POOL-AID: Detection and Identification of Pool
Balls for the purpose of recommending shots to

beginner players.

//q\

POOL-AXTD

By Samuel Bauza, Brian Choi, Chuanquiao Huang and Olga Souverneva

Mentor: Ryan Kastner
6/8/2016
Spring 2016
Embedded Systems Design Project
University of California San Diego

1. ABSTRACT:

Pool or billiards is a popular pass time. However, as with many games, there is a barrier to entry for
beginners who struggle to visualize critical shots and miss the opportunity to score critical points. POOL-AID
addresses this problem by providing shot trajectory guidelines. POOL-AID consists of an algorithm used to detect
billiard balls on a pool table, then calculate shots and overlay them on a rotated video. First openCV is used to
isolate the table, then detect each pool ball. Table isolation is done by using color subtraction, blob detection and an
affine transform. Ball detection is done by background subtraction, blob morphology and detection. We implement a
color-based classifier with bipartite matching. Finally, physics calculations are used for simple shot / collision
detection.

2. INTRODUCTION:

Our primary intention with POOL-AID is to guide beginner players by displaying shot and ball trajectories
during a game of standard 8-ball pool. Due to the popularity of the game and technical challenge of pool, it is
unsurprising that a number of similar applications have been presented in both published literature and the hobbyist
community [1-5]. These make use of desktop as well as mobile platforms. However there does not exist an
application that can be implemented on a compact, self contained, embedded device like an FPGA. Such a platform
has the advantage of accelerating vision algorithms as well as being power efficient and portable enough to become
a standalone embedded device in the future. Thus the secondary intention of POOL-AID is to present an
implementation that could be implemented in full or in part on an FPGA.

The POOL-AID system design is consistent with existing work in that a standard, inexpensive video
camera (GoPro Hero3) is mounted vertically above a pool table [1-2, 4-5]. The table takes up most of this frame and
is assumed to be in focus and in frame. Using color subtraction, blob detection and an affine transform we are able
to isolate the pool table and limit the frame to just the playing field . Then we subtract the background of the table
canvas. The balls in the playing field are detected using blob detection and blob morphology. We classify the
detected balls based on hue and value in the HSV color space. At this stage of the algorithm there is a high chance of
false positive detection thus balls are classified as one of the 16 balls that could be in play or as false positives. To
reduce error we perform several iterations of detection-classification. After the last round, we perform run a bipartite
matching to get the most-likely classification of all the balls in the frame. Finally, physics calculations are used to
determine shot trajectories and collisions that are displayed to the user using arrows overlaying the frame.

Our project differs from some of the existing work in the following:
1. We use standard pool balls with no custom tags or markings.
2. We attempt to detect and classify balls even if the playing field is obstructed by a player’s hand or a cue
stick.
3. Our application works for moving as well as stationary balls.

This makes the design more challenging in that our ball detection is not assisted by any tags. Standard pool
colors are less differentiable than custom colors which makes color-based classification more difficult. Playing field
obstructions can easily confuse the detection and classification algorithms. Since we are using an inexpensive
camera for this project, the shutter speed is insufficient to control motion blur. Thus the moving balls are less
defined in both shape and color which complicates both the detection and the classification.

Due to these challenges we limit the scope of our work in the following: The initial POOL-AID
implementation is intended to work with a single pool table and set of balls of non-television colors. However we
present ideas on how to modify our design to make it more versatile. POOL-AID is currently limited to standard
8-ball pool and would need to be extended to cover other types of pool like 9-ball. The output of POOL-AID is

video overlaid with shot trajectories, however a more sophisticated user interface can be added in the future.
Additionally, we assume that the user can record several seconds of video before beginning a game to aid with
background subtraction. Finally, we use COTS tools to remove the fisheye introduced from the GoPro from our
footage and do not attempt our own implementation.

