Sam Hessenauer
Ryan Kral
Corbin Adelman

Radio Collar Tracker Project

Abstract

As destruction of nature increases to make room for buildings, logging, and agriculture, it becomes
necessary to measure the impact of the construction on the native animals. Drone tracking technologies in
which automated UAVs are used to track a variety of animals, with radio collars, are an offered alternative to
traditional tracking methods. By improving the GPS accuracy of the drone, we can create a more efficient
model for tracking animals by offering a more precise projected position. Integrating Real Time Kinematic
(RTK) GPS improves the system from meter-grade to centimeter-grade accuracy. Through testing, we found
that stability of RTK GPS was tough to come by, but when working, a 45 times increase in accuracy was
shown above traditional GPS.

Introduction

As society grows, populations increase, and demand for new infrastructure rises, the need for
environmental impact reports rises. The reports are very costly due to their need to analyze air and water
quality impact, cost analysis, and perhaps most importantly, the impact to threatened or endangered
species. The Radio Collar Tracker project aims to offset the high cost of analyzing the threat to animals by
eliminating thousands of man hours spent by ecologists and biologists on their foot tracking of animals. This
is done by the use of a small unmanned aerial vehicle (UAV) equipped with a custom multi-frequency radio
receiver payload. By flying the UAV over animal habitats, the UAV can capture a range of radio frequencies
and amplitudes and then return the information it has captured for post-processing to determine the wildlife’s
location. This will allow for much more efficient surveys than walking and allows for more area to be
surveyed more frequently. The purpose of this project is to increase the accuracy of the wildlife’s location by
improving the Global Positioning Satellite (GPS) onboard the UAV. The current system uses standard GPS
which has a precision level of a few meters. It will then use this data and with post-processing, combine it
with the gathered radio frequencies to determine the wildlife’s location. Using offset data will produce an
offset location which will become more and more inaccurate the farther away the UAV is from the animal.

To improve the accuracy of the system, we set out to integrate a new GPS method known as Real
Time Kinematic (RTK) GPS. The RTK GPS approach increases the precision of the system from a few
meters to a couple of centimeters. We chose to work on integrating RTK GPS into the system overall,
because it would provide instant measurable and useful results. The RTK GPS hardware is developed by
PIKSI. Included with the hardware is a GUI which allowed us to see the GPS positioning in real time.
Additionally, the trackable measurements such as time, latitude, longitude and altitude, are outputted in a
CSV file which allows us to compare RTK positioning with GPS positioning. The hardware combined with
the software allows us to provide ecologists and biologists proof of the efficiency of the new system.

The rest of this paper will present the technical overflow and progression of our project. This
includes a technical overview of how RTK GPS works, our approach to creating what is known as a “fixed
RTK lock” through our various methods of testing, the python and C software we developed for scripting to
streamline post-processing, and finally our planned milestones and our progression throughout the quarter.
By the end of this paper, you should be able to identify how RTK GPS can positively impact a radio collar
tracking application, and realize the costs and benefits associated with the approach that we took.

Sam Hessenauer
Ryan Kral
Corbin Adelman

Technical Material
For this project, the technical work completed can be broken down into the following sections: RTK GPS,
RTK Testing, and Software Development and Integration.

