and potentially wasting others’ time), and (3) our application intended to use commodity
smartphone cameras rather than specific kits. I attempted to pull the most relevant pieces of information from
[3] for our application and became fixated on image rectification.
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3 Technical Material

For my main results this quarter, I initially wanted to estimate the GPS coordinates of features in images,
which was a far cry from what I was actually able to achieve. In the end, I was only able to conduct a distance
estimation study in meters from a study I conducted really early on in the quarter, the reasons being that I
got side tracked by a concept called “image rectification” in addition to realizing that my depth estimation
test mentioned in my milestone report was a flop; this will be mentioned in Sections 4 and 5. As a result,
my experimental setup consisted of taking images along a sidewalk; sidewalks are nice because they have
relatively equally spaced squares that I can just line up a camera and tripod with. Furthermore, the sidewalks
are relatively straight – this is important to make images as coplanar to each other as possible. Afterwards,
I took images with a fixed distance away from each other. To estimate depth from two images, I used a
trigonometric methodology as shown in Figure 1.

Figure 1: Trigonometric diagram of estimating the world coordinate of a feature from two images.

There are four measurements and constants to measure and calculate in order to estimate the point (X,Z):

• XL – the column pixel value of the feature in the left image

• XR – the column pixel value of the feature in the right image

• d – the baseline distance between the two cameras

• f – the focal length of the camera(s)

I found XL and XR manually through GIMP. d is measured by taking images with a fixed distance away
from each other. f is found by converting the focal length in millimeters to pixel units. This is done through
the following equation:

F(mm) = F(pixels) * SensorWidth(mm) / ImageWidth (pixel)
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All the parameters for this equation can be found with an Android application called “DevCheck;” we pull
the focal length (f), the sensor width (in millimeters), and the image width (in pixel units). We can then
rearrange the equation to find the focal length in pixel units. After finding the constants, I wrote code to
evaluate the consistency of my depth estimations. In my experimental setup, I took about nine consequent
images, each 1.625 meters apart from each other. Then, in order to calculate depth, I pair images together. In
my image dataset of about nine images, I pair images with respect to the first image (e.g. image_1 and image_2,
image_2 and image_3, image_1 and image_4, etc.) and consequently (e.g. image_1 and image_2, image_2
and image_3, image_3 and image_4, etc.). I measured XL and XR for each image and then calculate the
approximate distance away from the intended feature/object (near or far street light); the objects are shown
in Figure 2. By measuring the ground truth distance away from the nearer and the farther street light, which
are 12.5 meters and 28.8 meters away from the camera respectively, I was able to see errors as little as about
0.9 meters and as high as 5.6 meters. Considering that the distance between street lights are more than 10
meters apart from each other, these errors might be acceptable for our application.

However, after I spoke with Ben, I found that Figure 1 was not intended to be used the way I used it for
this class; there steps such as image rectification/enforcing the epipolar constraint that I did not do, but as of
now, I am still confused on whether my results are just wrong or inaccurate. However, I have new directions
that will not rely on this methodology and do stereo vision the correct way.

Figure 2: Images from daytime dataset and nighttime dataset.

There are many issues that I encountered when using the rest of the calculations shown in Figure 1 to
estimate the point (X,Z), which I will mention later in Section 5. For instance, if I use two different cameras,
which focal length do I use to calculate Z? This issue did not occur when I did this calculation with just
physically translated images (taking images by moving a camera side to side with minimal rotation), and the
images were as coplanar as possible to each other with human error. However, the bulk of my work revolved
around the math in Figure 1, which turned out to be (theoretically) wrong.
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4 Milestones

I had set out many tasks to complete throughout the quarter via milestones. However, I think most of them
were incomplete – a lot of the problems I tried to solve were either confusing (because I did not understand
how to tackle the problem) or intimidating in the sense that I was (admittedly) afraid to try and go down a
wrong path. In my original project proposal, I had read [3] and became obsessed with image rectification
after I had initially done depth estimation tests with the nearer and farther street lights as shown in Figure 2.
This stemmed from reading [3], in which they used an image rectification technique called Zhang’s method
[6]; Zhang’s method is something I had not used before in a previous computer vision class.

Figure 3: Smartphone stereo setup for testing purposes

So I started to go down the route of image rectification but did not get far – I was very lost in what I had to
do and did not want to rely on my code from CSE 252A because (I think/thought) there were issues with it.
However, I admit that I should have just tried it in the end. But before I could dive into that, I realized that one
of my cameras has distortion issues, and I got distracted in fixing that; at the time, I was using a smartphone
and an off-the-shelf camera purely for testing/working purposes. This was the main reason that made me
realize that I went off on a tangent – we need to get the system simply working! Dealing with all these small
issues is not the primary focus of my research project, and I need to ignore that and use equipment that will
make my life easier by not dealing with all the hard nuances with our intended final system. The undistortion
technique I used from OpenCV was not perfect, and it caused more problems that I would have to fix in order
to incorporate an off-the-shelf camera into my testing.

