Find Birds' Nests with Image Processing

Shengdong Liu and Xiangyun Zhao

Abstract

This paper describes a computer vision approach to help ecologists find bird nests. The work involves
processing two types of aerial images of an area taken by quad-copters. Near infrared images are used to
detect and exclude plants from the search area. Visible light images are classified to find trees and to
exclude irrelevant landscapes such as soil, rocks, and water. When used alone, near infrared images can
eliminate roughly 50% of the search area, and visible light images can eliminate up to 89% of the search
area. This is a promising first step to help ecologists find bird nests by combining many layers of
information from different types of images to effectively reduce the search area.

1 Introduction

Birds are important to the ecosystem. For the animal kingdom, birds are in many layers of the food
web, so they help to maintain the population of their preys and predators. For the plant kingdom, birds are
the pollinators and seed dispersers, so they help with the reproduction of plants. Their presence in an
ecosystem has undeniable impact for many other species, directly and indirectly[1]. In addition, there are
over 10,000 types of identified birds[2] and their presence are widespread around the world. These traits
make birds common yet fascinating, and attract many ecologists to specialize in studying birds.

Though fascinating, the process of studying the birds is not all excitement, especially when the
ecologists cannot find the target birds to study. Even if the ecologists found right type of birds, it is difficult
for ecologists to observe the birds for a significant period of time because birds are highly mobile. Of course,
with the advancement in technology, we could, in theory, track the birds with aerial vehicles, but that
would be highly impractical in term of cost. Thus, most ecologists who specialize in birds would set up
cameras in the areas where birds commonly appear, and hope the cameras would capture the birds'
activities. This approach is practical, but the success of this method relies heavily on the cameras' locations.
In other words, the cameras needs to be set up at locations where there are birds flying by for the method
to be effective. This leads to another major inconvenience in bird studies, that is how to locate areas where
birds are commonly seen. Ecologists can, with out much difficulty, find the appropriate locations for a large
population of birds that fly in masses. However, what about the endanger birds that are scarce but need
more attention and protection? The most practical way is to find the birds' nests, and set up cameras to
monitor where the nests are. That way, ecologists will be able to see the birds every time they leave or
return to their nests. However, but the process of finding the birds' nests is very tedious and inefficient.
Currently, ecologists have to go around in person to find the birds' nests with out much guidance. This is
problems makes the preparation for studying birds very time consuming, and severely limits the
productivity of ecologists who would like to observe and help the birds.

Engineers For Exploration (E4E) is a group of students who develop and use technology to drive the
future of exploration[3]. With the the goal to apply remote imaging, sensing, and robotic technologies to
extend the limits of human exploration, the group accepted the challenge ecologists have to face in finding
birds' nests. The goal for this project is to help ecologists find birds' nests efficient. To take advantage of the
technology, a quad-copter will be used to scan a landscape because it has high mobility. To track birds with
quad-copters would be impractical. Quad-copter is limited by weight, and thus cannot carry a large supply
of power to keep it in the air for a long period of time. However, the flight time to survey landscape should
be relatively short and the battery should suffice. On the quad-copter, there are a few different camera
systems that take photos of the landscape. These systems include visible light camera, near infrared
camera, and thermal camera. The purpose of putting all these systems on the quad-copter is to get many
layers of information from the landscape, and then, these images can be analyzed to produce informative

data to help ecologists look for birds' nests.

This paper will cover mainly three steps taken toward helping ecologists with finding the birds'
nests, and the methodology and result of each step taken:

* The results of processing the near infrared images by finding the Normalized Difference Vegetation
Index (NDVI).

e The results of processing the visible light images by using machine learning algorithms to classify
the different parts of the images to find where the trees are.

e The analysis of the acoustic impact that quad-copter to stay under to not disturb the wildlife.