Real Time Kinematic (RTK) GPS

Traditional Global Positioning System (GPS) uses the timing differences between signals
transmitted from satellites to a receiver which then digitally processes the data in order to find a location.
This traditional method however, has an accuracy error of approximately ~5m+. In Real Time Kinematic
GPS, there is a Base station module on the ground as well as a Rover. As long as the Rover and the Base
maintain at least 5 satellites in common, there can be a more accurate locational prediction of the Rover by
adjusting the corrections determined by the Base station. This RTK solution can provide centimeter-grade
accuracy of the position, and should cause a greater than 200 times increase in accuracy compared to
traditional GPS. The major benefits are the extreme precision of the GPS unit for any application, with an
option for real time tracking, it will be a crucial player in the future of drone technology. The downside to this
technology is the cost, with traditional GPS modules costing ~$50 and high precision RTK GPS modules
costing thousands of dollars which is a major setback for projects that need extremely accurate positioning.
As a solution, we looked towards a module developed by Swift Navigations called Piksi. Piksi is an
extremely low cost, two module RTK GPS system that is native to linux software. This technology is also
open source, which allows for the GPS community help develop the
board’s systems along the way which will increase its evolution.
The Piksi modules are also extremely small, with a form factor of
only 53x53m. The RTK GPS system is low in power consumption,
which allows for a reduction in battery weight needed on the aerial
vehicle with a mere 500mW power consumption. Although, the
Piksi RTK solution is still in development, it provides a promising
opportunity in the nearby future and would greatly benefit the
overall project.

RTK Testing

After we received the Piksi modules, the next task was to install the firmware and console to run
them. This proved to be a difficult because of major firmware installation issues that occurred since the Piksi
compiler team was in the process of making a new installer. Files and folders got moved around, and after
being incredibly active on the Piksi user forums, we finally located the files through the github open
repository and posted an incredibly detailed installation tutorial for Mac OSX, Windows 7, Ubuntu, Debian
Linux, and Raspberry Pi for users who also had difficulty installing the console. After the console was
installed, we updated the Piksi hardware’s firmware and plugged in the modules. The first few steps in
getting a satellite connection was to run a simulation of the Piksi to make sure the basic parts of the modules
are working. Below in Figure 1. is a screenshot of the the satellite gain versus time, with the different colors
being different satellites. As you can see they all have a high gain and are connected to most of the
satellites.

Sam Hessenauer
Ryan Kral
Corbin Adelman

Figure 1: Satellite DB Gain vs. Time - Simulation

» L J #< Piksi Console, Version: v0.15.1 : PK1240
acking Solution Baseline Observations Settings Firmware Update System Monitor Python Console

Tracking C/NO

—— Ch 0O (PRN203
—— Ch 01 (PRN204
—— Ch D2 (PRN209
—— Ch 03 (PRN213

Ch 04 (PRMNZ218

Ch 05 (PRMNZ219 —+ 30
—— Ch 06 (PRN221

Ch 07 (PRNZ223
—— Ch DB (PRN226
—— Ch 09 (Disable £ 20
—— Ch 10 (Disabled

ZH-8p

o 25 50 75 100 125 150 175

After the simulation was successful, we started recording the simulated data which was in a dated. CSV file
in the console folder which contained timestamp, longitude, latitude, and altitude information. This was the
data we needed to start the post processing code which will be discussed in the next section.

At the time, we were not given the external antennas for the modules, and struggled even receiving 2
satellite signals as shown below in Figure 2, after extensive research we attached the new antennas but
there was improvement, but not nearly as much as what the simulation showed it should be.

Figure 2: Satellite DB Gain vs. Time - Actual Data

= - #~ FIKS| GONSoIe, Version: vu.1o.1 @ FrRizau
acking Solution Baseline Observations Settings Firmware Update System Monitor Python Console

Tracking C/NO

Ch 0D (PRMNZ28
Ch 01 (PRN30

Ch 02 (Disabled

Ch 03 (Disabled I
Ch 04 (Disabled [
Ch 05 (Disabled

Ch 06 (Disabled
Ch 07 (Disabled
Ch 08 (Disabled
Disabled}) |f
Ch 10 (Disabled) || H

" |

A

0
)
Q
(']

<

125 150 175

After such bad results, we decided to use a metal bench as a ground plane for our antenna because of
feedback we received on the Piksi user’s forum with using the newly acquired external antennas. This saw
a more steady increase in data but still with a low gain. Shown below in Figure 3, we now have about 9
satellites connected, but the Db gain is still not as expected as shown in the simulation.

