CAVECamX Final Report
by Linda Shih and Helen Toma

Abstract - The CAVECamx project aims to develop a device for generating immersive 3D panoramic

images that is a significant improvement over the previous generation CAVECam by providing more
flexible algorithms and more intuitive interfaces. This will provide scientists and researchers an accurate
and immersive way to document environments. The CAVECamX uses two Sony QX1 cameras mounted
on top of a high-precision gimbal to stitch a series of images to produce a high resolution 3D panoramic
image. The sensors used in this device will improve the quality of the 3D content by improving the
resolution and depth perception compared to the current generation of CAVECams. Currently we have
produced an algorithm that dynamically generates orientations for any given set of camera parameters, a
web interface for remote connection and control of one Sony QX1 camera, and software modules to
gather and aggregate the data coming from the CAVECamX. The goal for the CAVECamX is to increase
access to 3D visualization technology by providing a simple and easy-to-understand interface for
generating 3D panoramic images.

Introduction - The camera control portion of the CAVECamX project aims to create a simple and

seamless way to interact and get feedback from the cameras. Since the Sony QX1 cameras used by the
CAVECamX do not have an LCD, this makes it incredibly inconvenient to view images on the SD card
and change camera settings such as ISO, shutter speed, and aperture. Additionally, the CAVECamX
uses two Sony QX1 cameras, which means that any configuration or action performed on one camera
must be mirrored on the other as well. This leads to slow and clumsy setup and usage of the
CAVECamX.

To combat this problem and make interaction with the cameras simpler for users such as
archeologists and researchers, we developed a web-based interface that would allow the user to be able
to make settings adjustments or get feedback from the camera such as notifications or viewing images
from the SD card, all without having to physically touch the cameras. Currently, we have implemented
several important features such as:

o Focusing via Live View
o Image Notifications
o View/Download Images

Focusing using the live view allows users to set a new focus point on the camera without needing
to physically adjust the camera lens or input values into a command prompt. The user simply clicks on the
object that they wish to be in focus, and those points will be interpreted and sent to the camera. Again,
the Sony QX1 cameras do not have LCDs, so this feature paired with the live view creates a very intuitive
and user-friendly way to frame a picture and set focus. This lets them to make subsequent settings
configurations as they wish, which will all be reflected on the live view in the web interface.

Camera notifications provides feedback to the user about what is happening on the camera side.
There are two ways of taking a picture: using the shutter button on the camera body, or through the web
interface. By implementing a feature that will be able to tell the user information about a picture, future
work can use this data to tell the gimbal when it can move to the next location. Data such as:

o When the image has completed capturing
o Where the shutter call was made from
o The resulting image URL

provides the user a way to know when it's okay to start taking the next picture, if the execution was made
from the camera body or the interface, and gives them the option to review the latest picture to see if they
want to retake it.

Lastly, the option to view or download images off of the SD card provides users an easy way to
remotely review pictures currently on the SD card without the need to remove it from the camera. When
the “View/Download Images” tab is clicked, it page begins to load low-res images in the form of small
thumbnails and corresponding full-resolution images from the camera. When finished loading, clicking on
a thumbnail will open a full-resolution image in a new browser tab.

With these three basic features added to the web interface, we believe that using the CAVECamX
will be much simpler to use and intuitive to a layperson. Being able to get feedback from the camera
knowing when a picture has finished capturing will be able to help the gimbal know when it's safe to move
to a next location. This opens door for more work in the future on the CAVECamX.