2 Methodologies
2.1 Near IR Images

The raw images we have access to are NGB images, images that has it's red value of the RGB
channels replaced by infrared. We extracted the near infrared value from the red channel and calculated
the NDVI (Normalized Difference Vegetation Index) using the following formula:

(NIR — VIS)
(NIR + VIS)

The VIS and NIR stand for the measurements acquired in the visible and near-infrared regions.
Typically, the red value is used for the visible, but since our NGB images did not have a red channel, we
used the blue for the visible region, which should yield similar result. Because the index is calculated using
ratios of blue light absorbed versus IR light reflected, photosynthetic materials will stand out more. To put
it simply, NDVI measures the health of plants [4]. Since birds' nests are made of dead twigs, and the
surround environment is usually leaves that keeps the nest hidden, NDVI can be use to distinguish the
nests and the leaves.

NDVI =

We tested this method on NGB images of wetland from taken from San Elijo and here's a example
of what we have and the NDVI image generated.

ks

B b3 2o i | o il ; Sadk a2 = R
Illustration 1: NGB Image Illustration 2: NDVI Image Illustration 3: Binary Image

INlustration 1 shows the raw NGB image we got, and Illustration 2 is the NDVI Image we generated by
calculation. Illustration 3 is a binary image generated from the NDVI image by setting and threshold to
distinguish the life and dead material. As we can see, the plants appears as white pixels on the binary
image, and the non-photosynthetic material are dark. This is the first layer of information we can use to
reduce the possible search areas by eliminating the plants. Form the images we tested on, we can eliminate
about 50 percent of the landscape on average, since about half the area are photosynthetic materials such
as leaves and grass, and about half of the landscape are rocks, soil and water. This leads us to work on next
part of the study, which is how to eliminate these other dead materials that's not a birds nest?

2.2 Visible Light Images

2.2.1 Neural Network Classification

2.2.1.1 Collect Data and Data Preprocessing

We fly the copter in the filed to collect many field images. The images are like the image following.

-

Then we manually collect 250 by 250 data images for each class(leaves, rock, soil, grass). The data images
like following:

Grass Leaves Rock Soil

Because we do not have access to GPU, so we resize the 250 by 250 images to 28 by 28 images. Before that
we transform the RGB image to gray scale image. The smaller data images will reduce the train time
significantly. And we convert each image to one vector with 784 elements. After doing this for whole
data(we manually collected 2214 images), we calculate the mean vector, and the mean standard deviation.
Then we can convert the original vectors to 0 mean and 1 variance. This part is in MATLAB function
pre_data.

2.2.1.2 Neural Network Architecture and Approach
2.2.1.2.1 Cost and Gradient Function Design

We wrote a function cnnCost which computes the cost, gradient and predicted classification using a
given set of weights on a given data set for a specified architecture. We define the architecture in the form
of a cell structure, whose rows correspond to layers. For a given layer, the row contains a string with the
layer type: either "pooling”, "convolutional”, or "connected”. For a convolutional layer, the row also contains
a number specifying the number of filters, and for a pooling layer, the row also contains a number
specifying the pooling dimension. Finally. for all three types, the row contains another string specifying the

options for the layer. In a convolutional or fully connected layer, this would be the activation function, and

in a pooling layer, this would be either mean or max pooling. The activation functions we implemented are

»” &«

“funny tanh”, “leaky relu”, “sigmoid”, and “softmax”.

We also pass in the weights as a cell structure. The rows correspond to layers. Each row has a
weight and bias component. For pooling layers, the weight and bias are empty matrices. For convolutional
layers, the weight is a four dimension matrix whose dimensions are the filter size (twice), the dimension of
filters which should equals the number of filters in the previous convolutional layer (or one if there wasn’t
one) and the number of filters. The bias is a vector whose length is the number of nodes in the next layer.

Our function computes the cost and gradient with several helper functions. For each of the three
layer types, we there is a forward propagation and a back propagation function. The forward propagation
takes the previous layer of nodes as input and outputs the next layer of nodes. The back propagation
function takes the deltas from the previous step, which have already been multiplied or convolved with the
weights, and outputs the next deltas as well as the gradient for the weights in that layer.

