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1 Abstract 
Understanding rainforest habitats is made difficult by accessibility, density of foliage, and 

coverage; yet it is vital for ecologist and conservationists to understand the variety and diversity 
of these ecosystems. In this paper we demonstrate a low cost pipeline for obtaining high 
resolution aerial imagery using a small unmanned aerial vehicle (UAV). Second we show how 
advances in deep learning enable processing the imagery to obtain highly accurate population 
counts of trees that is extendable to multiple species. Specifically we demonstrate the ability to 
detect 98% of visible Cohune Palm trees and 96% of deciduous trees who had visibly lost their 
foliage in a 8.73km^2 of rainforest. By using these trees, we identify key habitat 
characteristics of this forest not realized previously. 
 

2 Introduction 
Tropical rainforests worldwide are negatively impacted from a variety of human-caused 

threats (Wright, 2010) including deforestation and climate change.  However, our ability to study 
these rainforests can be impeded by problems ranging from their physical inaccessibility to 
cloud-covered remote sensing data (i.e. Landsat imagery).  One solution to these problems is 
the use of Unmanned Aerial Vehicles (UAV).  UAVs have been used successfully in 
conservation (Wich, 2015), and for determining complex forest characteristics such as biomass 
from Structure from Motion (SfM) imagery (Ota et al., 2015).  

Automated tree detection and crown delineations is an active field of study in both the 
satellite and UAVs domains using passive mediums such as high resolution imagery (Pouliot 
2002) and with hyperspectral cameras (Zhang 2012). Recently Light Detection and Ranging 
(LIDAR) has been growing in popularity for its ability to discriminate in three dimensional space 
(Zhen 2016). Both hyperspectral and LIDAR are costly and drastically reduce the range of UAV 
due to heavy weight making them an unattractive choice for many conservationists. On the 
other hand small flying wing UAVs that are nearly end to end autonomous are increasingly 
being equipped with high resolution cameras with flight durations upwards of one hour. These 
platforms present researchers without significant budgets the ability to acquire huge amounts of 
very high resolution data. 

An intelligent method for analyzing this data is needed that is able to handle both the 
density and diversity of trees present in rainforest canopies. Deep convolutional neural networks 
(CNN) have been extremely successful in classification tasks with fine-grained classes 
(Krizhevsky 2012), (Szegedy 2015). For example a deep CNN was shown to make medical 
diagnosis between malignant and benign skin cancer on par with seasoned dermatologists 
(Esteva 2016). There has been significant research on adapting CNNs for the challenging task 



of object detection and recognition, i.e. the task of both localizing and object within an image as 
well as classifying it (Redmon 2016), (Liu 2016). 

In this paper we present three contributions. First we describe a low cost UAV setup that 
allowed us to obtain high resolution georegistered orthomosaics with a spatial resolution of 4.93 
cm/pixel at our main site, and .  Second we describe the process of training a state of the art 
deep convolutional neural network (CNN) for detecting both Cohune Palm trees as well as 
Deciduous trees. We present results showing extremely accurate with greater than 96% 
detection rate and low false positives. We demonstrate the ability of this detector framework to 
work effectively on other dataset under different lighting conditions and flight parameters. 
Finally we draw conclusions from this data on the harpy eagle…. 

3 Convolutional Neural Networks 
In 2012 Alex Krizhevsky proposed a learning algorithm that used layers stacked layers of 

2D convolution filters to form a deep neural networks are  able to learn complex representations 
of objects. The method is loosely inspired by how the human visual cortex system operates. His work is 
largely considered a silver bullet that helped computer vision researchers overcome a barrier in 
classification accuracy that they had been running up against. Since then CNNs have become 
the state of the art method for computer vision tasks.  

CNNs work by convolutioning 2D filters across an image which has the effect of 
preserving the spatial structure of the objects in the image. Multiple convolution layers as well 
as non-linear layers such as max pooling and sigmoid activation are combined together in order 
to form models that can learn complex hierarchical representations of objects. Backpropagation 
is then used to learn the correct filter weights given sufficient training data which is usually quite 
large.  CNNs have been extended to not only classify the image as a whole, but to localize 
individual objects within the image which is of particular interest in the paper.  

3.1 Deep Learning Framework 
Two state of the art networks for object detection and recognition, Faster-RCNN and 

YOLOv2, were examined for use. Faster-RCNN creates region proposals by using a a region 
proposal network (RPN) that shares convolutional layers with a deep convolutional network 
(Ren, 2016). YOLOv2 instead uses a single network that simultaneously predicts location and 
class (Redmon 2016). Both implementations have comparable results on the standard datasets 
as well as open source software implementations. Faster-RCNN is implemented using the Caffe 
Framework; open source GPU accelerated framework for training and testing deep learning 
algorithms from Berkley (Jia 2014). YOLOv2 uses Darknet a custom GPU accelerated 
framework specifically created for YOLO and YOLOv2, but with extensions to other deep 
learning techniques such as recurrent neural networks (Redmon, 2016).  