Technical Material

Server - The server side of the web-based interface is written in Python and acts as a bridge between
the client web page and the camera. The server is responsible for establishing a Wi-Fi connection with
the camera, listening to client requests, and sending those requests to the camera if they are made
correctly. Any requests that are made to the camera are then translated to a corresponding Sony API call
by the server, which is then sent to the camera. These API calls must follow a protocol specified by the
Sony Camera Remote API v2.00 document. The differentiation of calls can differ by name, parameters,
version, and camera mode. The Sony API calls are formatted as:
name of function (camera mode, parameters, version)
Focusing via Live View: In order to get the camera to focus on a specific point, the Sony API
document provides an API call named setTouchAFPosition, which will focus on a given point
given the location of the point in percentages. When a user clicks on a point on the live view,
those points will be converted to percentages, passed to the server, which are then passed to the
camera.
Python Server Sony API v2.00
set focus(13.3, 78.3) - setTouchAFPosition (camera, [13.3, 78.3], 1.0)
Image Notifications: It is important to know how and when the camera is being used and when it
is done taking pictures, so this feature helps the user to get notifications whenever a picture is
taken and if it was taken via shutter button on the camera body or from the web interface. The
Sony API provides “awaitTakePicture” APl which was used to help user to get the notifications on
the web interface. This API gives a feedback to make the user wait until the camera is done, and
is able to use this feedback to get this feature working. The API returns a URL of the picture
taken. The notifications update by comparing the new generated URL with the previous inside the
Python Server.

Python Server Sony API v1.00
await take pic() - sony api call ("awaitTakePicture", []) [0][0]

View/Download Images: To be able to view images on the camera SD card, a series of calls
must be made. Per the Sony API| document, the camera must be in “Contents Transfer” mode in
order to access any part of the SD card. After switching to this mode, the server must:
1. Check if an SD card is present
If so, change to “Contents Transfer” mode
Check the number of images on the SD card
Make requests for image information
Repeat Step 4 if necessary

o wbd

6. Collect relevant image information, package, then send
The Sony API call for SD card contents can only deliver up to at most 100 images from the SD
card at a time. If the SD card happens to have more than 100 images, then the APl must be
called several times (in some loop) in order to get all the images.

Python Server Sony API v2.00
1. get _storage information()- getStorageInformation (camera, None, 1.0)
Returns:

- “WNo Media” — done
- “storage:memoryCardl” — change camera
mode
2. set _camera function(“Contents Transfer”) - setCameraFunction (camera,
"Contents Transfer”, 1.0)
3. get content count () —» getContentCount (content,
{“storage:memoryCardl”, “flat”}, 1.2)
Returns:
- 0—done
- 1+ — request image information
4. get content list() - getContentList (content, [params], 1.3)
Returns:
- [imagel, image2, image3..]
5. Repeat Step 4 if there are more than 100 images, since the API call can only return a
maximum of 100 images at once.
6. Take relevant image information such as small image URL and the full-res image URL and
send them to the web client to be displayed as a grid of thumbnails.

Python Server Web Client
[small imgl, small img2, ..] — display small_img1, display small_image2, ...
[large imgl, large imgl, ..] — open full-res when corresponding image is clicked

Client - The client is the web interface, or the end product that the user will be able to see and use,
which will send requests to the server according to the actions of the user. The web address currently
being used is localhost:5000 in a web browser.

This portion uses HTML, CSS, JavaScript, and JQuery for its implementation. HTML and CSS
are used for displaying and formatting web page content, and JavaScript and JQuery are used for the
functionality such as switching tabs and sending/getting information to and from the server.

When a user clicks or inputs data into the web page, the JavaScript will trigger actions to occur.
Requests may be sent to the Python server to obtain data, or requests may be sent to the server to
change modes or settings.

Focusing via Live View: When the user clicks on a specific point on the live view, JavaScript is

able to return the specific coordinates of the mouse click. However, since the Sony API call for

focusing must take in percentages as arguments, additional calculations must be made before
making the API call:

x coordinate/liveview width*100 = x percentage

y coordinate/liveview height*100 = y percentage
These percentages are then passed to the server to make the request to focus on those points.

Image Notifications: When the user clicks on “Take Picture” button or the shutter button on the
camera body, the camera’s API generates a URL that is returned to the Python Server. If the
picture was taken through the web page, then “actTakePicture” API gets called and returns the
new URL, and if the picture was taken manually, the “awaitTakePicture” API gets called and it
returns a new URL. By comparing the stored URLs returned from each call, we are able to
distinguish the camera usage and know if the camera is done taking pictures, then the
notifications get updated in the Python Server and sent to JavaScript to enable HTML to update
the web interface with the correct URL and notifications.