Our function computes the cost by iterating through the layers and calling the appropriate forward
propagation function for each layer, and then computing the cost after the last layer. Then it iterates
backwards through the layers and calls the appropriate back propagation function, building the gradient as
it goes.

The forward and backward propagation functions for pooling, convolutional, and fully connected
layers are described below.

2.2.1.2.2 Pooling

To forward propagate in mean pooling with pool size D, for each image, we iterate through all copies
of the image that have been generated by convolutional layers. For each copy, We divide this image into
small patches whose dimension equals the pool size, we do a valid convolution of this patch with a square

1

2
matrix whose dimension is D and whose elements are D~ .

To forward propagate in max pooling, we iterate through all copies of the image that have been
generated by convolutional layers. For each copy, we simply find the maximum element in each non-
overlapping square of dimension D by D, and copy this element into a new matrix. And remember this
maximum element location in each copy.

To back propagate for mean pooling, we iterate through all copies of each image. For each copy, we
take the Kroneckor product of the delta matrix with a square matrix of ones of dimension D, then divide

2
the whole thing by D" | This has the effect of upsampling the errors.

To back propagate for max pooling, we do the same thing except that this time we do not divide by
D 2. Then after upsampling, we need make sure that all elements of the delta matrix are zeros except for
the ones that were the max in their region.

The output of back propagation is the new matrix of deltas, along with the gradient which is empty
in this case since there are no weights in a pooling layer.

2.2.1.2.3 Convolutional Layer

For forward propagation in the convolutional layer, let us suppose we have m copies of each image
from the previous convolutional layer, and n new filters. For each image, we iterate through the copies and
through the filters. For the i-th copy and the j-th filter, we take the filter at index i, j in the weight matrix,
rotate it, and do a valid convolution of this with the corresponding copy of the image.

Then for each filter, we sum over the m copies and add the bias term corresponding to that filter.

M =3 M, %W, +bias

Thus we now have n convolved copies of each image. Now, we apply the activation function to each element
a of the new matrix. For sigmoid, this is:

1
1+e™“

gla)=
For funny tanh, this is:
g(a)=1.7169 tanh(% a)

For leaky relu, this is:

g(a)=a(a>0) otherwise, g(a) = 0.01a;

For back propagation, we first compute the gradient of the activation function.

- 2
For sigmoid, this is: g(a) =gla) —g(a)

~ 2 1
g(a) =1.7169x—(1- g(a))
For funny tanh, this is: 3 1.7169
For leaky relu, this is: g (a)=1(a>0) , other wise g(a) =0.01

We then compute the deltas using the deltas passed in from the previous step. These deltas have already
been multiplied by the weights, so we simply compute:

5HCW:g'X§

weighted

We compute the gradient using these new deltas. To compute the bias gradient we sum over all input
images and sum over the rows and columns of each image. To compute the weight gradient, we iterate
through the n filters and the m previous copies. For the i-th copy and the j-th filter, we do a valid
convolution of delta matrix corresponding to that filter with the image from the layer below corresponding
to the i-th copy:

weighted __
9 =25, *W,
i

The output of this back propagation step is the weighted deltas and the gradient[5].

2.2.1.2.4 Fully Connected

To forward propagate in a fully connected layer, we multiply the matrix of previous nodes times the
weight matrix and then add the bias vector to each row:

Y =XW+B

where X is the matrix of the previous nodes, Y the matrix of the next nodes, W the weight matrix, and B a
matrix whose rows are copies of the bias vector. Then we apply the activation function as we did in the
convolutional layer. We also have the option to do softmax activation here, which is:

Yy

e
>
i

Where Yj is the is the j th column of Y

g¥;)=

To do backward propagation, for activations other than softmax, we compute g’ as we did in the
convolutional layers. Then we compute the new delta using the previous delta which was passed in (which
has already been multiplied by the previous weights.)
5}1ew =& ' * §weighted

Softmax activation only occurs on the last layer. We assume cross entropy loss. In this case, we pass
in the labels instead of the previous deltas. We make a matrix T whose rows correspond to input images,
and whose columns correspond to classes, containing a 1 in a row and column if that input is in that class

and a zero otherwise. Then the matrix of deltas is: 6=0-T where O is the final output of the softmax
layer.

