
Gao, Ferguson, Zhou 1

Xilin Gao, Zixiang Zhou, Emily Ferguson
CSE 237D
Professor Kastner
June 10, 2021

FishSense Final Report

1. Abstract
To modernize archaic fish research methods such as Catch-and-Release, the FishSense project introduces
underwater imaging and machine learning pipelines. Although fish length is essential for studying fish
populations, fisheries have been incurring the cost of ordering large quantities of fish and measuring them by
hand, one-by-one. We automate the measurement of fish length by aligning RGB and depth images captured
with a RealSense D455 camera. Automation will dramatically reduce the cost of measuring fish, allowing
fisheries to drastically scale up their research. Currently, our length detection algorithm calculates the length of a
fake fish from images taken in air within 8cm with 86.88% accuracy. Our framework filters noise from
underwater images and isolates the edges of fish for measurement.

2. Introduction
2.1 Background
Fish are a vital part of our global ecosystem; in order to protect and preserve fish populations, researchers must
be able to effectively study fish. Fish length is the main parameter that ichthyologists use to determine fish
reproduction, recruitment, growth and mortality [3]. Historically, a primary research method for fisheries has
been to order large quantities of fish and measure them by hand, one-by-one [3]. Not only is this approach
extremely invasive, but it also results in lost information about the fish. When fish are studied outside of the
ocean, ichthyologists cannot track the interactions between fish or between fish and their environment.
Moreover, measuring fish after catching them introduces potential sources of error such as the shrinking of fish
due to preservation techniques and inconsistencies in the physical measuring process [2]. Other techniques such
as catching a small sample of fish, measuring them, and releasing them (Catch-and-Release) as well as
encouraging fish to swim through measurement devices can cause damage to the fish and potentially injure them
[4]. Recently, machine vision approaches have attempted to revolutionize fish research [1]. However, the
required technology such as laser calipers and stereo camera rigs can be inaccurate and bulky. Thus, researchers
are seeking an efficient, non-invasive approach to measuring fish.

2.2 Proposed Solution
We present FishSense as a solution for capturing all characteristics of fish in their natural habitat. FishSense is a
diver-operated handheld system which encapsulates two cameras - an RGB camera and a RealSense D455 depth
camera [5] - inside of a water resistant casing for underwater imaging.

Figure 2.1: The handheld FishSense device encapsulates a depth camera and an RGB camera in a water
resistant casing.

The FishSense team has already developed a machine learning model for fish detection in underwater images.
Other goals of the project include developing an ML model for fish species classification and gathering
geometric and volumetric information about fish within their natural habitat in real time. The extra information
gathered from studying fish efficiently and accurately in their local environment will improve AI models used
for fish research, which will allow fisheries’ research to scale up dramatically.

Gao, Ferguson, Zhou 2

2.3 Our Contributions
The current FishSense solution lacks a pipeline for automatically detecting the length of fish from underwater
images. To accomplish this task, we first used images captured in air with a fake fish in order to test our length
detection algorithm. Then, we utilized various algorithms to process underwater images. Through filtering noise
from underwater images, we developed a framework to detect the edges of the heads and tails of fish from depth
images for measurement. Specifically, our contributions include the following:

1. Calibrating the camera - this step involves using a checkerboard model to undistort images.
2. Aligning the RGB and depth cameras - aligning the cameras is necessary in order to process

information from the rgb images (such as bounding boxes around detected fish) along with the
information from depth images in order to determine fish length.

3. Developing a length detection algorithm - our algorithm can detect the length of a fake fish from
images captured in air using aligned RGB and depth images and bounding boxes around the detected
fish.

4. Processing underwater images - we utilized various underwater image processing algorithms in order to
improve the quality of our underwater images.

5. Developing an edge detection framework - our edge detection framework takes in depth images and the
coordinates of bounding boxes around fish and returns the coordinates of the edges of the head and the
tail of the fish which alongside with depth information can determine the length of the fish.

