
Barrl, An Automated Bartending System

Erik Delanois
Computer Science and Engineering
University of California, San Diego

jedelanois@gmail.com

Gabrielle Evaristo
Computer Science and Engineering
University of California, San Diego

gevarist@ucsd.edu

Ted Schelble
Computer Science and Engineering
University of California, San Diego

eschelbl@ucsd.edu

Abstract

The COVID-19 pandemic in 2020 accelerated the need for contactless processes
and experiences. The isolation of the pandemic created demand for safe but social
interactions. To this end, we designed Barrl, an automated bartending system that
allows patrons to order, pay, and pour their own drinks. We designed this system
using a wine barrel body and a series of configured electronics in conjunction with
a Raspberry Pi microcontroller. Experiments show that Barrl can produce 34 drinks
an hour. From these results, we make the case for bar businesses to adopt a hybrid
approach of human and automated bartenders to optimize revenue and patron wait
times.

1 Introduction

For as long as there has been civilization, people have been coming together to share food and drinks.
Many of today’s modern conveniences have made it easier to create these social gatherings, but certain
aspects of this experience have been negatively impacted by the contemporary way of socializing.
Today, many people gather for events in public restaurants and bars. This has greatly improved the
comfort of organizing engagements as the venue, food, and drink preparation can all be outsourced,
requiring less effort from guests. However, as with all conveniences, there are drawbacks. Having
to share venue space with dozens, and potentially even hundreds, of other patrons causes problems
for both customers and establishment employees. With high volumes of people, crowds and long
lines are inevitable. This can be an issue at restaurants, but is particularly evident at bars and venues,
where customers need to stand in line to order food and drinks. Customers can be faced with multiple
long waiting cycles for every round of beverages they order and incur additional wait times to pay
and close tabs, all detracting from time they could be spending with their party. According to a study
by Tails cocktails, the average Brit waits up to 12 hours a year for cocktails in bars in the United
Kingdom [1]. Additionally, over a quarter have admitted to leaving for another bar due to excessive
waiting. This amounts to easily lost revenue for businesses as customers are less likely to return.
On the other hand, the need to juggle dozens of customers speaking simultaneously to order all at
once can stress employees and limit the cash flow of the venue. Throw in a global pandemic, and
these aforementioned issues are all exacerbated. Adding the need for social distancing, occupation
limits on customers and staff, and limitations on business hours essentially destroy the current system.
Customers are frustrated as their social lives are severely impacted, while businesses lose out on
much needed revenue. Under these circumstances, there is little customer patronage at restaurants
and bars. When there are customers, both customers and employees have to deal with the emotional

Preprint. Under review.

stress of potentially coming in contact with unknown people and becoming infected with a deadly
virus.

Looking at the problems customers and venue employees face both within and outside of a global
pandemic setting got our group thinking . . . there has to be a better way. Would it not be nice if people
could enjoy their social events without having to take time consuming excursion trips to the bar and
away from their party? Would it not be nice if venues did not have to throttle their revenue by having
a limited number of bartenders assist only a handful of customers at a time? Would it not be nice if
people could order a beverage in the middle of a pandemic and not worry that the person serving
their drink could infect them with a deadly virus? These problems led our group to invent Barrl, a
compact fully automated bartending system that enables users to browse, order, pay for, and pour
drinks contactlessly through a safe and stylish web interface. Having one or multiple Barrl systems at
a venue can significantly cut down on drink wait times, while providing business owners the ability to
have a larger bandwidth in their drink serving abilities thereby increasing revenue. Another beneficial
consequence of this automated product is that it does not require any human-to-human contact to
operate, making it an ideal and even essential device for restaurants and bars during a pandemic.

Barrl has a number of competitors on the market. Products such as Bartesian [2], Somabar [3], and
the Hamilton Beach COT2000 [4] are bartending systems that also attempt to ease the process of
making cocktails, but all have severe shortcomings. Bartesian and Somabar are low grade consumer
models that have a very low drink capacity and are intended for single person in home use. More
industrial level competitors such as the Hamilton Beach COT2000 are expensive, only offer a limited
number of drinks at a time, still require a bartender to operate them, and offer no customer payment
portal. Barrl is the only sizable and scalable solution that provides owners the ability to create flexible
and customized menus and customers the ability to order and pay for their own beverages. Our team
was able to implement those functional features while also delivering a sleek web application and
physical product.