Figure 3: Satellite dB Gain vs. Time - With Bench Ground Plane and External Antenna

" A IR W DU, VETSIUTL. VAL 133 1 . T sa

m Solution Baseline Observations Settings Firmware Update Systermn Monitor Python Console

Tracking C/NO

Ch 01 (PRNOZ2
Ch 02 (PRMN13
Ch 03 (PRN17
Ch 04 (Disabled)
NZ24

Ch 0O (PRM23 | } T 50

Sam Hessenauer
Ryan Kral
Corbin Adelman

Each of these tests take a lot of time, most of the time spent on this project was attempting for the Piksi
modules to connect to satellites, stabilize and then connect to each other. After many different combinations
of weather and time of day, we did not achieve over a steady gain of about 10dB until the new Piksi
Hardware Firmware version 16.0 was released. Upon installing the new firmware, we had an immediate
major change response from the modules and is shown below in Figure 4, but without using any conductive
ground plane surface.

Figure 4: Satellite DB gain vs. Time Firmware v16.0 without antenna boosting surface

Tracking C/NO

+{ —— Ch 00 (Disabled)
—— Ch 01 (PRN11)
—— Ch 02 [PRN13)
| — ch 03 (PRN30)
Ch 04 (PRNO7)
Ch 05 (Disabled)
—— Ch 06 (PRNOS)
Ch 07 (PANO1)
—— Ch 08 (Disabled)
—— Ch 08 (PRN28)
—— ch 10 (PRNO4)

This incredibly module response to the new firmware brought us new hope when almost all was lost. Next in
order to try to get a more steady satellite lock, we decided to use the roof of Ryan’s car as our ground plane

because of its large surface area and highly conductive surface. Below in Figure 5, we can see an immense

increase in reliability, gain, and stabilization in the Piksi Console

Figure 5: Satellite DB gain vs. Time Firmware v16.0 with Ryan’s Car Roof as Ground Plane

Tracking C/NO

—— Ch 00 (PRND4)
—— Ch 01 (PRN11)
—— ch 02 (PRN17) |-
| — ch 03 (PRN30) |
Ch 04 (PRNOT7) |
Ch 05 (PRNO1)
—— Ch 06 (PRND9)
Ch 07 (PRN13)
—— Ch 08 (PRN19) [[| |
—— Ch 09 (PRN28) | | | | | i | 410
—— ch 10 (PRN23) [| |

— t - t t = t } 0
V] 25 50 75 100 125 150 175

i

Now that we had an ideal response from the Piksi Modules, we set out to try to get ‘Fixed RTK’ between the
two modules, which would allow for the precise geolocated data. Each RTK lock would initially range
between 15-22 minutes, and would immediately convert into a ‘Float’ when the rover started to move. This
was our biggest issue and caused a lot of time towards our project. Waiting for the Piksi modules to initialize
and then sync to troubleshoot Fixed RTK was a long and arduous process. Below in Figure 6, the base
station had a static Fixed RTK connection to the rover. On the left under ‘Mode’, it is set to Fixed RTK, and
the graph on the right is how close the base and rover’s position is.

Sam Hessenauer
Ryan Kral
Corbin Adelman

Above is Figure 6: Base and Rover Position Map shows High Accuracy and Fixed RTK

Our next milestone was to get fixed RTK and hold it while we attempted to make a circle. After many
hours of troubleshooting, and creating a Rover Rod to facilitate the rover’s ground plane, we achieved Fixed
RTK and got it tracking as we walked around the car. Below in Figure 7, you can see that we did finally get
Fixed RTK working during one of the last weeks of class and we walked around a car.