3. TECHNICAL INFORMATION:

3.1 CAMERA PLACEMENT
The next section will detail the methods used to produce these results, as well as methods that were tried,

but did not produce as strong results. In its current state, the algorithm uses a video taken from approximately the
perspective shown Fig. 4. Video framing requirements are as follows:

- The center of the image should be the pool table

- The table, including pockets, should be entirely in frame

- The edges of the pool table should be distinctly colored from the cloth of the table

- Camera must be perpendicular to table

- The long edge of the table should match the long edge of the frame, though this can be accounted for

3.2 TABLE ISOLATION

It is important for later stages of the algorithm to know the location of each corner pocket in the frame. It is
also highly beneficial to have the table take up the entire image. To achieve this, the region of interest, or ROI, must
be determined. This is done by:

1. Determining table color

Subtracting all other colors from image
Finding contours in remaining image
Selecting largest contour and fitting a rectangle to it
Using bounds of rectangle to rotate original image to fill frame

nokwn

There are several methods of determining the table bounds. The first method attempted was to simply use
the openCV function findcontours(*1) and select the biggest contour as the table. This provided generally jittery
results and was often wildly inaccurate.

The next attempted method was to isolate the table color in the image, and use findcontours on the resulting
image. There are several methods that may be used to determine table color:

1. Hard code the table color

2. Have a user manually select the table color

3. Assume the center of the image includes the table, and use that color

4. Take a histogram for each color in the image, and try to infer table color using peaks

In its current state, the color of the table is hard-coded, though in later iterations the colors of a certain
region around the center of the frame will be averaged, and assumed to be the table. Removing all colors in the
image not within a certain range of the determined table color, produces the mask in Fig. 5. Running findcontours in
this mask was much more reliable and robust than running it on the initial image.

With the list of contours produced by the openCV function findcontours, the table contour is found by
selecting the largest contour. This worked reliably for all footage captured for this project, and is expected to work
reliably in most cases where the table is framed properly. Issues may arise if the carpet or background is a similar
color to the table.

With the table contours selected, the bounds of the table can be determined by using one of two primary
methods.

1. Use minEnclosingRectangle(*2) and simply use its bounds

2. Use a HoughLinesP to find lines in the image, after masking it with the mask produced above, cluster them
based on proximity, and determine bounds using these clusters
Method 2 was not attempted this quarter, as method 1 was simpler and provided satisfactory results, despite
non-ideal lighting conditions. If there is a strong lighting gradient across the table, or if the camera is not
perpendicular to table, method 1 may be non-sufficient, in which case other groups(*3) have found success using
method 2.

With the table bounds determined the original image can be rotated to have the table fill the frame., the
openCV function getAffineTransform(*4) can be used to generate a warp matrix. This function takes as arguments
three points in the original image, and 3 in the desired output image. The warp corners may change depending on the
alignment of the table (vertical vs. horizontal). This warp matrix is then passed, along with the original image, to the
openCV function warpAffine(*5). The resultant image is shown in Fig. 6.

3.3 Ball Detection
The next step in the algorithm is to determine with as much accuracy as possible, to location of potential
pool balls. This is done by
1. Using an initialization period of at least 30 frames to average the table bounds produced by the method
above, then holding bounds constant
2. Once the image is stable, take an average of the image for at least 10 frames to determine the table
background
During regular play mode, subtract this background from the image
Threshold the image that remain to generate a mask
Find contours on this mask, and prune them by area/ circularity criterion
Use several iterations of blob morphology / findcontours to ensure all balls are detected

S kW

Other methods were tried to detect pool balls without an initialization period, to a lesser success..
HoughCircles worked well, though decreased in accuracy when balls were in motion, and often picked up large
amounts of noise. FindContours similarly picked up large amounts of noise.

In its current state, an initialization period is needed to determine bounds of table as well as the
background. This initialization period allowed us to generate much more accurate detection results than were
possible without it. During this period, the table must be completely unoccluded. This includes players / cues
leaning over the table, and pool balls / rack already on the table.

The first step of the initialization period is to average the table bounds. The calculation provides a jittery
table, and averaging the results allowed for a smooth image to be produced. This assumes the camera does not move
relative to the pool table, which for most cases will be a reasonable assumption. After determining the table bounds
and rotating the image, take an average of the image over several frames. This will produce a reliable background
image.

The first step in the regular play algorithm is to subtract the background. Simply subtracting the
background produces an image that looks similar to the original, but is actually color shifted. To ensure this color
shift does not affect ball identification, the subtracted image is used to create a mask, which is placed over the
original image to generate Fig. 7. To the naked eye this appears to be a decent representation of the foreground,
however it is color shifted. The mask is created by thresholding each individual color channel (RGB or HSV).
Tweaking of the threshold value for each separate channel will be necessary to produce a decent image that does not
exclude billiard balls similar in color to the pool table.