The gradient for the weights is computed: g=Xo,, where X is the matrix of nodes before these
weights were applied. The gradient for the bias is the sum of the deltas over the input images.

o, =0 *W
Finally, we multiply the deltas times the weights to pass to the next layer: ~ "ehed new [6].

2.2.1.2.5 Architecture
The architecture is:

input vectors -> convolution 5 9*9*1 filters -> convolution 10 5*5*%5 filters -> max pooling layer ->
fully_connected layer 30 hidden unit -> softmax layer 4 output.

2.2.1.2.6 Stochastic Gradient Descent

For this part, we did the minibatch gradient descent method. When we minimize the cross entropy
function, a standard (or "batch”) gradient descent method would perform the following iterations :

weight, ;... = weight — a x gradient

where o is a step size (sometimes called the learning rate in machine learning).

In many cases, evaluating the sum-gradient may require expensive evaluations of the gradients
from all summand functions. When the training set is enormous and no simple formulas exist, evaluating
the sums of gradients becomes very expensive, because evaluating the gradient requires evaluating all the
summand functions’ gradients. The minibatch stochastic gradient descent is to randomly choose one
minibatch of the whole data to do the gradient descent instead of using the whole batch, it will be more fast
and economic because the whole data is too tremendous. Here we choose minibatch number to be 256. After
choosing the minibatch, we calculate the gradient and cost just based on the random minibatch each time.
Then update the weight and bias. Another trick we used h ere is to use the momentum to increase the
convergence time. The learning rule with momentum is:

%

t+1

= uV, — gradient
w,

t+l1

=W, +aV,

t+1

We we chose # = 0.02 and @ =0.01 Momentum makes the path towards the minimum smoother. The
number of iterations is 3000. Our only stopping criterion is the number of iterations.

2.2.1.2.7 Test

Although the input images are much smaller than the original data images, we still spent 5 hours
on training on CPU. The architecture is in the MATLAB file cnnTrain.

After training the neural network, we started to do the test. We arbitrarily choose the test images
from the field images. Then divide the whole image to 250 by 250 small patches and do the classification.
After cutting out the each patch, we resize it to be 28 by 28. Before resizing the image, we transform the
RGB image to gray scale image. Then convert the the image to be one vector with 785 elements. Then
subtract the mean value (which is obtained from the training data) and divide the standard deviation
(which is obtained from training data). For the classification part, the code is in the MATLAB test file.
Because what we need to do is just exclude the areas which are not the leaves and the resolution is not the
problem, it is unnecessary to do the pixel classification. What we need to do is to do the patch classification.
And then The results will be the following parts.

2.2.2 Local Binary Pattern Feature Classification

Given a pixel in the image, an LBP code is computed by comparing it with its neighbors:

18P, =Y s(g, ~g.)2", s(x)=1 -+ ="
= S — , S(X)=
P.R T g, & 0.% <0

where gc is the gray value of the central pixel, gp is the value of its neighbors, P is the total number of
involved neighbors and R is the radius of the neighborhood. After the LBP pattern of each pixel is
identified, a histogram is built to represent the texture image:

1 J
H(k)=Y " f(LBP, (i, j).k).k €[0,K],

i=1 j=1

Lx=y
fx,y)= .
0, otherwise 7]

we define the above operator as the CLBP_S operator. Then we define another operator as following:

CLBP_M operator

. Lx=e

P-1 2)

CLBP M, , = t(m_,c)2”, t(x,c) =
—R ZFO i 0,x<c

where c is a threshold to be determined adaptively. Here we set it as the mean value of mp from the whole

image. We calculate the histograms of the CLBP_S and CLBP_M codes separately, and then concatenate

the two histograms together[8].

