
1

CSE145/237D - Final Report on Compressing
ResNets for FPGAs

Doheon Lee, Gabriel Marcano

I. INTRODUCTION

The contents of this report are intended to be inserted or
adapted for the SkipTrim paper.

We have implemented the Skipper algorithm as described
by the aforementioned paper in Keras, and have collected data
demonstrating that the Keras implementation is no better than
regular training for smaller networks. We have also collected
validation accuracy data using knowledge distillation as an
additional point of comparison, and identified that is no dis-
cernible difference for smaller networks between knowledge
distillation and Skipper. However, Skipper performs better than
knowledge distillation for ResNet56.

II. KERAS IMPLEMENTATION

The hls4ml framework supports converting Keras models to
FPGAs bitstreams, so we implemented our Skipper algorithm
in Keras in order to facilitate this conversion process. How-
ever, implementing Skipper in Keras was non-trivial due to
limitations in the framework. The original Skipper algorithm
relies on modifying the ResNet during the training process,
but Keras does not allow for models to be modified once
they are instantiated. We worked around this limitation by
running a full knowledge distillation training run per Skipper
iteration, transferring the weights of the previous student to
the next one in the process. Each modification requires us
to re-instantiate a brand new model, and to reload weights.
One downside of this approach is that we lose the optimizer
state every iteration, as Keras does not allow transferring the
optimizer state from one model to another. We suspect that
it is due to this loss in optimizer state that we were required
to let every Skipper iteration run for a complete knowledge
distillation training cycle. Figure 1 shows the pseudocode for
the Keras implementation.

Our Keras Skipper implementation removes skips connec-
tions from the top of the model first, progressing downwards
until all skip connections are removed.

Keras has an additional limitation that complicated the
implementation of Skipper, namely that all layers across all
models in memory must be globally unique. The problem with
this requirement is that Keras does not allow a good way to
transfer weights from models of different shapes, like from
one student to the next, unless the students’ layers agree on
the naming of each layer. We decided to bypass the problem
by enforcing our own naming conventions on all of our models
and layers. Our naming convention consists of the model
name, three underscore characters, followed by the layer name
(hls4ml expects layer names to be valid C++ type names,
hence the use of multiple underscores to act as a separator).

Fig. 1. Keras Skipper implementation pseudocode
1: skips per iteration = skips to remove per iteration .

Must be a multiple of 3 or 1
2: total skips = (x - 2) / 2 . x is the number of layers in

the ResNet
3: skips = 0
4: while skips ≤ total skips do
5: clear Keras memory and models
6: teacher = pre-trained resnetx
7: student = resnetx with ”skips” number of skip connec-

tions removed
8: if skips == skips per iteration then
9: student weights = teacher weights

10: else
11: student weights = prev student weights
12: end if
13: student.load weights(student weights)
14: distiller = Distiller(teacher, student)
15: distiller.fit() . Go through knowledge distillation
16: prev student weights = distiller.student.weights
17: skips += skips per iteration
18: end while

Figure 2 shows an example of the naming convention in use.
This way, each model can have layers with the same name,
but globally they are distinct, thanks to the model name prefix,
from the point of view of Keras.

Keras has routines for loading weights by name, but these
require for the names of the layers in the saved weights to
match exactly the names of the layers of the model being
loaded into. If the layers being loaded to do not match the
names of the weights being loaded, there is no feedback from
Keras that weights could not be loaded. We implemented
our own weight loading routines to have more control over
naming mismatches, and also to conform to our new layer
naming convention. These routines allows us, as an example,
to transfer the weights from the layers on the left part of the
top model in figure 2 to the layers of the bottom model, since
the layer names match per our naming convention.

So far, we have only tested the Keras implementation with
the CIFAR10 dataset.

Our ResNet implementation conforms to the original
ResNet architecture as described in [1]. It is possible to com-
bine adjacent batch-normalization and convolutional layers
after skips have been removed, but we did not apply this
optimization.

We implemented three different training processes in total.
We implemented typical model training, to train our teacher



2

Fig. 2. Sampling of layers from a teacher and a student ResNet20, showing the naming convention implemented to deal with Keras requirements. The top
graph belongs to a ResNet20 model with no skips removed, and the bottom belongs to one with some skips removed. In particular, the bottom one is missing
the skip layer qconv2d 0 layer present in the top one.

