Cloud-Based LightSwitch
Edgar Lopez-Garcia
Professor Kastner
CSE 145 Spring 2016

Abstract

This paper discusses the research, implementation, and contributions achieved from the Cloud-Based LightSwitch
project. The goal of the project was to enable cloud-based control of house lights in an economic manner. To
promote this goal, cheap widely available hardware components like the ESP8266 WiFi module and Arduino Pro
Mini 3.3v were utilized to make this goal into a reality. The research of this project led to a documented way to
easily use the ESP8266 WiFi module for Internet-Of-Things (IOT) projects, which is talked about in this paper.
With the ESP8266 providing WiFi connectivity, the Arduino Pro Mini is used in conjunction to power calculation
heavy operations and provide control of components connected to it. The ESP8266 WiFi module paired with the
Arduino Pro Mini, provides a robust platform for any IOT project.

Introduction

The goal of the Cloud-Based LightSwitch project was to research a way to control house lights from anywhere in
the world in an economical manner. The main benefits of being allowing control of house lights worldwide
include: reduced electricity bill charges, prolonged bulb lifespan to reduce waste, and reinforced home security by
making people think someone is home. With economic-cost in mind, the components of the project were chosen
carefully to allow for the most price-conscious components without sacrificing easy usability. For this reason, the
ESP8266 Wifi module, along with the Arduino Pro Mini were chosen. At the time of writing, the ESP8266 can be
purchased for as low as $6.95 from a reputable seller . The Arduino Pro Mini 3.3v used in this project can be
purchased for $9.95 2. Together, the total cost of the project sums up to $16.90, which is much more cost-effective
than other products that provide a similar functionality. Note that these components can be purchased for a reduced
price from 3rd-party resellers. However, quality and reliability are some things to consider when purchasing
through these outlets.

There are a couple of reasons that a user would want to control their house lights from anywhere in the world. One
reason is to lower the electricity bill by not wasting electricity on having house lights on when they are not in use.
The table below shows a breakdown of the cost of having a fluorescent and incandescent bulb on 24 hours a day
for a whole year. The data and rates used to calculate this cost was used from SDGE.*!

i

-

Fluorescent Bulb (13-18 watts) Incandescent Bulb (100 watts)
1¢/hr 4¢/hr
$87.60 Annually $350.40 Annually
24,000 - 36,000 hours 750 -2,000 hours

Tablel Comparing Fluorescent and Incandescent bulb yearly cost

From the table we see that wastefully leaving house lights on can be costly in the long run. Considering that an
average household has around 12 lights, we can see that the cost rises drastically. If a user were able to check if

they accidently left a light on, and turn it off remotely, then the user could save a lot of money on their electricity
bill.

Another reason a user would want to remotely control house lights is to increase the lifespan of said lights. In
connection with the cost problem, this will also save the user money because they would have to buy less light
bulbs to replace when they burn out. From table 1, we see that on average a fluorescent bulb will last up between
24,000 - 36,000 hours, while an incandescent bulb will last 750 - 2,000 hours. By allowing the light bulbs to not
wastefully be on, the lifespan could be expanded further. Since users would have to buy less bulbs with the
extended lifespan, less waste would be produced, which is something that benefits everyone.

Finally, controlling house lights remotely increases home security. Users can switch lights on and off remotely to
give the effect that someone is home. This is a deter for burglars or home invasion attempts as they will less likely
target a house in which the residents are present. This saves the user from valuable items being stolen from their
home.

The outcomes of this project provided not only a working proof-of-concept but resources for usage in other [OT
projects as listed as follows:

Organized documentation and usage of the ESP8266.

Interfacing instructions between ESP8266 and Arduino Pro Mini on both hardware and software level.
Android application that sends HTTP requests to ThingSpeak server.

Setting up a ThingSpeak server for your IOT project.

Parsing ThingSpeak responses to control light based on light state in server.

Technical Material
Talk about all the components you had to use for prototyping the project. Talk about the process and how
everything connects. Use A LOT of pictures to show all this stuff.

For this project, multiple technologies were integrated in order to deliver a working solution. Figure 1 shows the
roadmap for how these technologies interact with each other.

Android
Phane Croud Router
Pl L EFE h
=]
a—f— p——————
L Milestome 5 & i y
M i|{1+e 3
r i
Milestone 4 Mibestone 2
—_—
— —1
N i A
Lighsource ”:Ii'l";";“ ESP2888 WiFi
Figure 1

As you’ll notice by figure 1, the light bulb, and ESP8266 interface with the Arduino Pro Mini. The Arduino acts as
the medium for control. On the hardware side, both the ESP8266 and light interface with the Arduino, which acts
as the “brain” of the project. The arduino uses the ESP8266 to connect to the ThingSpeak server and grab light
status information that is stored on the server. The light source relies on signals from the Arduino that tell it to turn

on or off. The arduino knows when to power on or off the light source based on the type of light status it gets from
the ThingSpeak server.