2 Technical Material

2.1 Project Development

2.1.1 Development Roles

To go about building Barrl as a team of three, we elected to maintain equal roles as team members
and in respect to the division of labor. In practice, this entailed all three of us working together to
complete the physical fabrication aspects of our project as we all had varying levels of experience
with both the hardware and software aspects of our project. In terms of software, we each took the
lead on a different area of development. Erik built the embedded code that is responsible for data
management and API services for interacting with ingredients, the menu, and pouring drinks. Ted
built the owners portal, a secure front-end interface for connecting to the embedded code to manage
the menu and ingredients. Gabrielle built the customer portal that allows customers to view the menu,
edit their shopping cart, purchase an order of drinks, and pour them via embedded code functions.
While each of us took primary responsibility over a software area, we all assisted each other outside
of our primary focus (e.g. Erik helping Ted with a pesky Python bug, Ted systematically testing the
customer front-end, and Gabrielle adding front-end notifications to all relevant areas of the web app).

As an additional note, when issues or discussions arose, we handled any disagreements by impromptu
Zoom sessions and messaging via Slack to arrive at a consensus. In the rare cases that two team
members did not agree on something, we took an informal vote and the majority ruled.

2.1.2 Hardware and Software Tools

The following table summarizes each hardware tool, their role in the project, and their price:

2

Hardware Tools Role in Project Cost
Raspberry Pi 4 Microcontroller that controls the pumps and manages

the Flask front-end web server
$35

8 Channel Relay Controls the Pi’s signals and triggers the pumps $9
12V Switching Power Sup-
ply

Powers the entire electrical system $14

5V Regulator Steps the voltage down to 5V for the Pi $8
Power Distribution Board Divides the electrical power into individual circuits for

each pump
$17

Peristaltic Pumps Transfers liquids from the bottles to the funnel $70 for 6
High Voltage / Current
Rated Diode

Prevents current from traveling backwards through the
system when the system is turned off

$6 for 10

Food-Grade Tubing Allows the liquid to flow from the bottles, up to the
pump, and through to the funnel

$8

Kitchen Funnel Allows the tubes to feed through to one opening $9
Wine Barrel Houses the dispensing unit, tubes, electronics, and bottle

storage, and is the main physical component that owners
and customers interact with

$75

Table 1: Main hardware tools

The two main software components include the Raspberry Pi firmware and the front-end web server.
For the web server, we hosted Flask (a lightweight web development framework that functions like a
REST API) on the Pi. Flask allowed us to mimic a web server so that users on the same WiFi network
as Barrl can interact with the device. We used Python and JavaScript to control the logic and CSS
and HTML to create an aesthetic interface for better user experience.

2.2 Process

Figure 1: High-level system diagram

2.2.1 Wine Barrel

After researching and sourcing all of our materials, we spent three straight days working together
in Gabrielle’s garage to design, cut, and build our box, modify the wine barrel, and assemble the
unit together. For owner ease, we cut through the backside of the barrel, creating a door that allows
owners to easily replace or add liquids. Atop the barrel’s body sits a customized wooden box that

3

houses the drink platform, liquid tubes, and electrical hardware. We partitioned the box into different
sections to prevent the accidental leakage of liquid onto the electronics. We also built a shelf that sits
within the barrel to keep the bottles closer to the dispensing unit, thereby shortening the needed tube
lengths, and added wheels with a wooden base to make Barrl mobile. Our finalized physical device is
shown in Figure 2.

Figure 2: Physical Barrl unit

2.2.2 Electrical Components

Our group put significant efforts in researching, locating, and ordering the proper electrical equipment.
As a result, we were able to obtain reliable, relatively high quality electrical components for a fairly
good price. The main electrical components are listed in Section 2.1.2. Once all of our components
arrived, our group performed many exploratory, and at times risky, tests to determine how specific
components operated as many of the units arrived without the proper schematics. Once we gained a
thorough understanding of all components, we connected and soldered the circuit accordingly. When
the circuit was completed and validated, components were fastened to a thin piece of plywood that
served as our motherboard as shown in Figure 3. We then placed the board inside the backmost
compartment of our top dispensing unit.