ResNets, training using knowledge distillation to use as com-
parison, and Skipper. Our typical training implementation is
configured to run for 200 epochs, with the learning rate re-
duced periodically. For both our knowledge distillation process
and Skipper implementations we leveraged Keras callbacks
to help track the rate of progress and make adjustments
as needed. Specifically, we configured the learning rate to
adjust automatically after 10 epochs with no improvement
to the validation accuracy, and to terminate before reaching
200 epochs if there is no improvement in the validation
accuracy after 39 epochs. All other parameters for the Skipper
implementation loss function are as described in the Skipper
section.

Finally, we leveraged hls4ml to convert some models to
FPGA bitstream. All of our models, regardless of their quan-
tization parameters during training, were converted to FPGA
bitstream using <16, 8> quantization.

III. RESULTS AND DISCUSSION

We trained non-quantized and quantized models to compare
against the base PyTorch performance. We then implemented
the Skipper algorithm to compare against PyTorch. Addition-
ally, we collected some data showing the performance of using
knowledge distillation to train a student network by simply
removing all skip connections.

A. Training Non-quantized Models

We began our experiments by collecting data for non-
quantized models to check that our implementation was work-
ing as expected. We did not run Skipper for these experiments,
but instead compared the validation accuracy of the teacher
model versus that of a student model with all skip connections
removed trained using knowledge distillation, and of a model
also with all skip connections removed trained normally. Per
table I, the teacher model outperformed both other training

TABLE I
TRAINING RESULTS FOR NON-QUANTIZED MODELS. TEACHERS WERE

TRAINED NORMALLY AND DID NOT HAVE ANY SKIP CONNECTIONS
REMOVED. THE STUDENTS FOR KNOWLEDGE DISTILLATION HAD ALL OF
THEIR SKIP CONNECTIONS REMOVED, THEN TRAINED BY THE TEACHER.
THE SKIP-LESS TEST TOOK THE RESNET MODEL, STRIPPED IT OF ALL OF
ITS SKIP CONNECTIONS, AND THEN PROCEEDED TO TRAIN IT NORMALLY.

Accuracy (%)
Model Teacher Knowledge Distillation Skip-less

ResNet20 90.68± 0.12 88.97± 0.19 90.01± 0.19
ResNet32 91.61± 0.17 88.33± 0.19 89.59± 0.30

ResNet110 92.57± 0.14 79.14± 1.78 48.81± 20.32

approaches for all three models tested. For ResNet20 and
ResNet32, training the model without skip connections nor-
mally yielded better results than via knowledge distillation.
ResNet110, on the other hand, knowledge distillation yielded
distinctly better results than training a model without skip
connections.

For ResNet20 and ResNet32, there are differences between
each different training processes, but for ResNet20 it is no
more than around 0.6%, and for ResNet32 it is no more than
around 3%. This suggests that out of these two compression
approaches, training these smaller ResNets normally, after
removing all of their skip connections, is the better approach
for compressing the ResNets for the CIFAR10 dataset.

For ResNet110, the the removal of skip connections incurs
a noticeable decrease in validation accuracy. This is expected,
as the purpose of skip connections is to aid convergence for
deeper networks. What is noteworthy from this data is the
difference between knowledge distillation and training the
skip-less variant of ResNet110. The knowledge distillation
approach yielded a drop in accuracy of around 13%, with a
relatively small standard deviation. However, the regular train-
ing approach for the skip-less ResNet110 yielded a validation
accuracy drop of around 43% with a large standard deviation
of 20%. This indicates that either 200 epochs were not



3

enough to allow the network to converge, or that without skip
connections the network was not able to converge properly on
optimal solutions.

B. Training Quantized Models

The limitations of Keras and Tensorflow that we encoun-
tered as we implemented Skipper dramatically increased the
amount of time required to run it, leading to an increase
between five to nine times that of regular training. This
increase was initially unexpected, and reduced the amount of
data we could collect in a reasonable timeframe.

TABLE II
TRAINING RESULTS FOR QUANTIZED MODELS. TEACHERS WERE TRAINED
NORMALLY AND DID NOT HAVE ANY SKIP CONNECTIONS REMOVED. THE
STUDENTS FOR BOTH KNOWLEDGE DISTILLATION AND SKIPPER HAD ALL

OF THEIR SKIP CONNECTIONS REMOVED BEFORE STARTING THE
RESPECTIVE ALGORITHM.

