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Challenges in Applying Audio Classification Models to Datasets Containing
Crucial Biodiversity Information
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Abstract
The acoustic signature of a natural soundscape
can reveal consequences of climate change on
biodiversity. Hardware costs, human labor time,
and expertise dedicated to labeling audio are im-
pediments to conducting acoustic surveys across
a representative portion of an ecosystem. These
barriers are quickly eroding away with the advent
of low-cost, easy to use, open source hardware
and the expansion of the machine learning field
providing pre-trained neural networks to test on re-
trieved acoustic data. One consistent challenge in
passive acoustic monitoring (PAM) is a lack of re-
liability from neural networks on audio recordings
collected in the field that contain crucial biodiver-
sity information that otherwise show promising
results from publicly available training and test
sets. To demonstrate this challenge, we tested a
hybrid recurrent neural network (RNN) and con-
volutional neural network (CNN) binary classifier
trained for bird presence/absence on two Peruvian
bird audiosets. The RNN achieved an area under
the receiver operating characteristics (AUROC) of
95% on a dataset collected from Xeno-canto and
Google’s AudioSet ontology in contrast to 65%
across a stratified random sample of field record-
ings collected from the Madre de Dios region of
the Peruvian Amazon. In an attempt to alleviate
this discrepancy, we applied various audio data
augmentation techniques in the network’s training
process which led to an AUROC of 77% across
the field recordings.

1. Introduction
Anthropogenic activities that lead to catastrophes, such as
wildfires and deforestation, cascade into challenges in main-
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taining biodiversity in an ecosystem (Ward et al., 2020) .
The intersectionality between biodiversity loss and climate
change is becoming increasingly apparent leading to an in-
tergovernmental multidisciplinary workshop on the subject
matter (Otto-Portner et al., 2021). To properly understand
the ramifications of anthropogenic activity on wildlife popu-
lations, reliable and large-scale tools must be developed to
monitor biodiversity across various ecosystems.

Historically, field biologists surveyed wildlife populations
through techniques that are challenging to scale up such
as trapping individual specimens and monitoring feeding
sites (Lopez-Baucells et al., 2016; Welsh Jr. & Ollivier,
1998). A growing method amongst biologists and ecologists
involves deploying remote camera trap arrays to monitor the
population densities of large fauna over a large area (Tobler
et al., 2018; Norouzzadeh et al., 2018; Willi et al., 2019) .
New breakthroughs by researchers in the field of automated
image classification driven by neural networks have made
these camera trap arrays more practical by driving down the
amount of resources required to label and extract relevant
biodiversity information from the images collected (Tabak
et al., 2019; He et al., 2015).

Many indicator species such as insects, birds, amphibians,
and bats can reveal consequences of climate change on
ecosystems(Borges, 2007; Kim, 1993; Medellı́n et al., 2000;
Woodford & Meyer, 2003) . These species are oftentimes
too small or mobile for stationary camera trap arrays to
measure to any statistical significance. Passive acoustic
monitoring with low-cost open source audio recorders fills
this niche, as it enables detection of species such as cicadas
that are small and noisy (Hill et al., 2018). Audiosets from
these surveys are oftentimes impractical for human labeling
from a temporal standpoint. This challenge naturally leads
to the use of machine learning.

Many techniques derived from image classification translate
into the audio domain once the sounds have been converted
into spectrogram images (Kahl et al., 2021; Colonna et al.,
2016). One such neural network we have chosen to test
was designed for audio event detection with low-resource
training sets (Morfi & Stowell, 2018). This model is a
hybrid RNN-CNN model that consists of a 2d-convolutional
block that computes features from the audio that has been
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converted into a mel spectrogram, a recursive block that
computes features at each time step from the features of
neighboring time steps, a time-distributed dense block that’s
layers are applied independently of one another on each of
the time step features, and a max-pooling layer that pools the
predictions across all time steps to generate a global label for
a given sequence. We leveraged a Github repository called
Microfaune that encapsulates the neural network with ease-
of-use features such as pre-trained weights for the network.