The second step is to look for contours in the image. To remove all contours that are too large to be a ball,
contours that include too much of an area are excluded. Excluding contours with an extremely low circularity also

helps remove the pool cue. The result is good when no players / cues are occluding the table, and no balls are in
close proximity to each other, however it fails when these criterion aren’t met.

To account for balls in close proximity to each other, we use a loop that repeatedly applies a morphological
operation to the mask. By doing several iterations, the algorithm had better accuracy in picking up both difficult to
detect balls (black, striped blue / violet) as well as adjacent bright balls (red/orange). This did come at a significant
time cost, so other methods should be examined. See Fig. 8 and 9 for the mask before and after this iterative process.

This process did have an issue with occluding players, particularly when wearing a shirt color similar to the
table felt. To account for this, it may be beneficial to erase all contours which touch the edge of the frame, as these
can only be occluding objects and not the billiard balls we are looking for.

An image of each potential ball plotted on the frame is in Fig. 10.

3.4 BALL IDENTIFICATION:

Threshold-based classifier:

Standard 8-ball is played with 16 balls. The balls can be differentiated by color and by the presence of a
stripe. Since the colors are easily distinguishable to the human eye, our initial approach was to just use thresholds for
determining the color and presence or absence of a stripe. Classification consisted of the following simple algorithm:

1. Determine the min and the max threshold for each of the nine colors using the training data. We used mean
+/- standard deviation of the distribution for each channel with some manual adjustment to make the
categories exclusive.

2. Determine the min and max white-to-other color ratio for the presence of a stripe. We used mean +/- 2
standard deviations of training data.

3. For each ball patch in the frame, for each color, sum the number of pixels between the min and max
thresholds.

4. Find the color with the highest count. If the count is below a minimum, output false positive.

5. Compute the ratio of white-to-other color.

a. Ifratio > max ratio for striped balls, output cue ball

b. Ifratio within min and max thresholds for striped ball:
i If color black, select next highest color, and repeat.
il. Else output striped color.

c. Output color.

To develop the classifier we selected 50 frames from our recorded video footage that contained most of the
balls and were at least 20 frames apart. These were manually classified for a total of 850 image patches sized 8x8
pixels to 16x16 pixels. We split the frames randomly into a training set of 24 frames and a test set of 26 frames. The
high ratio of test to train images is necessary as some of the balls are in motion for only a small portion of the
footage and we wanted to ensure representative testing. We chose to split by frame as opposed to by individual ball
as we wanted to be able to apply a matching algorithm, described later. A selection of balls in the test set is shown
in Fig. 11.

We tested such a classifier in RGB and HSV space with no noticeable change in accuracy. However we
found that while RGB classification required all three channels, in the HSV space only the Hue and Value channels
were needed. This type of classifier achieved 72.2% accuracy on the test set with most of the errors coming from
incorrectly classifying striped balls, Fig. 12. For example, all the red-striped balls (11) were incorrectly classified as
solid red (3).

Max Matching Classifier development:

The threshold-based classifier yielded low accuracy. A primary reason for this is that when the balls are in
motion, it is difficult for even a human observer to say if a shape is the striped-yellow ball (9) without looking at the
other balls in play. Thus the problem is equivalent to weighted bipartite matching problem between the detected
centers and the ball classifiers. This insight lead us to trying to find the most-likely or the lowest-cost matching for
all the centers in the frame. The algorithm had the following key steps:

1. Determine the probability density function (pdf) for the training set data. For the black ball (8) we used
Value whereas for the other balls we used Hue. Note for the reddish balls the Hue needs to be transformed
to range from -0.5 to 0.5 (-180° to 180°) as the Hue wraps between 0 and 1 (0° and 360°). Note that striped
balls consist of white pixels and other colors. See Fig. 13-14. We used kernel density estimation (KDE)
with the epanechnikov kernel.

2. For each ball patch in the frame, for each label, estimate the probability that the ball distribution is the same
as the training distribution.

3. For the frame, compute least cost matching between the detected balls and labels. We used the
hungarian/munkres algorithm with O(n?) running time because of ease of implementation and small number
of nodes in the graph.