Accuracy (%)
Model Teacher Knowledge Distillation Skipper

ResNet20 <8,3> 91.56± 0.15 90.22 91.32
ResNet20 <16,4> 91.79 90.19 90.93
ResNet56 <8,3> 92.14 82.11 86.78

We trained some quantized models with knowledge distilla-
tion and with Skipper in order to compare their performance.
As shown in table II, regular knowledge distillation fared better
in for ResNet20, but Skipper yielded better validation accuracy
for ResNet56. Of note, we removed one skip connection at a
time for ResNet20, but we removed 3 skip connections at a
time for ResNet56, in order to reduce the execution time of
the test.

The graphs in figure 3 show the progression of Skipper
on the three models tested with Skipper. Notably, all three
models show a downward trend in accuracy. ResNet20 <8,3>
shows a slightly erratic trend, but looking at the scale, the
graph encompasses a very small range. Resnet <16,4> and
ResNet56 <8,3> show more notable decreases, although
interestingly both show a small relative increases in validation
accuracy towards the end of the algorithm.

C. FPGA Results

TABLE III
FPGA CONVERSION RESULTS, SHOWING THE PERCENT UTILIZATION OF

RESOURCES OF THE ALVEO U250 FPGA.

Design, Quantization Val. Acc. (%) Utilization (%)
BRAM DSP FF LUT

ResNet20 (full) 90.68± 0.12 127 12 21 93
ResNet20 <8,2> 91.76 104 14 20 98
(Skipper student)

Table III summarizes our findings. Our initial work shows
that so far, even removing all skip connections only ResNet20
models are small enough to fit our Alveo U250 FPGA target.
One major caveat is that we did not adjust the precision
parameter in our configuration files from <16,8> to values
corresponding to the quantization used during training.

(a) ResNet20 <8,3> Skipper

(b) ResNet20 <16,4> Skipper

(c) ResNet56 <8,3> Skipper

Fig. 3. Validation accuracy of multiple ResNets while trained by the Skipper
algorithm.

IV. FUTURE WORK

Our Keras implementation experiments were all performed
using the CIFAR10 dataset. We need to run similar tests with
other datasets to ensure that our results are not coupled to
CIFAR10 specifically.

While we have validation accuracy reports for the Keras
models, we have not validated that the converted models
perform similarly once instantiated on an FPGA. We need
to simulate the converted bitstreams, and for the ones that are
able to fit inside physical FPGAs, instantiate them and perform
these experiments on hardware.



4

One of the more promising approaches for reducing re-
sources utilization for these neural network models on FP-
GAs is by quantizing weights. Our experiments cover some
common quantization cases, but we need to explore to see if
smaller quantization values are viable, and what their impact
on the model accuracy is. Additional work is also needed to
determine if it is possible to further optimize quantization by
assigning different quantization parameters to different parts
of the network (e.g. having different parameters for weights
and for activation computations).

Our initial tests using knowledge distillation indicates that
it is better than basic training for deeper networks. We need
to collect more data to compare knowledge distillation with
Skipper. Additionally, we need to implement Trimmer in Keras
and compare its performance against Skipper and against
knowledge distillation. We expect Trimmer to require similar
adjustments as with Skipper due to Keras limitations.

One aspect of our data collection that was not well con-
trolled was our batch sizes for training. We need to explore
the impact on validation accuracy of changing and mixing
batch sizes for training the teacher and training the student
with Skipper and/or knowledge distillation.

We begun exploring the conversion process from Keras
models to FPGA bitstreams, but there are still many pa-
rameters to consider. There may be better ways to quantize
models to improve FPGA utilization, and there may be ways
to further optimize models prior to conversion (such as by
combining batch-nomarlization and convolution layers once
skip connections are removed).

We need to identify what is different between our Keras
and PyTorch implementations to identify if the difference
in Skipper behavior is due to the optimizer state not being
retained between iterations in Keras, or other Keras specific
details, or if it is due to a deeper, underlying misunderstanding
of the mechanisms at play. One way to confirm that the
problem is with the Keras implementation would be by re-
implementing Skipper in yet another framework, but one that
allows modifying networks while they are being trained. A
second alternative would be to implement Skipper in PyTorch
in a similar manner as we have done for Keras (doing
full knowledge distillation training for each skip connection
removed), and confirm that we see similar results as with
Keras.

V. CONCLUSION

We implemented Skipper and knowledge distillation with
Keras, and observed that Skipper does not perform as well
as with our PyTorch implementation. For smaller networks
Skipper nor knowledge distillation yield better results than
training a model with no skip connections, but as the networks
grow deeper, Skipper beings to perform better than knowledge
distillation, and for larger models knowledge distillation per-
forms better than regular training with no skip connections.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2016.