3. Technical Material
This section of the paper discusses the technical details of our contributions.

3.1 Calibration
Some pinhole cameras have distortion and make the images unreal, e.g. straight lines become bulged out. The
two most common distortions are radial distortion and tangential distortion.
radial distortion: tangential distortion:

combine them and get the distortion coefficients:

To get the distortion model and coefficients, we need some additional information, like the intrinsic matrix and
extrinsic matrix. Intrinsic matrix is unique and unchanged to a camera once the principle points (x0 , y0) and
focal length (fx , fy) are fixed (in openCV, skew is set to 0), so that it can be reused. Extrinsic matrix relates to the
rotation and translation matrices. Once the camera pose changes, the extrinsic matrix will change accordingly.
To find the parameters, a well-defined pattern, e.g., a checkerboard, is required. The corners in the checkerboard
are known in both pixel frame and world frame. The way of calibration openCV used [8] is based on Dr. Zhang
[9]. Then, we would be able to undistort the image.

3.2 Alignment of RGB image and Depth image
Thanks to the built-in function from the RealSense library [10], we were able to transfer between 2D pixel frame
and 3D space, between color frame and depth frame, or directly use an aligned frame set.

Figure 3.1: Transformation of Color Camera and Depth Camera
3.2.1 2D pixel -> 3D space
Given pixel coordinates and depth in an image with no distortion or inverse distortion coefficients, compute the
corresponding point in 3D space relative to the same camera
static void rs2_deproject_pixel_to_point(float point[3], const struct rs2_intrinsics * intrin, const float pixel[2],

Gao, Ferguson, Zhou 3

float depth).
3.2.2 3D space 1 -> 3D space 2
Transform 3D coordinates relative to one sensor to 3D coordinates relative to another viewpoint
static void rs2_transform_point_to_point(float to_point[3], const struct rs2_extrinsics * extrin, const float
from_point[3]).
3.2.3 3D space -> 2D pixel
Given a point in 3D space, compute the corresponding pixel coordinates in an image with no distortion or
forward distortion coefficients produced by the same camera.
static void rs2_project_point_to_pixel(float pixel[2], const struct rs2_intrinsics * intrin, const float point[3])
3.2.4 How to do RGBD alignment by utilizing the three functions above?
Generate color stream and depth stream separately, then use a point to point mapping that is to map a depth pixel
to a color pixel.

First, we would like to transfer from depth 2D pixel Pu,v
d, (u,v,z)T, to depth 3D space Pdc, (x,y,z)T, where Kd

-1 is
the inverse intrinsic matrix of depth camera.
Pdc = Kd

-1 Pu,v
d

Second, we would like to transfer from depth 3D space Pdc, (x,y,z)T, to color 3D space Pcc, (x’,y’,z’)T. Actually
there are two steps here, first transfer from depth 3D space Pdc, (x,y,z)T, to world coordinate Pw, (X,Y,Z,1)T, then
transfer from world coordinate Pw, (X,Y,Z,1)T, to color 3D space Pcc, (x’,y’,z’)T, where Tw2d

-1 is the inverse
extrinsic matrix for depth camera, and Tw2c is the extrinsic matrix for color camera.
Pw = Tw2d

-1 Pdc

Pcc = Tw2c Pw

Combine the two equations above, we get:
Pcc = Tw2c Tw2d

-1 Pdc = Td2c Pdc

Third, we would like to transfer from color 3D space Pcc, (x’,y’,z’)T, to color 2D pixel, Pu,v
c, (u’,v’,z’)T, where

Kc is the intrinsic matrix of the color camera.
Pu,v

c = Kc Pcc

3.2.5 Another way to do alignment
This approach is simpler, that is to create an align filter alignment between the depth image and the RGB image.
In this way, we first create an aligned frameset and then get color and depth frames.
3.2.6 After Alignment
Our main goal is to get the length, so after we align RGBD images, we can get the X and Y coordinates in the
world coordinate with corresponding Z coordinates. By using such points from head and tail, we can then get
the real length of a fish. Here we would do the 2D pixel -> 3D space transfer again for the color camera, then the
Euclidean distance between such two points is the fish length.