When tested on the same test set as the threshold-based classifier this classifier achieved 98.64% accuracy.
Most of these errors were due to incorrect classification of false positives (ghosts) and striped balls, Fig. 15.

While we were unable to implement and benchmark the algorithm on an FPGA we measured the runtime of
our C++ implementation on CPU (Windows 10, Intel Core i7). Our original implementation of Step 2 used an open
source version of pdf estimation for each ball patch. However this ran slowly, and we found that by using a
histogram alone we could significantly improve running time with no noticeable effect on accuracy. To further
optimize the runtime, we used multiple threads to exploit the parallelism of the cost computation. 3 Threads yielded
optimal running time of 13.2ms. This is below the running time required to achieve 40fps.

The running time with the max possible threads (1 per detected ball) is worse due likely due to thread spawning,
heap access, and scheduling overheads, see Table 1.
Table 1
Classifier running time on CPU per video frame with 17 balls detected in frame (i.e. 1 false positive)

Original No pdf calculation
Threads 1 3 17 1 3 17
Time/Frame | 8.276s 5.99s 6.458s 18.072 ms 13.181ms 26.335 ms

Future improvements:

While a color based classifier was the simplest to implement, it is the least tolerant of variation in lighting
and differences in pool ball sets and tables from different manufacturers. While max matching helps address the
problem, it breaks down when multiple balls are blurred, badly lit, or absent as well as when a large number of false
positives are present. This created many integration issues with the iterative ball detection. We have thus thought of
the following improvements to improve accuracy and versatility. One observation was that classification probability
drops exponentially with distance from previous location. Thus we introduce a distance correction to the probability,
P,=P, ;+Ke G0 , where d represents the distance from the ball’s location at #-1, p is determined from the
training data, and K is a weight set experimentally. In our initial implementation we use (X,y) location (0,0) for balls

absent in the previous frame. If we implement tracking of scored balls, the pocket location can be used instead.
Prototyping this correction in Matlab showed improved accuracy on our test set of 99.5%. Tracking of scored balls
would also allow us to improve our matching by eliminating scored labels for the duration of the game. An
additional future feature we have considered is use of a calibration algorithm while the balls are racked and before
the game begins. This would help POOL-AID be tolerant of pool ball sets from different manufacturers however it
would not help with irregularity of lighting in different areas of the playing field or throughout the game. Ideally we
would like to move away from a color classifier to a feature based one in the future. It may be possible to use of a
Viola and Jones-like detector for detecting striped, black, and cue balls on grayscale images of the ball patches. Such
a classifier combines an Adaboost classifier with Haar-like features. However Haar features are not rotation
invariant and may not be suited for round/spinning objects. The pool balls also exhibit multiple modalities, not only
with rotation, but with motion blur, which complicates data set labeling and classifier design.

3.5 SHOT RECOMMENDATION:

Shot recommendation is meant to help pool players to learn the game. In order to help a player to better
understand the game, Pool-Aid visualizes shot paths, with which a player can easily tell at what angle to hit a ball to
score.

Key challenges for a pool game player are:

1. The angle to hit the cue ball in order to make a target ball roll into a pocket.

2. Where the balls will land at and after a collision.

3. Selecting the sequence of balls to hit to maximize the outcome of the game.
Pool-Aids aim to solve these problems for pool player by using the output of ball detection and identification to
generate a shot recommendation.

Shot recommendation implementation:
Shot recommendation is premised on ball locations, pocket locations, and physics. Consider the following
game scenario involving a collision between balls “A” and “B” (Fig. 1)::

L;

contact
point (CP)

vertical

Figure 1
The blue arrow indicates a path that we want the ball “B” to go (Presumably the blue line is pointing at a
pocket). We need to know where the initial cue ball location, “A” dashed, ball “B,” and pocket are. We rely on the
detection and identification of the pool table to output these locations. Then we apply calculation based on the
locations to find the contact point, W(x, y), where the collision takes place and the angle © that cause the collision
take place. With ¥(x, y) and O, we can render the red line above for the pool game. This process solves the first
challenge of “what is the angle we must hit the cue ball at.”