We chose to use the darknet framework and YOLOv2 for its ability to easily train on 
higher resolution images which is of particular interest in preserving geospatial features from the 
UAV imagery. The time required to get YOLOv2 working with a custom dataset was also much 
lower than FASTER-RCNN whose implementation was difficult to work with. 



4 Methods 

4.1 Study Area 
 
We collected aerial survey data over two adjacent protected areas located in the Maya 
Mountains in the Toledo District of southern Belize (Figure 1). The first was a 467-hectare 
(1,153-acre) site administered by the Belize Foundation for Research and Environmental 
Education (BFREE; 16.5°N, 88.6°W).  The second site was the 39,270-hectare (97,039-acre) 
Bladen Nature Reserve (BNR), a government reserve, under the highest level of protected 
status in Belize (Forestry Department, Government of Belize).  The two sites are part of the 
607,028 hectares (1.5 million acres) Maya Mountains protected area system, often considered 
one of the largest remaining unspoiled, mixed tropical forest ecosystems remaining in Central 
America (Brewer and Webb 2002, Olivet and Asquith 2004, Dourson 2013).  Elevation and 
precipitation in the Maya Mountains range from 80 to 1000 meters with rainfall averages 
between 2500 and 3000 millimeters (80-100 inches) of rain per year.  The area has distinct wet 
and dry seasons, of which 89% of the rainfall occurs between May and December (Brokaw and 
Lloyd-Evans 1987).  Both the BFREE and BNR areas have been classified with only 
coarse-scale, generalized habitat categories including: mainly tall and low tropical evergreen 
forest (low forest is referred to as “Broken Ridge” in Belize), and a variety of disturbed habitats 
including early secondary forest, riparian edge, seasonally inundated forests, and cacao 
agroforest at BFREE; and tall to medium, tropical evergreen forests as well as smaller amounts 
of mixed low forest with some disturbed riparian edge near the Bladen River for the BNR (S. 
Brewer, personal communication).  
 

4.2 Flight System 
The imagery was collected using a  2 meter wingspan fixed wing airplane, the Voltanex 

Ranger, shown in figure 1. The Ranger is fitted with an ardupilot autopilot system, which allows 
for autonomous control over long range flights. This flight system was selected due to its rugged 
design, payload capacity, and long range. The tough body and 60 km range are requirements 
for jungle flight operations, where landing areas are rare and rough.  

 
Figure 1: Voltanex Ranger, Last Flight  



Data was collected over 3 days with 6 flights total. The paths of all flights are shown in 
figure 2. All flights began from the same location, where there is ample room for takeoff and 
landing. All flights were conducted with both visible camera and near infrared cameras, which 
limited range due to weight but lowered the number of required flights. This was necessary 
because of the short flight window due to weather.  

 
Figure 2: Flight Paths 

To access other areas of interest in the region, future flight operations will benefit from 
upgrades to the system. The areas of the long range surveys were impacted due to range limits. 
This problem could be fixed by a new plane capable of longer range, or a system capable of 
takeoffs and landings in smaller areas, which would allow for more potential takeoff and landing 
locations deeper in the BNR. 

4.3 Dataset 
The raw data collected from the UAV flights consists of very high resolution images that 

have been orthorectified and stitched together into a single image using a process called 
structure from motion (Dandois and Ellis, 2010). We trained our CNN based object detector on 
pieces of this large orthomosaic which we will refer to as tiles. Each tile represents 
approximately 100m^2 of rainforest. The tiles were shown to volunteers who were asked to label 
Cohune Palm trees by the drawing bounding boxes around each visible palm tree. A demo 
video and images were provided which described how the boxes should be created. An 
example of labeled palm trees using the web tool is shown in figure 3. The labelers collectively 
spent 10.5 hours annotating the data resulting in a total of 9330 bounding boxes. This was 
divided into a training set and testing set with 75% and 25% of the boxes respectively. 



 

Figure 3: Labeling Web Tool 

 For the deciduous trees the total number of tree was much fewer and the labeling was 
accomplished in approximately 6 hours. We found that the interclass variation was much higher 
with deciduous trees which put a greater strain on the labelers. As a result the labeled data 
varied much more. For example in figure 4 are two examples of deciduous trees where  

 
 

     

Figure 4: Deciduous trees used for Training 

 



 

 

 

Figure 5: BFREE Orthomosaic 

 

4.4 Training and Tuning the Network 
Training large convolutional neural networks is a very computational task which is often 

performed on Graphic Processing Units or GPUs. We trained the networks using a NVIDIA GTX 
1080 graphics card using a pre trained model provided on the darknet website. This model was 
originally trained on the VOC dataset (Everingham, M. 2015). We trained for approximately 
10,000 iterations on our dataset which took roughly 36 hours. This was validated by a test set 
that made up 25% of the total data. 