3.3 Length Detection Algorithm

Gao, Ferguson, Zhou 4

Our length detection algorithm computes Euclidean distance between two points on the fish in three dimensions
(taking into account the depth information). The points on the fish are chosen using the bounding box around the
entire detected fish. We choose points near the edges of the bounding box as the head and tail of the fish. We test
our algorithm on 75 images of a fake fish taken in air.

Figure 3.2: Each red dot represents the calculated metric length of the fake fish for a given image. The
blue line indicates the true metric length of the fake fish. After removing outliers, we see that we can
calculate the metric length of the fake fish within 8cm with 86.88% accuracy.

3.4 Color correction
The acquisition of underwater optical imaging faces more challenges than that in the atmosphere, whereby
degradation is usually caused by strong absorption and scattering. Because of the wavelength dependence of
light attenuation, the shorter wavelengths (green and blue colors), can reach greater depths under the water than
the longer wave-lengths (red color) which vanish rapidly after 4-5 m, leading to images with a typical bluish or
greenish tone. [7]
3.4.1 Color transfer
The main goal of color transfer is to adjust the color characteristics of the source image according to the target
image. There is a strong correlation between R, G, B channels, so it is really difficult to change the color while
in the meantime changing the three channels. Therefore, the idea is to find a way that the channels are
uncorrelated, that is, orthogonal color space. The authors recalled the lαβ color space proposed by Ruderman. at
el. The three axes are orthogonal, which means that changing either of them will not affect the other two, hence
it is better to maintain the natural performance of the original image. [16]

The main idea is to first transfer color in BGR mode to LAB mode, then perform color transfer, and finally
transfer from LAB mode back to BGR mode. Luckily, openCV has built-in functions for the color mode
transformation. The algorithm for color transfer are as follows:

1) Read in source image and target image (BGR mode), i.e., source[3], target[3].
2) Transfer the images to LAB mode, i.e., sc[3], tc[3].
3) Calculate the mean and standard deviation for each of the LAB channel for the images, i.e., s_mean[3],

s_std[3], t_mean[3], t_std[3].
4) For each of the LAB channel (i = 0, 1, 2):

rc[i] = (sc[i]-s_mean[i])*(t_std[i]/s_std[i])+t_mean[i]
5) Transfer the result image rc to BGR mode, i.e., result.
6) Write back the result image, show the source, target, and result image.

Note: pay attention to the shape of the images. Say the source image in LAB mode is of size r*c*3, the target
one in LAB mode is of size m*n*3, mean and standard deviation for each image is of size 3*1. Then for the
calculation and to maintain high speed (by vectorization instead of using multiple loops for each pixel and each
channel), we would like to broadcast 3*1 to r*c*3, which is to create an r*c*3 matrix full of ones. Then multiply
each channel by the corresponding mean or standard deviation.

The whole process is as follows:
1) RGB->XYZ: XYZ->LMS:

combine these two steps to: RGB->LMS:

Gao, Ferguson, Zhou 5

2) get the logarithm:

3) LMS->lαβ:

4) subtract the mean from the data points 5) scale by standard deviation
(< >means the average mean): (s:source, t: target, σ: standard deviation):

6) lαβ->LMS: 7) LMS->RGB:

3.4.2 Dehazing
The problem proposed in the paper [11] is dehazing, which can restore the color and visibility of the image, and
also utilize fog density to estimate the distance of the object. These can be important applications for computer
vision, e.g., 3D reconstruction & identification. Even though the paper was proposed a little bit earlier, it is still
simple and efficient compared to nowadays when researchers often use the way of deep learning or machine
learning.
The authors paid attention to the characteristics of the haze-free images. In haze-free images, there will be
shadows, or pure/black objects in every local area. Therefore, for every local area, at least one color channel will
have rather low values.This statistical low is called Dark Channel Prior. Intuitively, Dark Channel Prior thinks
there are always some dark objects in every local area.
Since the haze is always gray and white, once the image is affected by the haze, those objects that should be
bark will become gray and white. What is more, by the scale of gray and white, the authors were able to know
the density of the haze and further estimating the distance of the object.