Figure 3: Electrical component board

4

2.2.3 Embedded Software

The embedded software is a central component that is leveraged by the front and back ends of
the web server. It is responsible for managing stored ingredient and menu data, validating menus,
and manipulating electrical hardware to pour drinks. We built the system with developer and user
scalability in mind. We split the code into three main services: Ingredient, Menu, and Pouring.
The Ingredient Service is responsible for implementing the functions that add, remove, and modify
different ingredients to the database. The Menu Service leverages the Ingredient Service to allow
owners of the device to create different drink menus based off of ingredients in the database, ensuring
all drinks are composed of valid liquids. We implemented additional compatibility functions within
the Menu Service to ensure that drinks displayed to the customer are compatible with the ingredients
currently on tap. Lastly, the Pouring Service is responsible for taking a drink from the menu and
sending proper instructions to the correct pumps to physically pour the drink.

Features of the embedded software include:

• Quick save utility functions to save any JSON compatible objects
• Ability to create, modify, and delete ingredients
• Utility functions to mark which ingredient is connected to what pump
• Ability to create, modify, and delete drinks from the menu
• Function that validates drink compatibility with the current ingredient database
• Function that validates drink compatibility with the current ingredients on tap
• Ability to pour drinks by their menu identification number
• Ability to pour all ingredients from a drink in parallel
• Mock Pi functions for development on non-Pi machines
• Pump cleaning functions that clear out the pumps for a specified amount of time

2.2.4 Owners Portal

For Barrl to be a useful product, there needed to be a portal for owners and bar staff to curate the
customer experience and manage Barrl’s inventory. Since the bar staff and management would be
responsible for stocking the unit and owning the menu, we decided to build a one-stop shop for
employees to reflect any changes to stock or ingredients and manage the venue’s customizable menu.
The resulting portal can only be accessed by a secure access code. Once authenticated, staff can add
ingredients to their inventory, manage existing ingredients, add new drinks to the menu, and manage
the existing menu. This portal serves to keep Barrl in a stable state as staff can use a simple front-end
interface to leverage the embedded code for different data actions. For example, staff could swap
in a new ingredient, like Tequila, which automatically enables drinks containing Tequila and other
available ingredients to be displayed on the menu. This way, staff can make quick and easy changes
on the fly that get reflected instantly for customers.

A consolidated list of the owners portal features include:

• Portal security so that it can only be accessed with a staff access code
• Mobile-friendly responsive design that staff can access via their phones
• Ability to add new ingredients to the existing inventory
• Ability to delete or modify depleted ingredients
• Ability to update Barrl’s knowledge of which ingredient is connected to what pump
• Ability to add new drinks and their makeup to the menu
• Ability to modify the existing menu’s drinks, names, descriptions, images, and prices

The interface for the owners portal is shown in Figure 4.

5

Figure 4: The left image is the admin login interface and the right image is the admin management
interface

2.2.5 Customer Portal

Figure 5: The left image is the menu interface and the right image is the pour portal interface

6

In addition to an owners portal, we implemented a portal that customers could interact with. To access
the interface, customers scan the QR code on the Barrl device, which reroutes them to Barrl’s online
website. From there, users can select drinks, view their subtotal, pay, and have their drink poured.
Our Flask application maintains customer sessions, such as the specific items in a customer’s cart.
Further, we designed an aesthetic, easy-to-use interface so that non-technical users can easily and
effectively navigate through the portal via their mobile phone. The menu and pour portal interface
are shown in Figure 5. As users interact with the front-end application, the API interacts with the Pi
for pouring drinks to create an all-in-one experience via the mobile app and the physical device.

Features that customers can expect when interacting with the portal include the ability to:

• Browse through the menu

• Add drinks to their cart

• Edit the quantity of items in their cart

• Remove items from their cart

• Add a promotion discount code at checkout

• Pay for their drinks via Google Pay, Apple Pay, or a debit/credit card

• Pour their drinks by pressing a button on the pour portal page

2.2.6 System Integration and Testing

In the final week of the quarter, our team integrated the disparate sets of software that we had been
working on. Since we had maintained an active GitHub repository (170 commits to date), our frequent
integrations eased and simplified the process. However, even with frequent communication via Zoom
and Slack, we had different mental models of how the necessary data would be managed and how
ingredients would be added, updated, and deleted in relation to drinks and the menu at large. When
Erik pushed his highly scalable code of managing ingredients and drinks, it did not match the logic
that Ted used for management in the owners portal. We agreed that Erik’s approach would yield a
superior product and Ted refitted the owners portal to make use of the services that Erik developed.