00000 9:
o 6ND UCC RXI TX0 =

xeo® oMl <
Mini Mg €

o
__‘-*-, Arduino Prg o
> B h
:E.A-l.:” : 5 -
[« -
& _

Figure 2 The ESP8226 (left) and Arduino Pro Mini 3.3V (right)

Figure 2 shows the ESP8266 and Arduino Pro Mini. Milestone 2 involved interfacing both components through
hardware and software. For the hardware side, the Arduino and ESP8266 needed to communicate data with each
other by connecting the TXD and RXD from the ESP8266 to pins in the Arduino that accepted serial
communication (which is configured in software). Figure 3 shows the hardware connections between the ESP8266

and the Arduino.

- ¢
L .
.. Bl
-
T 1&
,

sa83: D388 e2g:

—

Figure 3 Hardware configuration of system

You’ll notice from figure 3 that there are other components introduced to the system in order to make it function. In
particular, the FTDI Basic Breakout, ESP8266 Prototyping Adaptor, and Breadboard Power Supply Stick 3.3V
were used for prototyping the system. In a real-life deployment, only the Arduino and ESP8266 would exist.
However, these extra components are crucial for prototyping and testing the system. Figure 4 shows these three

components separately. The FTDI Basic Breakout is used to communicate between a computer and Arduino. This
component is absolutely essential because it is the method of programming the Arduino with the code that will
control the light and communicate with the ESP8266. The FTDI Basic Breakout is seen in figure 3 to the far right
connected to the Arduino and USB cable. The ESP8266 Prototyping Adaptor is not an essential component to the
project; however, you will find that the stock ESP8266 is not prototyping-friendly. A custom adaptor can be made,
in which I attempted to do, but the prototyping adaptor is cheap enough that it is worth getting one if it means
avoiding the effort to create your own adaptor. Furthermore, it is more safe to use the adaptor as you make damage
the ESP8266 when creating your own custom adaptor. The ESP8266 Prototyping Adaptor can be seen in figure 3
under the ESP8266. Both the ESP8266 and Arduino require a 3.3V power supply. The BreadBoard Power Supply
3.3V can plug directly into the ESP8266 and Arduino to power them and had the added benefit of being able to be
used easily on a breadboard. It can be seen on the for right side in Figure 3.

ESP8266 (Through adaptor) Arduino Pro Mini 3.3V BreadBoard Power Supply
vCC - vCC
GND GND GND
UTXD PIN 10 -
URXD PIN 11 -
CH_PD — VCC - -

Table 2: Hardware connection between ESP8266, Arduino, and BreadBoard Power Supply

Arduino Pro Mini 3.3V FTDI Basic Breakout
VCC (TOP) 3V3
GRN GND
TXO0 RXO0
RXO0 TX0

Table 3: Hardware connection between Arduino and FTDI

4 o = =
a7 ; — [@Txo GNDIE -__
@ 0 TX RX WM — @)cHpD|(6P2(@) -
HHHmm P 057 |(cro(0) IR
i) - — Qucc | #x0©) R

ESP8266 Adapter U1.0

)

a
z
o
»n
[
o
©
3
®
o
x
-
-
7
a
@
=
a

Figure 4: FTDI Basic Breakout 3.3V (Left), ESP8266 Prototyping Adaptor (Middle),
BreadBoard Power Supply Stick 3.3V (Right)

Table 2 and 3 shows the hardware connection between the components used in this project. The ESP8266 are
connected with each other to share power and data. The BreadBoard Power Supply connects to both components in
order to power and ground them correctly. The FTDI Basic Breakout is connected to the Arduino Pro Mini through
the headers. As mentioned before, the FTDI Basic is required to program the Arduino. I left it connected for the
whole project as it powered the Arduino directly and also made it easier to debug the Arduino code because it
allowed me to view the program output in real-time.

There are quite a few tutorials on using the ESP8266 and Arduino Pro Mini for IOT projects. However, most are
unorganized and do not give you the full picture. The result as that it is difficult to integrate the same methodology
from tutorials to your own projects. The research done in this project provides an organized documentation of the
usage of the ESP8266 that will lend well to expandability to other IOT projects, as it is the core for any IOT
project. Using a microcontroller such as the Arduino Pro Mini gives great flexibility and control of components
within the project. Once the Arduino, ESP8266, and computer are connected together, communication to the
ESP8266 takes place through AT+ commands!*.