€« > C N |[localhost5000

! Apps [Yahoo [WelcometoFacebo.. 8 Amazoncom:Onlin.. By Google Translate = Bank of America— ...) Chase Online - Log

Notifications: The last picture was taken MANUALLY

Picture URL Update: http://192.1638.122.1:3080/postview/memory/DCIM/101MSDCFDSC08220.JPG?size=Scn

P oo <
€« = C # [localhost:5000
it Apps Yahoo [fd Welcome to Facebo.. 8 Amazoncom:Onlin.. g Google Translate # Bank of America — ... o Chase Online - Le
Notifications: The last picture was taken through the WEB PAGE.
Picture URL Update: http://192.168.122.1:8080/postview/memory/DCIM/101MSDCF/DSC08218. JPG?size=Scn

View/Download Images:
Tabbing: A new tab for viewing and downloading images was added to the web interface using
HTML and CSS for formatting and style, and JavaScript for actual functionality of clicking on the
tabs. In order to improve performance of the server and not overload the QX1 camera, switching
tabs would halt any activity in the other tab. The default “Camera Configuration” tab queries the
camera for ISO, shutter speed, and aperture values every 3 seconds. Clicking the
“View/Download Images” tab breaks that loop, and resumes the loop when switching back to the
“Camera Configuration” tab. When on the “View/Download Images” tab, another loop is triggered
to start querying the camera for SD card contents. Similarly, this loop is stopped when in the
configurations tab.

Camera Configuration Tab — View/Download Images Tab — Camera Configuration Tab

- settings loop ON - settings loop OFF - settings loop ON

- contents loop OFF - contents loop ON - contents loop OFF
Displaying Thumbnails: Thumbnails of the original images are displayed in a grid-like format on
the “View/Download Images” tab. CSS is used to scale down the size of the images and add a
small margin to separate each thumbnail. JavaScript is used to convert each element of the small
URL array returned from the server, into a displayable image on the web page. Additionally, it
wraps the thumbnail with a link to the corresponding element in the large URL array. This allows
the thumbnail to open a new tab displaying the full-resolution image when clicked.

Camera Configuration View/Download Images

11 images

Milestones - Initially Linda and Helen decided to divide up the work by frontend and backend work.

Linda would handle Python code on the server side, whereas Helen would be in charge of frontend
HTML, CSS, and JavaScript work. However, due to the different schedules and experience, they decided
to split up the work by milestones/features instead.

1. Focusing via Live View (4/24) Done:

This milestone was to be completed by Linda on 4/24, but was completed 4/21. Due to
this early finish, Linda started on milestone 3, while Helen was assigned milestone 2 of the
project. The focusing via live view was completed by grabbing the coordinates of each mouse
click on the live view, converting those values to a percentage, then calling the appropriate Sony
API for it.

Some problems that were encountered during this milestone were that the Sony API call
is value on the format on the variable types for the functions that it provides. For a few days |
could not understand why it wasn’t working, and later realized that it could only accept type
double, instead of string or integer values.

Additionally, the focusing functionality broke a few weeks later. Clicking on a point on the
live view triggered no response from the camera, although the server would state that the API call
to the camera was successfully made. Linda later found that the camera focus mode was
somehow changed to “MF” which is incompatible with her current implementation. She changed
the camera focus mode to “AF” and seemed to fix the problem.

Image Notifications (5/5) Done:

Helen started working on this Phase during week 4. Many changes were requests after
she started working on it which made the delivery delayed for this feature. After few changes to
the due date, it was finally settled to have the due date moved to 6/5. This feature was done on
6/1, but she kept working on making the picture URL to display the picture until 6/6, but this
feature could not be accomplished because the URL is not set and it keeps updating. Helen tried
to use different HTML functions and multiple JavaScript syntax but to no avail.