Since the process of shot recommendation runs before a real shot takes place, we don’t know what is the
velocity of the cue ball so to predict where it lands will be challenging. But shot recommendation is always focus on
making pockets after a shot. In other words, our goal of taking a shot is to hit ball “B” into a pocket. Therefore we
can estimate where the balls will land at after collision based on the data we have. First select a possible pocket on
the table that ball “B” can go in. Calculate the range of velocity A V', ; (min, max) for ball “B” that can reach the
pocket.

VQB

Vau

Figure 2

Now we have the estimated velocity of ball “B.” By applying some mathematics we can get the estimate
values of velocity V,,. V', is the main impact of the calculation which depends on the player . Thus we add an
uncertainty variable o into the calculation. Then we are able to get a set (noted as 3) of possible locations of where
the cue ball will land at after collision. However, if we provide this location set to a player, that will be hard for the
player to understand and rendering will be difficult. Hence we take the mean of all the location inside the set and
output the mean value to the renderer as our final decision. This process solves the second challenge of determining
“where the balls will land at and after a collision.”

Figure 3

Demonstration of the shot recommendation overlaid on the table

Future improvement

While Fig. 3 demonstrates that we have addressed the first and second challenge, we want to solve the last
challenge of “selecting the sequence of balls to hit to maximize the outcome of the game” in the future. Our idea for
an algorithm is to calculate the set & of cue ball based on every hittable ball on the table and merge all the set 3’s to a
power set (noted as X). For each location in X, we make a filter to select the one that is closest to a hittable ball
which is the closest to any hittable pockets on the table. Then we manipulate the set with the filter to get the best
shot (noted as B) and output it . Finally, we output the data of B to renderer to display the shot path from cue ball to
ball B and the aftermath location of collision.

3.6 HARDWARE ACCELERATION:

Several video processing functions would greatly benefit from acceleration. As part of the project an
attempt was made to use an FPGA to accelerate portions of the algorithm, though this was ultimately unsuccessful.
Several notes regarding the use of FPGA tools such as Vivado are included here.

The following is a rough description of how to generate and upload a video processing structure onto an
FPGA.

1. Write HLS code using C/C++, or use existing openCV HLS libraries
Use Vivado HLS to generate an IP core, which can be imagined as a hardware block
Use a separate program to connect your custom IP core to the processor
Program the processor using more accessible C/C++ code, though in a way that integrates your block

nokwn

Upload everything onto the board and processor.

Our group encountered numerous issues throughout this process, many tutorials are specific to a particular
version of Vivado, and many structures require unique licenses that we did not have access to. If you are using HLS
design tools for the first time, expect the process to take several months.

Ultimately we were able to output solid bars through the HDMI port (Fig. 16-17), though we were not able
to load images / video onto the board in time for our final submission dates.

4. MILESTONES:

We started the quarter aiming to achieve high detection and classification accuracy, design shot recommendations,
and implement our algorithms on the FPGA. However while we succeeded in design milestones we did not finish
our FPGA related milestones as they ended up being more technically challenging and took longer than the time
allowed.

The following milestones were successfully completed in this project:
1. Collect an hour of pool footage and create test and training data sets.
Dynamic Pool Table Identification.
Pool table subtraction.
Accurate Pool Ball Detection
Pool ball classification 95% accurate and at 40fps.
Convert all code to C/C++.
Shot physics/trajectory calculation.

NS kW

We ended up modifying and or not completing the following milestones:

1. End-to-end pipeline integration. While we converted all our code to C++, integrating the iterative detection
and integration posed some design challenges and we have several unresolved integration issues.

2. Libraries Compiled using FPGA synthesizable code. While we could not complete this for all our code, we
synthesized a function calling an openCV HLS version of the openCV method used in our project.

3. Benchmark performance on the FPGA.As we did not finish loading our code to the FPGA, we did some
benchmarking on CPU instead.

4. Stream video/ images to the FPGA. This milestone was modified to showing color bars from the FPGA.

5. Full video capture/processing independent of PC. This was not completed as it was dependant on earlier
milestones listed above.

5. CONCLUSION:
POOL-AID demonstrates how object detection, physics, and geometry can be combined to provide helpful shot
recommendations. While our current application runs only on a PC, it can be modified to make us of a FPGA in the

future. With the following modifications our project can be relevant and helpful to players with varying amount of
skill.

A

Support variation of lighting during the pool game.