In this paper, we compare Microfaune’s bird pres-
ence/absence capabilities across audio recordings of Pe-
ruvian birds taken from the crowd-sourced bird vocalization
database Xeno-canto combined with bird absent recordings
taken from the Google AudioSet ontology (Gemmeke et al.,
2017; Vellinga & Planqué, 2015) to field recordings col-
lected from the Peruvian Amazon. This will aid in determin-
ing what sort of challenges are to be expected by scientists
considering deploying neural networks on PAM field data.
We also demonstrate the efficacy of audio data augmenta-
tion techniques in the training of neural networks (Ko et al.,
2015) to improve a model’s generalizability across field
recordings labeled for bird audio.

2. Methodology
2.1. Deployment

We collected field audio recordings in two logging conces-
sions (Forestal Otorongo and MADERACRE) in Madre
de Dios, Peru, a biodiversity hotspot in southeastern Peru
(BROTTO et al., 2010). These logging concessions are
located in lowland Amazonian moist forest and are sustain-
ably managed under a Forest Stewardship Council (FSC)
certification. From June to September 2019, we deployed 35
Audiomoth devices along logging roads or inside unlogged
forest (6) . The Audiomoth devices were attached to tree
trunks at a height of approximately 2 meters (5) and were
set to record 1 minute every 10 minutes at a 384 kilohertz
sampling rate. In total, 31 devices successfully recorded
for approximately 1 month generating nearly 1500 hours of
audio.

To generate a test set from the field recordings, a smaller
stratified random sample was constructed by collecting a
random clip from each hour of the day from each Audiomoth
device. This technique left us with a representative subset of
the field recordings amounting to approximately 12 hours of
audio. The stratified clips from 16 devices were split up into
3 second segments (20 clips per recording) amounting to a
total of 7120 3 second clips. These audio clips were then
labeled for bird presence/absence resulting in a 3113/4007
split between the two classes.

To generate a test set from internet audio data, we scraped
Xeno-canto for a list of approximately 1000 species given

to us by an ornithologist familiar with Madre de Dios bird
species. From these variable-length audio clips, we selected
approximately 50 species we determined to be high priority
due to their abundance of available recordings and distinct
calls. We randomly selected 50 recordings from each of
these species. To make the model more robust with a wider
variety of species we randomly selected 2-3 clips from each
species in the list provided marked as “A” quality on Xeno-
canto. We combined these two Xeno-canto datasets together
amounting to 4774 bird-present recordings. To balance the
bird-present recordings, we scraped the Google AudioSet
ontology database for 4774 recordings from classes unlikely
to contain bird vocalizations.

2.2. Training

For reproducibility purposes, we retrained Microfaune’s
built-in model weights as a baseline with the DCASE 2018
competition datasets “freefield1010” and “warblr10k”. The
freefield1010 dataset contains 7690 field recordings from
around the world and the warblr10k contains 8000 crowd-
sourced smartphone audio recordings from the United King-
dom. These audio recordings were broken down into 10
second segments and divided into an 80/20 random split
between training and validation, respectively.

To create a new set of model weights that leverages au-
dio data augmentation, we used the same process as the
baseline model with the addition of alternative versions
of freefield1010 and warblr10k in the training process.
These augmented alternative versions included increasing
the speed by 10%, decreasing the speed by 10%, injecting
gaussian noise with a mean of 0 and standard deviation of
0.005, and injecting gaussian noise with a mean of 0 and
standard deviation of 0.1.