Once the entire code base was functional together in local environments on our computers, we met in
person to begin end-to-end testing. After pushing our latest code build to the Raspberry Pi within
Barrl, we tested all of the administrative and customer functionality. Everything worked as it had
on our local computers, a result of our repeated integrations on GitHub, local testing, and frequent
communication. We poured several different drinks to evaluate time and tasting for consistency, and
found that the slowness of our pumps actually yielded fairly consistent pours.

3 Milestones

As a team, we accomplished all that we set out to do. All milestones proposed in our Project
Specification, with slight tweaks mentioned in our Milestone Report, were successfully implemented.

3.1 Accomplishments

3.1.1 Wine Barrel Assembly

Accomplishment Person
Researched and ordered the barrel All
Created a door for the barrel to allow bottle storage access All
Built a shelf for the bottles to keep them closer to the dispensing unit All
Constructed the wooden box for the dispensing unit, electronics, and tubes All
Attached wheels to the bottom of the barrel for mobility All

7

https://drive.google.com/file/d/1EVD6QOt5FCV8oXLFFBacNQH3DFsEreA2/view?usp=sharing
https://drive.google.com/file/d/1EVD6QOt5FCV8oXLFFBacNQH3DFsEreA2/view?usp=sharing
https://drive.google.com/file/d/198idxQy72OK7B4M4ulGxXAlAY5sh-52L/view?usp=sharing

3.1.2 Configuration of Electrical Components

Accomplishment Person
Researched and ordered electrical components All
Initialized Raspberry Pi and confirmed basic code can be written to it Erik, Ted
Set up ssh for remote access to the Pi through a local internet connection Ted
Wired electrical components and ensured that pumps can successfully operate
with electricity

All

Housed electronics in the Barrl unit Gabrielle, Ted
Installed tubes and funnel Gabrielle, Ted

3.1.3 Embedded Software

Accomplishment Person
Initialized GitHub repository with base code Ted
Created JSON files to store the ingredients and menu All
Implemented the API’s for the Pi to control the different pumps Erik
Created code that allows the Pi to control specific amounts of each ingredient in
a drink via the pumps to a certain degree of accuracy

Erik

Created code that receives drink orders from the customer portal Erik

3.1.4 Owners Portal

Accomplishment Person
Initialized Flask application Ted
Created authentication for owners to allow access to non-customer related opera-
tions

Ted

Built the interface that allows owners to modify ingredients, drinks, prices, etc. Ted
Wrote code that allows modification of ingredients, drinks, prices, etc. Erik

3.1.5 Customer Portal

Accomplishment Person
Built the interface that customers can see and interact with Gabrielle
Wrote code that sends drink orders to the embedded code so that a drink order
actually triggers the Pi’s operations

Gabrielle

Integrated Stripe API to allow contactless drink payments Gabrielle

3.1.6 System Integration and Testing

Accomplishment Person
Integrated the embedded software and front end portals code All
Performed end-to-end testing to ensure that all components functioned as in-
tended

All

8

3.2 Challenges and Limitations

There were no significant challenges that our team was not able to overcome. With the COVID
pandemic going on, our team was only able to meet in person with all team members for 3 days at
the start of the quarter. Due to meticulous planning and the sourcing of all our materials, we were
able to complete the physical aspects of our project early on. Our focused strategy to achieve this
early allowed us to implement nice-to-have features that pushed Barrl from a proof of concept into a
real product with market potential.

Even though we achieved our proposed goals, there were some challenges and limitations that we
faced as team. These include:

• Different mental models of the system − While we successfully integrated our disparate
areas of work by the end of the quarter, we would have saved a lot of time if we explicitly
defined how each component integrated with one another.

• Needing significant physical space − Our team definitively lucked out by having Gabrielle’s
garage available as a workshop throughout the quarter. Without a dedicated space for
fabrication that also had tools, electricity, and Wifi, we would have really struggled to make
progress.

• Refrigeration − Currently, Barrl does not have an ice dispenser or any form of refrigeration
for the ingredients. We rely on a separate ice bucket in which customers have to manually
grab from before pouring their drinks. In hindsight, this is a limitation given how prevalent
and necessary ice is for most cocktail recipes.