After I realized that I started going down a rabbit hole of problems I was trying to solve, I realized that
I needed to focus on my original goals, which was depth/GPS estimation of features in images. So for my
milestone report, I proposed a redirection from my original milestone goals by doing an in depth study of
depth estimation with ground truth depth measurements; I conducted a test with the setup shown in Figure
3. For this experiment, I used the tiled floor in a CSE hallway – each tile is a square foot, so I could easily
count/measure the distance away from the camera to the intended object, which was just a flashlight; the
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Table 1: Reference to First Image, Nearer Street Light Distance Estimations (in Meters)
Img_1 and Img_2 Img_1 and Img_3 Img_1 and Img_4 Img_1 and Img_5 Img_1 and Img_6 Img_1 and Img_7 Img_1 and Img_8 Img_1 and Img_9

Daytime Dataset 14.69 13.65 13.67 13.5 13.2 13.19 13.30 13.37
Nighttime Dataset 17.12 15.71 14.41 11.56 11.83 11.99 12.16 12.2

Table 2: Reference to First Image, Farther Street Light Distance Estimations (in Meters)
Img_1 and Img_2 Img_1 and Img_3 Img_1 and Img_4 Img_1 and Img_5 Img_1 and Img_6 Img_1 and Img_7 Img_1 and Img_8 Img_1 and Img_9

Daytime Dataset 32.02 30.09 29.5 28.71 27.38 27.65 28.29 28.46
Nighttime Dataset 49.95 40.94 32.86 27.15 30.76 27.65 28.02 27.98

center of the light is the feature for my tests. So, I took images in five foot increments away from the light
(e.g. 5, 10, 15, . . . , 90, 95, 100), and then recorded XL and XR of each image. However, I noticed a (lack of
a) trend when recording these values. Calculating XL and XR and subtracting XR from XL (e.g. XL - XR) is
actually calculating the disparity. I observed that when the images are taken from afar, human error will affect
this disparity measurement; the differences in disparity between farther distances (e.g. 90, 95) will be mere
pixels; human error from manually extracting the column pixel values in GIMP will completely mess that up.
As a result, I realized that my proposed depth estimation study with ground truth depth distances was also
a flop; in the real world, we should expect street lights to be between 10-30 meters away from the camera
(100 feet is about 30 meters), and I realized that this (manual) study I proposed would do me no good. So
instead, I relied on the original dataset from early on in the quarter, as shown in Figure 2, to complete my
measurement study.

As a result, most of my milestones were incomplete, and semi-completed my depth estimation study pro-
posed in my milestone report; image rectification and GPS coordinates were not touched. That being said,
after chatting with Ben, I have some future directions on how to do things the right way.

5 Challenges

I encountered many challenges throughout this quarter, all of them being unexpected throughmy own naivete.
In this section, I will go through all of the challenges I encountered unexpectedly and personally as well.

5.1 Coincidentally Right

After speaking with Ben, I found that all of my initial results were incorrect – for about a month, I led myself
down the wrong path, thinking that I was on the right track. The results from Tables 1-4 show the depth
estimations from pairs of images. Overall, the values showed consistency, which was something that threw me
off.

Somehow, I did not realize the really high numbers for the farther street light depth estimation via the
consecutive images method in Table 4, but the estimations overall seemed consistent; while I did not measure
how these estimations compared to the ground truth originally, I found that statistics of error and percent

Table 3: Consecutive Images, Nearer Street Light Distance Estimations (in Meters)
Img_1 and Img_2 Img_2 and Img_3 Img_3 and Img_4 Img_4 and Img_5 Img_5 and Img_6 Img_6 and Img_7 Img_7 and Img_8 Img_8 and Img_9

Daytime Dataset 14.69 12.74 13.72 13.01 12.12 13.14 14.03 13.87
Nighttime Dataset 17.11 15.71 14.41 11.56 11.82 11.99 12.16 12.2
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Table 4: Consecutive Images, Farther Street Light Distance Estimations (in Meters)
Img_1 and Img_2 Img_2 and Img_3 Img_3 and Img_4 Img_4 and Img_5 Img_5 and Img_6 Img_6 and Img_7 Img_7 and Img_8 Img_8 and Img_9

Daytime Dataset 32.02 28.38 28.38 26.57 23.13 29.04 32.86 29.73
Nighttime Dataset 49.95 34.69 23.56 17.84 65.73 18.36 30.46 27.75

error would have further convinced myself that the method was working properly. Thus, while my preliminary
results appeared to be correct, they were wrong (or inaccurate) in the end.