2.3. Testing

To vet the trained models on the test sets, we used Micro-
faune’s built-in audio clip global score functionality that is
equivalent to taking the maximum score from the model’s
multiple temporal predictions. We treat this as the model’s
prediction on the probability of at least one bird vocaliza-
tion existing within an audio clip. All of the audio was
normalized to have a sampling rate less than or equal to 44.1
kilohertz. All stereo recordings were converted to mono.
Both the ideal Xeno-canto/Google AudioSet and our hand-
labeled field recordings were given global score predictions
across both the baseline and data augmented models.
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Table 1. Summary of ROC Curves

Metric Baseline XC Data Baseline field data Augmentation XC data Augmentation field data

AUCROC TP/FP .95 .65 .98 .77
AUCROC Precision/Recall
Bird-present (Class 1) .96 .64 .98 .71

AUCROC Precision/Recall
Bird-absent (Class 0) .94 .66 .98 .78

Figure 1. Xeno-canto w/ baseline

Figure 2. Xeno-canto w/ data augmentation

Figure 3. Peru field recordings w/ baseline

Figure 4. Peru field recordings w/ data augmentation
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3. Results
To statistically compare the hand labels to the global scores,
we used ROC curves (1, 2, 3, 4) that are common tools
for measuring binary classifiers (Davis & Goadrich, 2006) .
Using Scikit-learn we examined the tradeoffs of increasing
the global score threshold for classifying an audio clip as
a bird-present (Class 1) true positive(1). We focused on
the relationships defined by the AUROC between true posi-
tive and false positive rates as well as the tradeoff between
precision and recall (5).

4. Conclusion
These results demonstrate how individuals interested in ac-
quiring biodiversity related information from their field au-
dio can be led on by promising results from neural networks
on ideal test sets that show metrics above 90% but may not
smoothly translate onto their recordings. This is evident
by the large differences in our ROC Curves. We observed
a 30% difference between the AUROC’s of the true pos-
itive/false positive curves of the Xeno-canto dataset and
field recordings. We also observed a 32% difference be-
tween the AUROC’s of the bird-present precision-recall
curves of the Xeno-canto dataset and field recordings. Data
augmentation with speed modulation and gaussian noise
injection appears to be a very simple method to reduce the
discrepancy between these two datasets as the difference
between the AUROC’s of true positive/false positive and
bird-present precision-recall curves come out to be 21% and
27% respectively.

5. Discussion
There are many potential factors that could be driving the
discrepancy between datasets scraped from the internet and
field recordings. The most clear factor comes in the form
of potential false positives in field recordings from various
fauna such as insects, frogs, and monkeys that are challeng-
ing to distinguish from bird vocalizations. In the future we
hope to implement a referee labeling process where each au-
dio clip is labeled by two humans and a third human makes
the final decision on any labeling discrepancy.

Many machine learning techniques exist that have the poten-
tial to improve the performance of neural networks on field
recordings that we are interested in trying. One technique
known as active learning involves integrating data acquisi-
tion and the training process together through unsupervised
machine learning methods to assess which clips yield the
greatest representation of the underlying dataset (Dasgupta,
2011) . This technique has been used to drastically reduce
the amount of data required to achieve the same results on
camera trap models (Norouzzadeh et al., 2019) . Another
technique referred to as transfer learning involves taking
lower layers of a pre-trained neural network and training the
final layers on user training sets that bias the model towards
said dataset. This has the benefit of reducing computational
time and the amount of labeled data dedicated to training
(Pan & Yang, 2010) . These techniques are worth pursuing
as the combined power of PAM and neural networks has
the potential to be invaluable in measuring biodiversity loss
driven by the climate crisis.

Additional Materials
Audiomoth Deployment Photos

Figure 5. Example Audiomoth Attachment

Figure 6. Madre de Dios Deployment Map
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Precision and Recall Statistical Metrics

Precision =
(TruePositiveCount)

(TruePositiveCount) + (FalsePositiveCount)

Recall =
(TruePositiveCount)

(TruePositiveCount) + (FalseNegativeCount)

Project Github Repository (private for now for review
process)

https://tinyurl.com/4e4k9nfk
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