• Still slower than a bartender − We set out to build a device that would help reduce wait
times. However, Barrl is still slower than the average human bartender; on average, it pours
a standard cocktail in 105 seconds vs. 20 seconds for a human bartender. Though this result
signifies that we would need 5 or more Barrl units to match one human bartender, it is worth
noting that Barrl excels where a human bartender struggles − drinks with a higher number
of ingredients. Since Barrl can pour from different bottles simultaneously, it is only limited
by the ingredient with the highest volume. A human bartender can pour more quickly, but
likely only one or two ingredients at a time. Therefore, when a drink has more than two
ingredients, Barrl gets relatively quicker at pouring than a human does.

• Remote work and different team member time zones − As mentioned previously, this chal-
lenge was not significantly problematic for our progress, but it did prove to be inconvenient
and difficult at times to schedule meetings that worked for the entire team. Working remotely
necessitated additional care with communication as much can be lost in translation over
Slack or Zoom.

4 Conclusion

Our team achieved the main goal of building a device that would allow customers to order, pay, and
pour their own cocktails. Our Barrl device is ready for use as a real-life product in a bar or social
event setting. Customers will be able to avoid crowds and lines at the bar, access Barrl’s web app via
scanning a QR code, browse the menu, pay without any human interaction or wait, and pour their
drinks themselves. On the administrative side, owners can manage their ingredients through the Barrl
door and electronically, via the owners portal, update their menu’s items and prices and divert traffic
from bartenders to Barrls. Ultimately, our core contribution is enhancing a customer’s experience of
purchasing a cocktail by putting the power to pay for and produce a drink in their hands. Customers
would wait less, pay less (as robots do not need tips), and enjoy the novelty of having their drink
poured at the press of a button. This utility is enabled by our physical Barrl unit in conjunction with
the public code repository that our team published for public usage in similar products or projects [5].
To aid future developers of automated bartending systems, we offer our front-end web application for
customers and managers, data management system for ingredients and drinks, and our embedded
code that allows drinks to be poured with a single function call. For potential future iterations of the
Barrl device, we identified several opportunities to remove limitations and increase Barrl’s utility:

9

• Increase the number of dispensable liquids − This is the most intuitive improvement that can
be made. Currently, the device is capable of dispensing six types of liquids as ingredients
for cocktails. The number of spirits and mixers can be expanded, thereby increasing the
number of beverages that can be created and poured.

• Reduce pour times − Presently, Barrl takes approximately a minute and 45 seconds to pour
a standard cocktail, limited by the time it takes to pour the needed ingredient with the most
volume. This is a reflection of our slow motors, which pump approximately 80 mL/minute.
Faster motors could improve pouring times.

• Build more Barrls − For a full proof of concept, we could test how a “fleet” of Barrl units
functioned together in practice with bar staff managing and restocking them. This could
also involve new functionality like a more robust inventory management system or live sales
reporting.

• Include a refrigeration and/or ice dispensing system − This is mentioned in Section 3.2.
• Build a cup dispenser − When a customer purchases a drink from Barrl, they must place

their cup in the dispensing unit. Future versions could develop a cup dispensing system that
would automatically and properly dispense and position a cup.

• Implement empty bottle sensing − With the proposed version, owners would have to
manually check for any empty bottles. Future versions of Barrl can tackle this problem by
utilizing sensors to detect when a bottle becomes empty.

5 References
[1] Morning Advertiser, Long queue times could drive customers away -

https://www.morningadvertiser.co.uk/Article/2019/11/08/Long-queue-times-could-
drive-customers-away-research-reveals

[2] Bartesian - https://bartesian.com/
[3] Somabar - https://www.somabar.com/
[4] Hamilton Beach COT2000 - https://budgetsupply.com/hamilton-beach-cot2000-cocktail-

dispenser-machine.html
[5] Barrl GitHub Repository - https://github.com/tschelbs18/barrl
[6] Barrl Project Wiki - https://github.com/tschelbs18/barrl/wiki
[7] Barrl Google Drive - https://drive.google.com/drive/u/1/folders/1snSKSgJmyOvtk9PzmkVp

TZoNSdSPx8OJ

10

	Introduction
	Technical Material
	Project Development
	Development Roles
	Hardware and Software Tools

	Process
	Wine Barrel
	Electrical Components
	Embedded Software
	Owners Portal
	Customer Portal
	System Integration and Testing

	Milestones
	Accomplishments
	Wine Barrel Assembly
	Configuration of Electrical Components
	Embedded Software
	Owners Portal
	Customer Portal
	System Integration and Testing

	Challenges and Limitations

	Conclusion
	References