Figure 7: Base and Rover Position Map Shows Path of Rover during Fixed RTK

By getting fixed RTK and a

high precision path, we / ‘\.'_
have made proof of concept \
that the Piksi does offer

4+ Base Position
Rover Path
Rover Relative Position

I

£

RTK positioning for a low
cost, but does not have
reliable results in varying
conditions. Until the Piksi
modules and firmware
become more accurate and
reliable, we do not
recommend using this

N (meters)
..

system. E (meters)

Software Development and Integration

While the Piksi modules were being tested in the field, we took the generated CSV files from the
simulated data and used it as a model for our software integration. The outputted data has a timestamp and
its correlating longitude, latitude, and altitude in a listed form. In order to integrate the data with the already
used system in place for the Radio Collar Tracking Project, we needed to create a C program that could be
included in the post processing code that would allow access to the CSV file. The CSV first had to be found
and imported to the C file, and then filtered so each of the values were stored in a different variable. For that,
we created a python script that would take care of the parsing and storing. Next, we created the C program
needed by the Radio Collar Tracking code in order to be able to call a function called getLocation() where
the program would pass the time and be able to get back the exact longitude, latitude, and altitude at that
specific moment.

When both the Python Script and the C program are imported into the C code running the main
post-processing for the Radio Collar Tracking software, it allows for a seamless integration of data into their
current system. Although we were getting questionable results from the Piksi modules, our main goal was to
create a software integration system so that when the Piksi modules become more reliable and make more
progress, it would be an incredibly easy integration into the current system. The goal was to make it so all
one would need to do was to update the Piksi modules to the new firmware in the future and be able to run it
on our system. By creating an interchangeable system, it would allow for easy to use and effortless
integration for when Piksi technology became more accurate and reliable.

Milestones

For this project, we used a set of milestones to keep on track and to prioritize our work tasks when
things went wrong. In the table below you can see the milestones as we defined them. The tasks in bold
were completed fully. The tasks which are italicized were completed to some extent, but require a bit of
explanation. The remaining tasks were not completed as desired.

Sam Hessenauer
Ryan Kral
Corbin Adelman

Priority

1 (low) - 5 (high)

Milestone Description

Due Date

Responsible People

5

Read documentation and get up to
speed with the Piksi RTK GPS
hardware.

4/21/2015

Corbin, Ryan, Sam

Demonstrate that the RTK GPS
hardware works with two laptops in
the field.

5/5/2015

Corbin, Ryan, Sam

2.5

Demonstrate stable Fixed RTK lock
with the introduction of a survey
stick

5/19/2015

Corbin, Ryan, Sam

Integrate the RTK GPS in with the
radio collar tracker
hardware/software.

5/19/2015

Corbin, Ryan, Sam

Evaluate comparative performance
between the existing autopilot GPS
and the Static RTK GPS.

5/26/2015

Corbin, Ryan, Sam

Finish RTK GPS callback script to
finalize integration. Document our
overall results.

6/2/2015

Corbin, Ryan, Sam

Investigate low cost RTK GPS
hardware.

Stretch Goal

Corbin, Ryan, Sam

Compare the Piksi hardware with the
low cost solution.

Stretch Goal

Corbin, Ryan, Sam

Milestones 1, 2, 4, and 5 were completed as expected. Here are details on what we did to meet these

milestones:

1. To get up to speed with the Piksi RTK GPS hardware and software, we spent some time reading
and watching videos about the Piksi product, GPS, and how RTK GPS works. The following videos

were watched:

a.

C.

GPS Overview - https://m.youtube.com/watch?v=YjcfmZw23Wqg
b. RTK Overview - https://m.youtube.com/watch?v=zI59yyN7Tyw

Beaglebone Black - https://www.youtube.com/watch?v=ciX08ysI6LE

The following documents were read:
Piksi Information - http://www.swiftnav.com/piksi.html

a.

https://m.youtube.com/watch?v=YjcfmZw23Wg
https://m.youtube.com/watch?v=zI59yyN7Tyw
https://www.youtube.com/watch?v=ciX08ysl6LE
http://www.swiftnav.com/piksi.html