Support different pool ball sets and tables.

Keep track of pool balls that were shot into pool pockets for the duration of the game.

Make use of a non-color-based classifier.

Recommend not a single shot, but the first of a sequence of balls to hit to maximize the outcome of the
game.

Use HLS to accelerate object detection algorithms.

9. REFERENCES:

(1)

@)

©)
“4)
)

(6)

(7

Lars Bo Larsen, Rene B. Jensen, Kasper L. Jensen, and Seren Larsen. Development of an automatic pool
trainer. In Proceedings of the 2005 ACM SIGCHI International Conference on Advances in computer
entertainment technology, ACE *05, pages 83—87, New York, NY, USA, 2005. ACM.

Lars Bo Larsen,Peter M. Jensen, Kenneth Kammersgaard, and Lars Kromann. “The Automated Pool
Trainer - a Multi Modal System for Learning the Game of Pool.” Intelligent Multi Media, Computing and
Communications : Technologies and Applications of the Future. IEEE Computer Society Press. 2001,
pages 90-96. accessed online June 2 2016
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.982 &rep=rep 1 &type=pdf.

“Detecting billiard balls with OpenCV.”
http://stackoverflow.com/questions/8162234/detecting-billiard-balls-with-opencv

Jesper Baekdahl and Simon Have. Detection and Identification of Pool Balls using Computer Vision. 2011.
accessed online June 2 2016 http://vbn.aau.dk/ws/files/52663081/main.pdf

“Hacking on Side Projects: The Pool Ball Tracker.” accessed online June 2 2016
http://vbn.aau.dk/ws/files/5266308 1 /main.pdf

openCV findContours documentation:
http://docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight

=findcontours#findcontours
openCV minEnclosingRectangle documentation:
http://docs.opencv.org/2.4/modules/imgproc/doc/structural analysis and shape descriptors.html?highlight

=minarearect#minarearect

®)
)

Group using Hough Lines to detect pool table https://pranjalv.com/poolvision.pdf
The physics of Billiards: http://www.real-world-physics-problems.com/physics-of-billiards.html

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.982&rep=rep1&type=pdf
http://stackoverflow.com/questions/8162234/detecting-billiard-balls-with-opencv
http://vbn.aau.dk/ws/files/52663081/main.pdf
http://vbn.aau.dk/ws/files/52663081/main.pdf
http://docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=findcontours#findcontours
http://docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=findcontours#findcontours
https://pranjalv.com/poolvision.pdf
http://www.real-world-physics-problems.com/physics-of-billiards.html

Figure 4.
Perspective of footage that is sent to the algorithm

Figure 5

Masked image of table after table color is isolated

Figure 6
Table image after it has been warped to fill the frame

Figure 7
Image after background is masked out

Figure 8
Mask before morphological operations

Figure 9

Image after morphological operations

Figure 10
Image once each potential ball is displayed over table image

Figure 11
Selection of pool ball test images. From left-to-right: false positives, balls 1-15, and cue ball.

Classification Accuracy
5 © © © 9 ©
%) [B wm =] ~

<
i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Cue

Figure 12. Test classification accuracy of the threshold-based classifier.

Pdf for reddish (left) and non-red (right) balls. Note the small overlap between yellow (1) and cue ball and the large
overlap between the red (3) and maroon (7) balls. Since a matching algorithm is used, this is acceptable.

Training set likelihood

Special cases for the black and striped balls. Left, the black ball is not distinguishable by hue thus the value channel
is used. Right, pdf for the blue-striped ball (10). Striped ball pdf overlaps both the solid (2) and the cue distributions.

Training set likelihood

30

25|

N
o

-
o
T

=
o
T

—3
—4

Transformed Hue

60

50

w £
=] o

Training set likelihood
nN
o

107

Value

Classification Accuracy
© © ©® © ©9 o©
%] w - (%] o -~

T T T T T T

=
o
T

(=]

Figure 13

35

Training set likelihood

Figure 14

30

N
o
T

N
o
T

o
T

o
T

o
T

5 0

—2

—6
— Cue

0.2

13

04

14

—10

08

15 Cue Ghost

Cue| |

Figure 15
Test classification accuracy of the Max Matching Classifier classifier.

Figure 16 Figure 17