Table 4 shows the AT commands [used in this project in order to communicate with the ESP8266 and allow it to
be controlled by the Arduino.

Command Function
AT+RST Reset Module
AT+GMR Print firmware version
AT+CWLAP Search available APs
AT+CWIJAP Connect to specified AP
AT+CIPSTART Start a TCP connection to specified server
AT+CIPSTART Start an HTTP request
GET HTTP request sent after connection to server

Table 4: AT+ commands used to communicate with the ESP8266

To enable remote control, the Android platform is used in this project. The Android platform is widely used around
the world. With its robust application-building platform, it is possible to rapidly develop powerful applications in
any domain. It’s SDK and tools that are provided for developers makes it easy to integrate the Android system to
many projects. In particular for this project, it acts as a control interface for the light switch. Since mobile data can
theoretically be used anywhere around the world (so long as there is mobile reception), the Android platform fits
perfectly with this project to enable users to control their home lights from anywhere in the world. The Android
application serves two purposes for this project:

1) Give real-time house light status to users.
2) Allow users to control house lights on-the-fly.

Thus, the Android application is a crucial component of the project, and its functionality and implementation is
documented in this paper.

0 A od C 7% & 7:53P QOO sccA 3T 02P QOO sccA 3L FTMo02p

LightSwitch : LightSwitch 2 LightSwitch

Light status: 1

NEW BUTTON

&

Figure 5: Arduino application user-interface. first iteration (left) and second iteration (middle,
right)

Figure 5 shows the iterations of the user-interface of the Android application. The first iteration is the default Ul
that comes with an Android activity. [added the light status text to indicate feedback from the ThingSpeak server.
Iteration one of the Ul was essential used to test the correctness of the infrastructure for the Arduino application.
Once I was confident the infrastructure was implemented correctly, I focused on adding graphics and streamlining
the user-experience. I did this by making the whole screen a button because this emphasises that the app is to
switch on/off similar to a lightswitch you would find at home.

Milestones

This section should describe the milestones that you stated at the beginning of the quarter, the revisions that you
made in the middle of the quarter. It should provide details on the milestones that you did and did not achieve,
with an explanation on why you did not achieve any milestones. It should also discuss the problems that you
encountered over the quarter and how you managed them. This is not in a typical technical paper.

Initial milestones
e Milestone 1: Solder chip for easy prototyping
o Milestone 2: Interface Arduino and WiFi communication
o Hardware connection
o Software connection
o Communication (Parsing commands)
e Milestone 3: Interface WiFi chip and router communication
o Communication
e Milestone 4: Light-switching mechanism on Arduino board
o Allow WiFi to control this light-switching mechanism
e Milestone 5: Interface cloud-based communication
o Acquire server (maybe thingspeak)
o Communication to server (Arduino — WiFi — Router — Server)
e Milestone 6: Android Application

Communication with cloud
Register light feature
Display light status

Turn on/off

O O O O

Revised milestones
e Milestone 1: Solder ESP8266 to adaptor for easy breadboard prototyping
e Milestone 2: Interface Arduino and ESP8266 communication
o Hardware connection
o Software connection
e Milestone 3: Connect ESP8266 WiFi chip to Internet network
o Setup server on ESP8266
e Milestone 4: Light-switching mechanism on Arduino board
o Let commands received from ESP8266 turn on/off current on pins that light is connected to
e Milestone 5: TCP connection from ESP8266 to ThingSpeak
o Acquire ThingSpeak server
o Receive data from ThingSpeak server (Server — Router — ESP8266 — Arduino)
e Milestone 6: Android Application
o Communication with ThingSpeak server
o Change light flag in ThingSpeak channel
o Display light status

These milestones were grouped up into tasks and mapped to a gantt chart to impose target deadlines for each task,
allowing milestones to be completed within a 10 week period. The tasks created and allocated in the 10 week
timeline are shown in figure 5. The Arduino & WiFi task includes milestones 1-3. This task is the core part of the
project. It is required before any further development can be made because communication between the ESP8266
and Arduino is needed to connect to the ThingSpeak server. The task WiFi & Router is the interface between the
ESP8266, and ultimately the Arduino, and the ThingSpeak server. This task is what connects the ESP8266 to the
outside world via a home router. The Cloud task deals with any operation required to provide cloud functionality
to the project. This includes setting up the ThingSpeak server and communication with it. This task is documented
in milestone 5. The Switching task encompasses milestone 4. This task is to accomplish the switching functionality
between the Arduino and light. The result from the request to the ThingSpeak server from the ESP8266 are parsed
by the Arduino and the light is turned on or off depending on the state of the value of the light recorded on the
ThingSpeak server. The Arduino task is delegated with milestone 6 in that it encompasses the development of the
Android application. Finally, tasks Software and UI/UX are auxiliary tasks that are not required for the system to
function. These are tasks that would be nice to finish if time permits.