Sam Hessenauer
Ryan Kral
Corbin Adelman

b. Piksi User Getting Started Guide -
http://docs.swiftnav.com/wiki/Piksi_User_Getting_Started Guide
c. Piksi Developer Getting Started Guide -
http://docs.swiftnav.com/wiki/Piksi_Developer_Getting_Started Guide
d. Piksi Forums - https://groups.google.com/forum/#!forum/swiftnav-discuss
2. To demonstrate that RTK GPS worked in the field with two laptops, we performed numerous tests
on a wide variety of operating systems. We tested with Windows, Mac, and even with both laptops

running on Linux. Here is a screenshot taken of the base station’s Piksi console software which

shows that we were able to achieve a “Fixed RTK” mode:
GPS ToW 423792.599725

N 0.038
E -0.037
N -+ Base Position
D 0.0 - Rowver Path
Dist. 0.0530377224247 Rover Relative Position
Num. Sats. 8 -+ 0.05
Flags 0x01
Made Fixed RTK
IAR Num.... 1 o

N (meters)
.

; ; ; ; ; ; ; |
.

t
E (meters)

Though this shows nothing regarding the stability of the signal over time, it does show that we
gained an RTK lock which was the goal of this milestone and the location of our previous position.
For more information, you may view our previous milestone reports which detailed our successes on
this milestone in depth.

4. To evaluate the performance of standard GPS with that of RTK GPS, we viewed data provided by

the Piksi console. When we were in “Float” mode, we received images like the following:
GPS ToW 427695.199898

N 0.463
E -3.027
D 0.828 T + Ease Pgsﬁ}on
- - Rover Pa
Dist a172iroree . Rover Relative Position
Num. Sats. 7 T
Flags 0x00 —
Mode Float e
IAR Num.... 1 @
Et
=z
r +
| - 30 10 1
f | | | | |
E (meters)

“Float” mode is equivalent to the data obtained from standard GPS, without obtaining an RTK lock.
In the image above, the rover position starts approximately 3-4 m away from the base station, then
moves relative to its starting position. However, in reality, the rover was measured at only 10 cms
away from the base station initially. When in “Fixed RTK” mode, the measured distance initially was
far more accurate. We compared the error between what these graphs showed, and what we
actually measured during testing for both standard GPS, and RTK GPS data to generate the
following table:

GPS RTK GPS (Piksi) Precision Increase
Expected Precision | 3-4 m ~1.5cm ~233x
Measured Precision | ~4-5m ~10 cm ~45x

The measured values were averages taken over four test trials conducted over the span of a week
under varying environmental conditions. Though our measured precision, or range of error, was not
as high as expected, we believe it was because we did not test in perfect weather conditions with

http://docs.swiftnav.com/wiki/Piksi_User_Getting_Started_Guide
http://docs.swiftnav.com/wiki/Piksi_Developer_Getting_Started_Guide
https://groups.google.com/forum/#!forum/swiftnav-discuss

Sam Hessenauer
Ryan Kral
Corbin Adelman

perfect ground planes during optimal times of day. Nevertheless, we were able to show a 45 times
increase in precision which definitely makes the case that RTK GPS is worth investing in.

5. To finalize a callback script for integration purposes, we wrote code in Python. The purpose of this
code was to allow someone writing Python code, to easily access the latitude, longitude, altitude,
and timestamps of data collected from the RTK GPS units. We wrote a python file which can be
included easily in other code files which performs the following tasks:

a. Opens a CSYV file which contains all of the RTK GPS data collected during a trial.

b. Parses the contents of the CSV file into objects which each contain a timestamp, latitude,

longitude, and altitude.

c. Allows access to these objects from other files.
The Python code which we wrote can easily be converted for use with C or any other programming
language as it just needs to open a CSV file and parse it in the same manner as the Python which
we developed. This was not difficult software to develop, but we wanted to include it as a milestone
to show how easy integration will be once the Piksi hardware is shown to be more stable.