The definition of dark channel is: where J c is a color channel of J and Ω(x) is a
local patch centered at x, and J dark is the dark channel of J. The patch’s transmission is

, where A is the global atmospheric light, ω here represents the proportion of
how much haze would be removed. The reason for not setting ω to 100% is due to making the scene real and
practical with a little proportion of haze and dust from human’s eyes. In the paper the authors set it to 0.95, but
in our real program, we set it to 0.8, 0.6, or 0.4 according to the proportion of pixel value that was under 50 in

the histogram. Then the final formula of dehazing would be: . Here picking the maximum
of t(x) and t0 is to set a lower bound of the transmission, where t0 is set to 0.1. Another difference between our
program and the paper is that, in the paper, the authors used a local region of 15-pixel wide, but this could cause
the problem of obvious edges between blocks, so we changed to use the whole image. Although the problem
discussed in this paper is in air, the idea of Dark Channel Prior is still applicable for underwater scenarios.

3.5 Noise Filtering
3.5.1 HE (Histogram Equalization)

Gao, Ferguson, Zhou 6

Histogram Equalization is a computer image processing technique used to improve contrast in images, which is
achieved by effectively spreading out the most frequent intensity values. This method will enhance the contrast
of different color pixel dramatically. [17]
3.5.2 CLAHE (Contrast limited adaptive histogram equalization)
Ordinary AHE will have problems of overamplifying the contrast in close-related regions of the image, while in
these regions, the histogram is highly concentrated. Hence, AHE may raise the noise in the near regions. To
solve this, Contrast Limited AHE (CLAHE) comes, which is a variant of adaptive histogram equalization and
the contrast amplification is limited, so as to reduce this problem of noise amplification. [12]
3.5.3 GC (Gamma Correction)
Gamma Correction mainly controls the brightness of the image. It is formed by a non-linear function used to
encode and decode luminance or tristimulus values in video or still image systems. It has the following
power-law expression:

Images taken underwater will always face problems like too bright or too dark. We will use 𝛾 < 1 for gamma
compression process and 𝛾 > 1 for gamma expansion. [18]
3.5.4 RGHS (Relative Global Histogram Stretching)
This idea was first illustrated in paper Shallow-Water Image Enhancement Using Relative Global Histogram
Stretching Based on Adaptive Parameter Acquisition [13].
Histogram stretching is adopted to the underwater shallow images that can provide a better pixel distribution of
the image channels to the whole dynamic range and thus improve the image contrast. A linear contrast
stretching function following is used to achieve the idea:

where and are the input and output pixels intensity values, respectively, a, b and c, d represent the𝑝
𝑖

𝑝
𝑜

minimum and maximum intensity of the input image and the targeted output images, respectively. In a global
stretching, c and d are constant and often set to 255 and 0 respectively; a and b are selected at 0.2% and 99.8%
in the whole histogram of the original image.
In most of shallow-water images, the histogram of red light is focused in such values [50, 150], while G channel
and B channel have the most numerical concentration in the range [70, 210]. This indicates that histogram
stretching should be sensitive to channels. Thus we can rewrite the stretching function to be:

where and are the input and output pixels, respectively, and , , , are the adaptive𝑝
𝑖𝑛

𝑝
𝑜𝑢𝑡

𝐼
𝑚𝑖𝑛

𝐼
𝑚𝑎𝑥

𝑂
𝑚𝑖𝑛

𝑂
𝑚𝑎𝑥

parameters for the before and after stretching images, respectively.

3.6 Edge detection
We have developed a framework to detect the edges of the heads and tails of fish from the depth image of the
fish.
3.6.1 Inputs
The framework takes in a depth .csv file as well as the coordinates of bounding boxes around detected fish.

Figure 3.3: The detected fish is indicated by the required coordinates of a bounding box around the
fish. The coordinates required include the minimum x and y coordinates (Lower x and Lower y) as well
as the maximum x and y coordinates (Upper x and Upper y).