By the end of week 8, this feature was accomplished first by displaying only the URL and
keep track of the image name that is appears as part of the URL. This allowed us to test the code
and be able to get feedback from the camera when it is used manually to take pictures. It also
helped us to distinguish the different calls that are made to take a picture.

By the beginning of week 10, the notifications messages where up. This was tested first
by sending notifications to the server then eventually moved them to HTML. Those notifications
were tested and they were updating as the camera takes pictures to inform the user about when
the camera is done with the panorama and if the picture was taken manually. For the rest of week
10, | kept working on the clickable URL to make it work but unfortunately could not get the URL to
display the picture when it is clicked.

After using “awaitTakePicture” to get the web interface to display and update the picture
URL and notifications, a bug was introduced. The camera started taking two pictures after every
other click on “Take Picture” button. After further investigations, Helen discovered the
“awaitTakePicture” APl was what causing this bug although the Sony API document states that
the API should only inform the user about the camera usage and should not take a picture. Helen
was able to fix this bug by calling the API differently.

View/Download Images (5/15) Done:

Linda started working on this milestone after finishing the first milestone. She began by
adding tabbing functionality and some minor user interface improvements to the web page. This
milestone was completed on 5/26 instead of the original 5/15 deadline. The original 5/15 deadline
was set so that the code could be deployed and used in Guatemala, but due to some missed
deadlines along with the gimbal team as well, the code ended up not being used. This allowed us
to push the deadline to the end of the quarter.

After studying the Sony API document, Linda found that grabbing image information off
the SD card involved a sophisticated series of calls to and from the camera. It involved first
switching to the “Contents Transfer” mode of the camera, checking if the SD card was present,
and then checking how many images were on the SD card. If there was more than 1 image, then
specific image information would be requested from the camera so that it could be displayed on
the web page. Functionality had to be added for when the user switches back to the other tab, in
which case the camera mode must switch back to “Remote Shooting”.

Some problems that Linda faced were that the Sony API was not entirely clear on how
the sequence of calls would occur. Sometimes there would be a 1-2 second lag when the camera
was switching modes. A 3 second delay was added in order to account for this camera lag. On
top of this, the APl document wasn’t clear that when querying for SD card content such as
number of images or specific image information, a completely separate new URL had to be used.
This problem took about 2 weeks to solve and was mainly attributed to the vague document and

unclear specifications that it provided. Additionally, confusing statements such as “ The client
should check the parameter "cameraFunctionResult" of "getEvent (v1.0)" to
get result of setting camera function. The callback of this API is for
starting execution, not for getting result of setting.“ This note was extremely
misleading and ended up being an optional API call that did not need to be executed.

A persisting problem that occurred was that changing modes from “Remote Shooting” to
“Contents Transfer” resulted in a frozen live view. While this is expected, any attempts to restart
or reinitialize the live view on the “Configurations” tab was a failure. Linda attempted to recreate a
LiveView object, restart the live view thread, as well as recreate the live view image. None of
these things worked. While there currently no fix, a workaround is that restarting the server gets
the live view unfrozen and working again.

Things We Didn’t Have Time For:

While several project goals were accomplished, they were not completed to perfection.
Problems which arose during the course of the quarter still persist, which we have not been able
to get around to fixing or implementing a workaround:

1. Frozen Live View: When switching from “View/Download Images” tab to the “Camera
Configurations” tab, the live view freezes. This issue is due to the fact that the camera itself must
shut off the the live view when switching camera modes. However, getting it to restart doesn’t
seem to work. Linda suspects that it has something to do with Python threading and the way that
she is restarting the live view thread is incorrect. Although she has tried everything that she could
think of, she has set aside the issue to work on other features. The current workaround is to just
restart the Python server and reload the live view from the beginning.

2. Focusing Confirmation: After Linda completed Phase 1, Focusing via Live View, Eric thought
that it would be nice to add a feature where the web interface could tell the user whether or not
the focusing was successful or not. Upon successful focusing on a given point, a green box would
appear around the live view box which would serve as visual confirmation to the user. If
unsuccessful, then a red box would appear around the live view to indicate that the user should
retry. This feature was not implemented but would have been a useful feature to have as part of
the web interface.