Dominant pattern set of an image is the minimum set of pattern types which can cover n (0 on o 1)
of all patterns of an image. This can be expressed by the following equation in order to
find a set Ji for image

J; =arg min ije—’l'fu =,
Uil Zk=1fi,k

J. . s
where | 'l denotes the number of elements in set Ji (J’ c(L2.... pl), f”f is one of the patterns for class i.

To construct a discriminative and robust pattern set, the learning model contains three layers for
each target: feature robustness, discriminative power, and the capability of representation. The framework
is as following :

class1: x1 X2 . Xn class2: X1 Xz) ... { Xn2 classc:(X1 X2) ... | Xne
o \ | \ | \ | [| |
g Voo v Voo v Voo v
T 000 00 @ - 00O
5 1%y
g . (X
o0
% Dominant pattern Dominant pattern Dominant pattern
— subset JC1 subset JC2 subset JCc

Dominant pattern set
(J global)

For each layer the algorithm is described as following:

Algorithm 1. (Layer 1) Get the dominant pattern set of each
training image x; from the training set T;in-

Input: The histogram f of the original pattern sets of interest
of each training image x;, and the threshold parameter n to
determine the proportions of dominant patterns selected from
each training image.

Output: Dominant pattern set J; with respect to each training
image Xx;.

1 — — - y
- Initialize reference vectors V, where V[i]=(i—1)

(i=1,...,p), where p denotes the number of all possible
patterns types of interest.

Sort ?,— in descending order, resulting in f Change the
i
configuration of v according to element order of f;. The

resulting vectors are denoted as V.
3. FORk=1top

4. "5

k fi
IF|Y _,—>—==n

p —>
1=1 fir
5. BREAK
6. ENDIF
7. END FOR
8

H s = .
Return J; ={V [1],...,V [k]} as a dominant pattern set for
image x; € Tiqin-

Algorithm 2. (Layer 2) Estimate the discriminative dominant
pattern set of each class j.

Input: Dominant pattern sets [, J»,..., In, of n; images belonging
to class j obtained from Algorithm 1.

Output: Discriminative dominant pattern set JG; of class j.

Initialize JC; =J;.

FOR each image k=2 to n; belonging to class j
JG =JC; Ny

END FOR

Return JG.

Wk WA

Algorithm 3. (Layer 3) Construct the global dominant pattern set.

Input: The discriminative dominant pattern set JG; for each
classj (j=1,...,0) obtained from Algorithm 2.
Output: The global dominant pattern set Jgiopal.

1. Initialize Jgiopa = 9.
2. FORk=1to C

3. Jetobat = Jgtopat Y JCk-
4, END FOR

o Return .]gfabni-

[8]

After extracting the dominant patterns, we extract the corresponding features from the training
images. And then use the nearest neighbor method to do the classification. It means that find the minimum
L_1 distance between the test feature and the train feature. The corresponding train feature label is the
test label.

2.2.3 Results and Discussion

The leaves area is the potential bird nest area, we call it positive area, other areas are all negative
areas. Then the results are following:

Neural Network method:
* True Positive 90.4% false positive 9.6%
e True negative 99.99% False negative 0.01%
* Exclude the 89.94% area which can not be bird nest

From the results, although there is still some false positive, the false negative percent is very low. It means

that the almost all the potential bird nest area can be detected. Because we resize the original data to much
smaller images.. The performance is definitely influenced. Further more, because the data is limited, we
can not implement more complex architecture. If we implement more complex architecture, there will be
some over-fitting. So I think, if we have access to GPU to deal with the original 250 by 250 data image, and
have more data, the performance will definitely be improved.

LBP feature method:
e True Positive 90.7% false positive 9.3%
* True negative 99.98% False negative 0.02%

From the results, the traditional method and the neural network method seem to have the similar
performance, but actually, if we have more data and can access to GPU, the neural network method will
definitely perform better.