Milestones 2.5 and 3 were completed to some extent, but left some things to be desired in the end. Here are
details on the work we did for these milestones:
2.5 To demonstrate stable “fixed RTK,” we developed the rover rod and attempted to find an ideal setup

to hold an RTK lock for an extended period of time. The rover rod was made up of a selfie stick, a
watch case, and the Piksi unit/GPS antenna. The selfie stick was purchased for $7 at a grocery
store and served as a 3 foot extendable rod. We attached a watch case to the end of the stick which
had a flat, 3” x 3” metal surface to act as a ground plane. We then stuck the GPS antenna to the
watch case and hooked it up to the Piksi unit. This rover rod allowed us to get decent signal strength
from the GPS antenna, and also allowed us to move the rover without causing human interference
(the rod was extended 2-3 feet from our bodies).
In addition to developing the rover rod, we identified the ideal ground plane for the base station, a
car roof. This provided us with the largest possible flat metal surface we could easily access, and
gave us the best shot a a stable signal. We performed countless tests using these base and rover
setups in both cloudy and sunny weather at various times of day. Here is an example of a test in
which we walked around a car:

4 Base Position
Rover Path
Rover Relative Position

N (meters)

E (meters)

A slight misstep near the side mirror of the car caused a complete loss of the RTK lock. This one
trial seemed to be indicative of the issues with the Piksi units overall. We believe we went above
and beyond the actions that should have been required to meet this milestone. However, we were
never able to maintain a stable RTK lock. The Piksi firmware went through an update which seemed
promising for signal strengths, but even then the slightest hiccup (a gust of wind, car driving past,
etc.) could cause our RTK lock to disappear entirely. We are convinced that despite the best
possible efforts, the Piksi hardware is just not good enough to hold a stable RTK lock for long

Sam Hessenauer
Ryan Kral
Corbin Adelman

periods of time in its current state. Thus, we felt that we completed as much work as possible on this
milestone, but were unsuccessful in achieving our desired result. further information on this can be
found in our project video.

3. Integration with the Piksi units into the radio collar tracker overall was an initial goal of the project;
however, as we realized that maintaining a stable RTK lock would be an issue, we ruled full
integration out of the picture. It is inadvisable to spend time and effort integrating and testing the
Piksi units with the quadcopter, when we know that they don’t even work reliable in a less intensive
environment. Nevertheless, we wanted to do as much as possible towards integration so that in the
future this task could be made easier for others. Thus, we developed scripts in Python which will
start the Piksi software on the rover automatically, and allow it to collect data. For integration, this
script need only be placed in a startup folder or something similar. The, as long as the port numbers
are verified once initially, we will have automated the startup processes of the rover. The second
integration task is exactly what we completed for milestone 5. We completed code which parses out
the data collected from the RTK units and creates useful objects with the data. The remaining work
for this step which we did not complete would be to install the Piksi console on the quadcopter and
then perform testing. But, as mentioned before, these tasks were not relevant due to the stability
issues faced.

Milestones 6 and 7 were not completed all the way. Here are details on why these milestones were not
completed, and why that was acceptable for our project:

6. We did investigate an alternative way to get an RTK GPS signal but proved to be needing more
development before use. Initially, we thought that once we had the Piksi fully integrated, then we
would move on to a second RTK unit. However, because we had so many stability issues with the
Piksi units, this was not as thorough as possible. Approximately halfway through the quarter we did
decide to start moving on to new hardware, as firmware 15.0 on the Piksi was giving us terrible
signal strengths and it was almost impossible to get any sort of RTK lock at all. However, just before
we moved to new hardware, Piksi released a firmware update to version 16.0. This was extremely
promising because we were now getting the signal strengths that we expected, and we were able to
get an RTK lock much more easily. We then decided to continue focusing on the Piksi, rather than
ordering entirely new hardware. As described above, the Piksi proved to still be unstable, but we
were at least able to give an accurate description of all angles of the Piksi because we chose not to
work on milestone 6. Additionally, we listed this milestone as a stretch goal and gave it low priority,
so we believe that not completing this is not a reflection of our success with the project overall.

7. Because milestone 6 was not completed, no realistic comparison could be made between the Piksi
units and any other RTK GPS units. Because this was a stretch goal, and for the reasons given for
milestone 6, this incomplete milestone was deemed acceptable.