I also realized that there were issues with this method regarding the focal length, as mentioned in Section
3. Coincidentally, I feel like a lot of things lined up, which tricked me into thinking that I knew what I was
doing when in reality I got really lucky; I was (once again, more or less) blindly coming up with the next steps
to solve.

5.2 Cameras on a Moving Vehicle

I massively underestimated difficulties with strapping this stereo camera system onto a moving vehicle, need-
less to say the difficulties that will occur when incorporating the other part of this research into this camera
system. The main issue that I realized with taking stereo images on a moving vehicle is camera synchronization
– images need to be taken at precisely the same time or else the pairs will be mismatched. Synchronization
between two off-the-shelf cameras that can plug into a board might be feasible, but synchronizing two mobile
phone cameras might be difficult; I have never done so, nor do I even know how I could do so. To accomplish
this with mobile cameras, we will likely need an Android application, which will take more time to develop. A
future approach might be to timestamp each image, and pair images with the closest time stamps. However,
I currently do not have a solution to this problem yet.

5.3 “Team. . . ?”

The subsection title is a joke towards modern gamers who might blame their teammates for failing/losing,
but I have no one to blame but myself. There are many things I was disappointed in, the main being that I
felt like I could have done more/better – there were certainly a lot of things I did not even try this quarter,
and I feel abashed by that. I could make excuses saying that I might have been slightly burnt out earlier in the
quarter, making me feel fearful of failure, but I know what I did and did not do in the end. Throughout the
entire quarter, I essentially tried reinventing the wheel, or tried learning how to reinvent the wheel – I should
have stuck more with relying on the expert (Ben), but I felt bad about reaching out to him all the time that
I decided to take matters into my own hands. Especially after my preliminary depth estimation results, I felt
confident with my knowledge and my ability to solve this problem. However, with paper submissions coming
up, I somehow became afraid to try things; I had homework solutions for my CSE 252A class that I could have
used for this class, but I was reluctant to do so! I honestly do not know what happened this quarter with me,
but I became obsessed with image rectification, yet had trouble just setting forth an approach and attempting
that approach.

So with the busyness of different paper submissions and the fear of failing, I felt like I accomplished very
little; the part that hurts me the most is that I felt like I had wasted more time, like I had done so my senior year
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of college. Computer vision has definitely been the bane of this entire project, and here I am still struggling
about a year and a half later. The future hope that I have is that Ben agreed to help me informally for now –
expert advice is necessary. I believe that the learning curve to become familiar with and explore more computer
vision concepts is a bit steep. Sure, I admit to the fact that I did not read a single chapter from either textbooks
in CSE 252A/B (oops), but I realized that that was probably one of the biggest mistakes I made as well.

From talking with Ben, I now have future directions, and I intend to catch up on some reading to fill in
many of the gaps that I am missing with my computer vision understanding.

6 Conclusion and Project Takeaways

In conclusion, I conducted a basic depth estimation study via stereo vision. I found that my results were
inaccurate, and that doing stereo vision the right way requires much more programming than manual work.
All the challenges that I faced can be found in Section 5. In the end, I felt like the entire project was a flop
– perhaps I should have followed exactly what the Columbia folks were doing, especially since I am in no
position to direct myself in what steps I should take next to solve this problem. But also, I felt that I definitely
got in over my own head – perhaps this was due to my preliminary results looking promising, but failing a lot
this quarter has taught me to take a step back and not get too over my own head.

For advice to future students who are taking 237D for research purposes or for doing a project alone –
something that really hit me in the end is that everyone had beautiful projects, and I had practically nothing.
It’s easier said than done, but I would say to not get discouraged. I was definitely discouraged a lot, but being
a one person team means that the end result will likely be less than what a team of 2-3 students produce, and
research will often produce negative results, which is something I am still getting used to.

Overall, I feel like I made okay use of my time this quarter – I definitely learned a lot about the problems
with stereo vision/stereo cameras for my project, so maybe that’s one of the main takeaways for myself. I also
learned a lot about myself in terms of what I’m capable of, what I’m capable of, and when I need to get help.
So overall, while I feel like this quarter has been a negative experience, it’s probably a positive experience in
reality for myself personally (I’m just having a hard time accepting that right now).
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