3. Image Sorting: With the current implementation of displaying images from the SD card, images
are loaded in order of how the camera API decides to return the image information. The order of
image information returned from the camera seems to be sometimes out of order from how the
images appear on the SD card, which are usually organized by date. While sorting pictures by
date appears to be doable, this will take extra work to extract further image metadata (such as
date taken), and then a sorting algorithm to display the images. Currently the images seem to be
generally sorted by date, but not exactly.

4. Displaying Picture Using Its URL: The URL displayed on the web interface is generated and
updated as the camera takes pictures, and each picture has its own URL. The URL is clickable
now; however, the new tab that opens is blank and cannot display the picture taken. To solve this
problem, a lot of the time was spent trying to make JavaScript and HTML “grab” the URL and
open it in a new window/tab. Unfortunately, this task could not be accomplished due to the nature
of Sony API “awaitTakePicture”, which was used to display and extract the generated URL which
makes the URL change as the camera takes pictures.

5. Control of 2 Sony QX1 Cameras: This was more of a really hopeful stretch goal. While the web
interface can control only 1 of the cameras, controlling both cameras would be optimal for the
CAVECamX. However, this would mean that the interface would somehow need to connect to 2
different Wi-Fi connections in order to configure both cameras. There isn’t a clear way to
implement this yet, and this portion will require some time.

Conclusion - This web-based interface is able to help users of the CAVECamX by simplifying both

the usage and setup of the cameras. Without a web interface, users must manually configure settings on
the camera, and viewing SD card images must involve taking the SD card out of the camera and inserting
it into a computer to be seen. The interface allows users to adjust settings, set new focus points, take
pictures, and lets them view pictures on the SD card, all without having to physically touch the camera.

We worked on implementing features that we thought would be the most important to a user of
the web interface. Being able to set a specific focus point using the live view would allow users to focus
on an object with a simple click of their mouse instead of having to do it manually or enter in coordinates
into a command prompt. Getting feedback from the camera to when a picture has finishing capturing an
image gives users the option to review the latest picture taken. Additionally, knowing when a picture is
done can provide information to the gimbal to let it know when to move to the next location. The ability to
review images on the SD card and optionally download the full resolution image removes the need to take
the SD card out of the camera (and insert it into a laptop) just to review pictures.

While we did implement most of these features, new problems were constantly being faced.
Limited camera availability, poor and vague APl documentation by Sony for the QX1 cameras, small
online community, little to no online help, and unfamiliarity with languages such as HTML and JavaScript
were major factors that slowed down our progress. We successfully completed Phase 1, Phase 2 does
not yet open up the image in a new tab when clicked, and Phase 3 freezes the live view as well as
displays unsorted images. There are currently workarounds for these problems which involve just a
simple restarting of the server and refreshing the web page.

The work that we did this quarter opens doors for future developers to add more features to the
web interface. Hopefully, in the future it will have a modern Ul with sliding windows and interactive panels.
Features like a focus confirmation box, more settings adjustment options, maybe even displaying image
name and date for the SD card review section, would all be very helpful to the future user of the
CAVECamX. Additionally, being able to get camera feedback can be used for the gimbal so that it knows
when it is ready to move to the next location to take a picture. This way, the entire system hopefully will
become fully integrated.

Although the web-based interface is still in its growing stages, we hope that with the few major
implementations of these new features our work will create more future development. The interface
provides a simpler yet useful interface for all users of the CAVECamX. With proper documentation and
organization of code, we hope that the interface will still continue to be developed after this quarter.

References -

Sony Camera Remote API beta SDK v 2.00
https://developer.sony.com/downloads/camera-file/sony-camera-remote-api-beta-sdk/

https://developer.sony.com/downloads/camera-file/sony-camera-remote-api-beta-sdk/