In addition to the milestones described above, we worked to complete a set of milestones for class
papers, presentations, and video deadlines, but those were not included as all teams faced the same due
dates. We also completed additional tasks which were outside the scope of our initial milestones.
Specifically, we contributed greatly to the Piksi message boards. We posted messages detailing how to
install the Piksi console software on Windows, Mac, Linux, and for the Raspberry Pi. We were also able to
learn a ton about GPS from reading other message board posts and from communicating with a few
members offline. Though this was not a milestone, we believe it was important work which helped the
community surrounding the Piksi as it goes through beta testing.

Conclusion

For this project, the ultimate goal was to help biologists and ecologists save time and effort during
the tracking of animals with radio collars. To do this, we felt strongly that integrating RTK GPS into the aerial
radio collar tracker would instantly provide a measurable and useful improvement to the system overall. With
proper integration, we would be able to convert standard GPS data from meter-grade precision to
centimeter-grade precision. This would provide researchers with more accurate data to work with. We chose

Sam Hessenauer
Ryan Kral
Corbin Adelman

to use Piksi RTK GPS units, developed by Swift Navigation, to reach our goal, despite the fact that these
units were still in beta testing. This choice was made because these units were readily available at the start
of our project and would not cause additional waiting time for new hardware to be purchased and delivered.

The milestones which we set for ourselves ultimately helped lead us as close as possible to full RTK
GPS integration. However, along the way we ran into numerous obstacles which prevented us from reaching
all of our milestones. Stability of the RTK GPS lock with the Piksi units was incredibly difficult to obtain,
despite testing with multiple firmware versions, numerous ground planes, and in a wide variety of
environmental conditions. We ultimately believe that the Piksi RTK GPS units are not far enough along in
development to be useful in the radio collar tracker system overall. These units have stability issues which
would be difficult to work with in a research environment and the benefits are not yet worth the extra work
required to ensure valid data. Thus, we recommend to wait until future firmware updates are made by Swift
Navigation for the Piksi RTK GPS units before integrating RTK GPS of this form into the system overall.

Despite the issues we faced with the Piksi RTK GPS units, we were still able to accomplish many
useful tasks for this project. We showed that achieving a fixed RTK lock with the given hardware is possible,
though not stable. Given future firmware updates, we have now documented the most effective way to test
these units with a car acting as a ground plane for the base station, and a rover rod serving as the rover
setup. We were also able to generate metrics which show that RTK GPS provides a 45 times improvement
to the accuracy of standard GPS. This is extremely promising for future attempts at RTK GPS integration
with this system. We developed software so that if the Piksi units ever are stable, integration into the larger
system will be extremely simple. And finally, we learned a ton about GPS, RTK GPS, and working with
products still in beta. We were active on message boards and were ultimately able to convey much of what
we learned to the larger community of Piksi developers. Because of these accomplishments, we firmly
believe that this project was successful overall.

References

Swift Navigation’s Website: http://www.swiftnav.com/

GPS Overview - https://m.youtube.com/watch?v=YjcfmZw23Wg
RTK Overview - https://m.youtube.com/watch?v=zI59yyN7Tyw
Beaglebone Black - https://www.youtube.com/watch?v=ciX08ysI6LE
Piksi Information - http://www.swiftnav.com/piksi.html

Piksi User Getting Started Guide - http://docs.swiftnav.com/wiki/Piksi_User Getting_Started_Guide
Piksi Developer Getting Started Guide -
http://docs.swiftnav.com/wiki/Piksi_Developer_Getting_Started Guide

Piksi Forums - https://groups.google.com/forum/#!forum/swiftnav-discuss

http://www.swiftnav.com/
https://m.youtube.com/watch?v=YjcfmZw23Wg
https://m.youtube.com/watch?v=zI59yyN7Tyw
https://www.youtube.com/watch?v=ciX08ysl6LE
http://www.swiftnav.com/piksi.html
http://docs.swiftnav.com/wiki/Piksi_User_Getting_Started_Guide
http://docs.swiftnav.com/wiki/Piksi_Developer_Getting_Started_Guide
https://groups.google.com/forum/#!forum/swiftnav-discuss