Week 1 Week 2 Week 3 Week 4 Week 5 Week & Week 7 Week 8 Week @ Week 10
Design
Prototyping

Software
Quality Control
Final Presenting

Figure 5: Gantt chart of the project

The Gantt chart was designed so that there was a buffer in case some tasks took longer to complete (as they could
bleed into the auxiliary tasks slot). For the most part, the tasks were on track with the proposed Gantt chart,
however I did run into some problems that slowed down development for some tasks. Connecting the Arduino to
the computer took some time to work because sometimes it would work and I could send commands to the
ESP8266, but other times it would not work. At first, I thought the ESP8266 had been burned out since [was
tinkering with the power supply to it. I ended up buying a second ESP8266 WiFi chip. It took a week to ship so the
Arduino & WiFi task halted. Eventually I got it to work and continued development after a costly week. Another
problem I faced that took an extra week to complete was the Switching task. Setting up the ThingSpeak server was

pretty straightforward. However, there was not much documentation on how to receive HTTP responses with the
ESP8266; thus, it took a while for me to figure that out. In the meantime, [worked on the Android application
while trying to figure out the Switching task. To my surprise, I was able to create the Android application within
two days, rather than a week as I original thought. This saved me a lot of valuable time in development and
allowed me to catch up on task development that was falling behind.

Overall, I was able to complete all the core tasks for the project. This means that all milestones were completed.
However, I was not able to fully fulfill the auxiliary tasks. In particular, the UI of the Android application could
have been much better. The software on the Android side was not very organized, and is not in a state to allow
expandability. would have liked to clean up the code and apply architectural and design patterns to make it easier
to manage and expand.

Conclusion

In today’s modem world, we take light for granted. We waste it by leaving it on when it is not in use, and this
causes many problems: it makes electricity bills costly, and damages the environment by producing more waste
because light bulbs have to be replaced more often. The goal of the Cloud-Based LightSwitch project is to reduce
these problems by allowing users to remotely control their house lights from anywhere around the world. To do
this, the Arduino platform, along with a “smart” switch consisting of the Arduino Pro Mini and ESP8266, was used
since it is one of the most accessible and widely used platforms. It was chosen with the idea that users always have
their Android phone with them in an accessible place at all times. By allowing users to control their house lights
with their Android phone, it introduces accessibility to control the house lights because shutting them off is only a
tap away.

Much of the work done in this project builds on the groundwork needed for this functionality to be used by users.
This project researched and implemented the core technology that is needed for this product. In particular, the
hardware requirements were implemented with the software to control the light switching mechanism along with
communication to the server. A ThingSpeak server was used in order to store the state of the light at home and to
respond to requests to change the state (from on to off and vise-versa). Finally, user control was integrated with an
Android application. The Android application communicates directly with the ThingSpeak server in order to
change the state of the light.

Further work would include refining the software architecture so that it is easier to maintain and expand. With
user-experience as a goal of this project, further research can be done on designing good user-experience for this
application. In particular, the user-experience would be implemented on the Android application since that is the
component that the user will most interact with. This would mean minimizing the effort the user asserts in order to
turn the light on or off. There is some extended functionality, above the core functionality, that I would have liked
to add, but did not have time to research. For example, it would be great to have an easy way to add multiple lights
to the system so that the user could have full control of all these lights. This would be an essential requirement to
have for a product that would actually reach users. Another feature that would be nice to add is dimming support
for the light, rather than just having digital on or off.

In conclusion, this project required the integration of multiple technologies in order to achieve an end goal and
produce non-static systems. All of the core technology required for this product was integrated, however there is a
lot of room for improvement, namely code cleanup, better Ul integration, and more functionality for users. A lot
can be learned about IOT projects through the research of this project, and hopefully it is useful to someone who is
interested in their own IOT project.

References

[1] https://www.sparkfun.com/products/13678

[2] https://www.sparkfun.com/products/11114

[3] https://www.sdge.com/sites/default/files/documents/savingenergy_0.pdf
[4] http://www.pridopia.co.uk/pi-doc/ESP8266 ATCommandsSet.pdf

https://www.sparkfun.com/products/13678
https://www.sparkfun.com/products/11114
https://www.sdge.com/sites/default/files/documents/savingenergy_0.pdf
http://www.pridopia.co.uk/pi-doc/ESP8266ATCommandsSet.pdf