3.6.2 Depth Image Processing
The depth .csv file is first converted to a .png image file for processing. Then, the framework uses the
coordinates of bounding boxes to isolate the depth information of fish. Only the depth information of fish is kept
in the depth image; all other pixels of the image are set to zero to produce a significant contrast between fish and
background in the depth image.

https://en.wikipedia.org/wiki/Relative_luminance
https://en.wikipedia.org/wiki/CIE_1931_color_space#Tristimulus_values
https://en.wikipedia.org/wiki/Video
https://en.wikipedia.org/wiki/Still_image

Gao, Ferguson, Zhou 7

Figure 3.4: The depth information of the fish from the depth image is kept, while the depth information
of the background in the image is set to 0 to produce a strong contrast.

3.6.2 Edge Detection
The processed depth image is passed through a Gaussian Blur and Canny Edge Detection algorithm [6] in order
to detect the edges of the fish in the image. The bounding box coordinates are then used to find the coordinates
of the edges of the head and the tail of the fish. Along with the preserved depth information of the fish, these
coordinates can be used to detect the length of the fish.

Figure 3.5: The coordinates of the edges of the head and the tail of the fish are returned by the edge
detection algorithm. The selected edges of the head and tail are highlighted in the produced edge
detection image.

4. Milestones
4.1 Original Milestone Schedule

Gao, Ferguson, Zhou 8

Figure 4.1: The initial schedule by which we planned to complete our milestones.

4.2 Changes to Milestones
Our projected milestones were pushed back approximately one week. In the middle of the quarter, we adjusted
our schedule so that each milestone was to be completed one week later. We also adjusted our milestones and
deliverables to use underwater images. While we were able to complete image processing with underwater
images, we had to revert to using noisy images captured in air for length detection.
4.2.1 Difficult Setup
We ran into various issues in the beginning of the quarter with performing the length detection, including
calibration concerns with the RealSense camera. We also had to overcome issues regarding aligning the depth
camera and the RGB camera. We anticipated in our initial risk assessment that we might run into issues with the
hardware such as calibration and with aligning the RGB and depth images; the difficulty of the setup tasks
pushed our planned schedule back.
4.2.2 Fish Length Detection Technique
Instead of initially using bounding boxes around entire fish, we explored a different approach to simulate the
natural process of measuring fish from head to tail; we labelled hundreds of images by head and tail of fish in
order to create separate bounding boxes around heads and tails rather than one bounding box around the entire
fish. However, the head and tail detection did not work with the FishSense’s team’s fish detection pipeline, as
the model would erroneously detect heads as tails and vice versa. Thus, we lost time trying this approach and
reverted to our original method of using bounding boxes around the entire fish.
4.2.3 In-Air Versus Underwater Images
In our initial milestones in our project specification, we anticipated that we would only be able to perform length
detection on moderately noisy images in air due to an underwater calibration issue that the E4E FishSense team
has been facing. However, in the middle of the quarter, we thought that we might get to work with some
underwater images due to the E4E team’s progress. Until late in the quarter, we did not have any underwater
images to work with. When we did obtain some underwater images, we were able to use them to test our noise
filtration. However, due to a calibration issue with the cameras underwater, we were not able to align the RGB
and depth images for length detection. Thus, we have had to revert to our original plan of detecting length with
only images captured in air of a fake fish. Yet, we have been able to test the underwater image processing
techniques with images captured underwater. We have built a framework described in this report that has been
tested on noisy images captured in air, and the FishSense team should be able to use it on underwater images
once they have solved their calibration issue and they have collected more underwater images of fish.

4.3 Milestones Completed
4.3.1 Length detection algorithm
We completed this milestone by doing research on various length detection techniques and sharing thoughts
between each other. We tried two algorithms - a pinhole camera model algorithm [14] and an algorithm to find
Euclidean distance between heads and tails - and decided to move forward with the Euclidean distance
algorithm as it was more accurate.
4.3.2 Calibration
We used two different approaches to calibrate the camera, including calibration by hand using openCV and
calibration using the RealSense SDK tools [15]. The details of these algorithms are discussed in Section 3.1.
4.3.3 Bounding box labeling
We labelled the heads and tails of hundreds of images of our test fish in order to pass these images into the fish
detection machine learning model to detect head and tails of fish rather than entire fish.
4.3.4 RGB and depth image alignment
We aligned the RGB and depth images as described in Section 3.2.