One important tuning parameter is the size of the image. Images typically aren’t 
processed with their original size as its computationally impractical; however, YOLOv2 allows 
the user to easily select the resized image. We found that since we inherently had very high 
resolution imagery we could significantly increase performance by increasing the input 
resolution to the network.  

5 Results 
Two ways of calculating the performance our network were considered. The simplest 

approach to calculate the number of trees correctly found would have been to first discard any 
boxes whose confidence prediction doesn’t meet a certain threshold  and then compare the 
center of the remaining boxes with the human boxes. If that center is within the human box we 
could consider it a success. Now consider the case where the predicted box is very small in 



comparison to the ground truth and perhaps located in one of the corners. It would be clear to 
any human evaluator that this was not a good prediction.  

We instead evaluated efficacy by using the intersection over union (IOU); a more holistic 
representation of how well the predicted boxes matches training data. IOU is the intersection of 
the darknet created bounding box with the human created bounding box divided by the union of 
the darknet bounding box and the human bounding box. Since the network produces many 
bounding boxes we need to associate the generated boxes with the human created bounding 
boxes. This is done by greedily searching for the darknet box that gives the highest IOU given a 
human box. If the IOU meets a certain threshold we conclude that the tree was found. Two 
examples of IOU calculations can be seen in figure 9. If all possible IOUs are zero or below a 
threshold then we count the human box as a false negative. Otherwise we count the darknet 
box as having successfully found the tree. Any darknet boxes left over after this process 
completes are considered false positives. We chose an IOU threshold of .3 as our standard, but 
report results using several IOU thresholds. While this may seem rather low the idea is to simply 
match the boxes perfectly, but to detect if there is actually a palm tree at that location. We found 
empirically from examining the results that the majority of box pairs with an IOU of .3 were true 
detections.  In the two tables below we report results from running darknet on the palm tree and 
deciduous tree test set while varying the IOU threshold required to consider a tree found. 

IOU Threshold Total False Negatives Recall Average IOU 

.300 2984 89 98.20% 59.90% 

.325 2984 110 97.66% 59.90% 

.350 2984 135 96.64% 59.90% 

.375 2984 174 95.32% 59.90% 

.400 2984 220 93.76% 59.90% 

.450 2984 368 88.74% 59.90% 

.500 2984 619 80.22% 59.90% 

 

IOU Threshold Total False Negatives Recall Average IOU 

.300 236 228 97.03% 58.68% 

.325 236 226 95.76% 58.68% 

.350 236 219 92.80% 58.68% 

.375 236 214 90.68% 58.68% 

.400 236 207 87.71% 58.68% 

.450 236 195 82.63% 58.68% 



.500 236 179 75.85% 58.68% 

 
In figures 6, 7, and 8 we show heat maps of both sets of trees. This is done by creating 

shape files that contains points consisting of the latitude, longitude pair. These shapefiles are 
then import into a geographic information system called QGIS. QGIS gives us the ability to turn 
the shapefiles into heatmaps and overlay them on the aerial imagery. 

 

Figure 6: Cohune Palm Tree Heat Map 

 

 

Figure 7: Deciduous Tree Heatmap 

 
 



 

Figure 8: Overlay of both Cohune Palm Trees and Deciduous Trees Heatmap 

 

6 Discussion 
 
One issue that contributed to this threshold was the variation in how humans labeled data. As 
you can see in figure 9 the human labeler on the right created boxes that did not encompass the 
entire tree while the labeler on the left did. This variation in ground truth led to a lower than 
desired IOU results as the network was trained using inconsistent ground truth data.  
 

 

Figure 9: Example IOU with blue corresponding to the human box and red the darknet created 
box. 

 



It’s also important to note that all labelers were not trained in tree identification. While not 
necessarily a problem for palm trees which are rather distinct from other tree species it became 
a problem with deciduous trees where the difference in annotation throughout the dataset 
variedly largely. 

Both of these issues could be resolved by giving labelers better training prior to created 
the ground truth datasets. We would expect that this along with creating larger datasets would 
help improve the CNNs performance. 

7 Conclusion 
In this paper we demonstrated a pipeline for capturing high resolution aerial imagery in 

high density rainforests using UAVs. We then pull useful population distribution information of 
Cohune Palm Trees and all Deciduous Trees by applying state of the art convolutional neural 
networks as an object detection and recognition system. We are able to achieve very good 
results for recall and competitive IOU scores. This method while applied to finding trees in South 
American rainforests could easily be applied to other applications and environments. It could 
even be applied to tracking and counting populations of animals. 
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