Gao, Ferguson, Zhou 9

4.3.5 Length detection implementation
We implemented our Euclidean distance algorithm with the completed RGBD alignment in order to detect fish
length and finish our MVP.
4.3.6 Underwater image processing research
We found multiple different algorithms and tested them with online underwater images.
4.3.7 Underwater image processing implementation
We tested our image processing algorithms with our own images captured underwater.
4.3.8 Noise filtration combined with pixel length detection
We combined our Canny Edge Detection algorithm with a depth image processing algorithm in order to
calculate the pixel length of fish.

4.4 Deliverables Completed

Week 7 Deliverable: Length detection algorithm succeeds
on air images with minimal noise Xilin Gao, Zixiang Zhou, Emily Ferguson

Week 9 Deliverable: Noise filtration algorithms succeed to
denoise the images underwater Xilin Gao, Zixiang Zhou, Emily Ferguson

Week 10 Deliverable: Fish pixel length detection combined
with Edge detecting for underwater Images Xilin Gao, Zixiang Zhou, Emily Ferguson

Above are the major deliverables we have for this quarter. Basically we completed our plan at the beginning of
the quarter. The only difference is that we didn’t achieve the fish length detection for all underwater images but
just for the sample ones. The main reason and challenges we faced will be discussed detailly in the following
section.

4.6 Problems and Discussion
4.6.1 Setup
It is the first step that is troublesome. Our very first step is the hardware and software setup. It took us a long
time to prepare all the libraries and tools (realsense SDK and openCV), the hardware support (Intel realsense
camera D455 must use a 3.0 USB), and some compile errors due to wrong usage of makefiles, and get familiar
with the realsense camera. After the setup, we then encountered issues with RGBD alignment. The align filter
way was not possible as the depth frame and the color frame were not in the same size, so it would be very
difficult to recognize the corresponding pixels. The one-to-one mapping could thankfully work. We mapped a
depth pixel to a color pixel. We could not do it vice versa, as the depth value was corresponding to each depth
pixel. Later, with this “transformed” depth image and the original color image, we would finally be able to
calculate the length of a fish.
4.6.2 Lack of images
Due to the virtual setting as well as issues that the E4E team has encountered with their camera calibration, we
have faced a lack of diverse datasets to test our code with. However, we have collected some of our own images
and built our pipeline with the images that were available.
4.6.3 Underwater Length Detection
Unfortunately, we are currently unable to calculate the true metric length of fish from underwater images due to
an underwater calibration issue which prevents us from aligning RGB and depth images taken underwater.
However, our framework handles underwater images by filtering the depth information of the images before
finding pixel length, so it should be able to use underwater images to calculate fish length once the calibration
issue is solved.

5. Conclusion
In conclusion, our main goal was the automatic calculation of fish length. To realize this, we first set up the
camera in air, did calibration and the alignment of RGB images & Depth images, then calculated the length.
Then, we did some experiments of underwater image processing: color transfer & dehazing, different noise
filtration algorithms, and Guassian blur & canny edge detection. Our future goal is to automate the length
detection underwater when the underwater calibration issue is solved. Additionally, we hope to gather additional
data to test our framework with and fine-tune our algorithm to achieve better accuracy with more diverse data.

Gao, Ferguson, Zhou 10

Other future goals include: combining the whole system, making it real-time, and hopefully integrating the
system with a UI/UX interface.

6. References
[1]: Hao, M., Yu, H. and Li, D., 2015, September. The measurement of fish size by machine vision-a review. In
International Conference on Computer and Computing Technologies in Agriculture (pp. 15-32). Springer,
Cham.
[2]: Mous, P.J., Goudswaard, P.C., Katunzi, E.F.B., Budeba, Y.L., Witte, F. and Ligtvoet, W., 1995. Sampling
and measuring. In Fish Stocks and Fisheries of Lake Victoria. A handbook for field observations (pp. 55-82).
Samara Publishing Ltd.
[3]: Rahim, M., Abdullah, N., Amin, I., Zakaria, M., Man, M. and Othman, N., 2010. A new approach in
measuring fish length using FiLeDI framework. IAJIT First Online Publications.
[4]: Tillett, R., McFarlane, N. and Lines, J., 2000. Estimating dimensions of free-swimming fish using 3D point
distribution models. Computer Vision and Image Understanding, 79(1), pp.123-141.
[5]: Anon, 2021. Introducing the Intel® RealSense™ Depth Camera D455. Intel® RealSense™ Depth and
Tracking Cameras. Available at: https://www.intelrealsense.com/depth-camera-d455/ [Accessed June 9, 2021].
[6]: FienSoP, FienSoP/canny_edge_detector. GitHub. Available at:
https://github.com/FienSoP/canny_edge_detector [Accessed June 9, 2021].
[7]: Min Han, Zhiyu Lyu, Tie Qiu, and Meiling Xu, A Review on Intelligence Dehazing and Color Restoration
for Underwater Images, 1820-1832, IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS:
SYSTEMS, VOL. 50, NO. 5, MAY 2020
[8]: OpenCV Camera Calibration: https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
[9]: Zhengyou Zhang, A Flexible New Technique for Camera Calibration, Microsoft Research
[10]: Intel Realsense Github, librealsense2/rsutil.h:
https://github.com/IntelRealSense/librealsense/blob/master/include/librealsense2/rsutil.h
[11]: Kaiming He, Jian Sun, Xiaoou Tang, Single Image Haze Removal Using Dark Channel Prior, 1956-1963,
978-1-4244-3991-1/09/$25.00 ©2009 IEEE
[12]: G. Yadav, S. Maheshwari and A. Agarwal, "Contrast limited adaptive histogram equalization based
enhancement for real time video system," 2014 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), 2014, pp. 2392-2397, doi: 10.1109/ICACCI.2014.6968381.
[13]: Dongmei Huang, Yan Wang, Wei Song, Jean Sequeira, Sébastien Mavromatis. Shallow-water Image
Enhancement Using Relative Global Histogram Stretching Based on Adaptive Parameter Acquisition. 24th
International Conference on Multimedia Modeling - MMM2018, Feb 2018, Bangkok, Thailand.
ffhal-01632263f
[14]: Principles of Pinhole camera model:
https://threeconstants.wordpress.com/tag/pinhole-camera-model/
[15]: Dynamic Calibration User Guide for Intel® RealSense™ D400 Series:
https://www.intel.com/content/www/us/en/support/articles/000026723/emerging-technologies/intel-realsense-tec
hnology.html
[16]: Erik Reinhard, Michael Ashikhmin, Bruce Gooch, and Peter Shirley, Color Transfer between Images,
34-41, 0272-1716/01/$10.00 © 2001 IEEE
[17]: W. Zhihong and X. Xiaohong, "Study on Histogram Equalization," 2011 2nd International Symposium on
Intelligence Information Processing and Trusted Computing, 2011, pp. 177-179, doi: 10.1109/IPTC.2011.52.
[18]:Rahman, S., Rahman, M.M., Abdullah-Al-Wadud, M. et al. An adaptive gamma correction for image
enhancement. J Image Video Proc. 2016, 35 (2016). https://doi.org/10.1186/s13640-016-0138-1

https://github.com/IntelRealSense/librealsense/blob/master/include/librealsense2/rsutil.h
https://threeconstants.wordpress.com/tag/pinhole-camera-model/
https://www.intel.com/content/www/us/en/support/articles/000026723/emerging-technologies/intel-realsense-technology.html
https://www.intel.com/content/www/us/en/support/articles/000026723/emerging-technologies/intel-realsense-technology.html