2.3 Acoustic Impact

Although quad-copter is highly mobile and ideal for surveying the landscape, it is not without
drawbacks. Quad-copter creates noise, and the noise emission during flight could potentially disturb the
birds and other animals in the area. Thus we need to keep the quad-copter at a safe altitude so that the
noise will not be a disturbance to the wildlife while operating at a elevation where high quality images can
be taken. This section will discuss the guidelines we have to operate the quad-copter with out disturbing
the animals in the area.

According to Federal Aviation Association (FFA) Regulation and Guidance on visual flight rules
near noise-sensitive areas, aircraft pilots are encouraged to voluntarily practice flying of 2,000 feet above
noise sensitive areas such as National Parks, Nation Wildlife Refuges, water fowl Production Areas and
wilderness Areas[9]. Of course, this is not applicable to quad-copters as the FAA safety also limit
recreational use of model aircraft to below 400 feet[10]. So, there's no direct elevation guideline for quad-
copters.

A more roundabout approach we have to resort to would be to measure the sound of a quad-copter
in a unit such as decibels, and then comparing that with data that we already have regulations on. The
FAA says that a maximum day-night average sound level of 65 dB is incompatible with residential
communities[11]. This is a regulation in regards to human, but fortunately for us, for most birds has
roughly similar hearing range to human hearing[12]. Thus if we can show, statistically, that our quad-
copter operates on average less than 65 dB, it should be relatively safe for the animals in the area. Thus to
make the quad-copter deployable, our immediate future goal is to collect acoustic data on the noise level of
our quad-copter in operation, and find the operating level that will meet the requirement.

3 Milestones

To summarize our milestones and progresses, we started with 3 major milestones: process near
infrared images, process thermal images, and write up acoustic impact report. We completed 2 out 3 major
milestones: process near infrared images, and write up acoustic impact report. We decided to drop the
milestone for processing thermal images and reallocate that time to work on a machine learning approach
to classify the visible light images. The reason we decided to drop thermal images processing in favor of
machine learning is that we intended to implement classification also on near infrared images. That way
we can overlay the two layers of information using only one type of image with out knowing needing to
know the exact location where the image is taken. Classifying the near infrared image however, is
disappointingly inaccurate because the lower resolution lead to lost in texture. This caused us to revert
back to classifying on the visible light images. When we have a way to match the location of all the different
types of images, we can overlay the information to produce better results. The following table shows in

detail each of the milestones we had. (Note: for all the milestones without the key word “New”, those are
the original milestones we had at the beginning of the quarter, the milestones with the key word “New” are
milestones that we inserted later on in the quarter.)

. Description of Due Completion
Milestones Deliverables Date Time/Status Comments
. NGB images
Get images from NGB (ede.ucsd.edu/eric/s End of WK 4 Provided by Eric
camera » WK 4
an_elijo.tar.gz)
NDVI i
S WIII?:??Sd Not satisfactory, binary image
Process NIR images ; ee aith g ate/ End of | End of from threshold the NDVI
using NDVI ttps: g1t u 'com, S| WK 4 WK 4 image returns ~50% white and
hl1202/BirdNest/wik
; ~50% black
1/Weekly-Updates)
Methodology
Proposal (See WK5
: A h
fNe:; pp(Il‘oac to h Update End of | End of See Week 5 update on our wiki
urther requce searc https:/github.com/s | WK 5 WK 5 page.
area. h1202/BirdNest/wik
1/Weekly-Updates)
Classified training We have 537 images total as of
New: Collect Training data for water, Endof | End of WK7 | 2OW ‘and l.t is working for the
rock, grass etc. classification method,
Data WK 6 (Late)
although more samples the
better.
Classification
Report
New: Classification by https:/ github.com/s End of | End of WK 7 | The accuracy is good based on
) h1202/BirdNest/blo
texture and train. - | WK 6 (Late) our current samples
b/master/doc/Classi
fication
%20Report.pdf
Get and analyze thermal Thermal images End of Dropped Dec1ded‘ to relallo.cate the t1nge
. on classification instead, which
images WK 7 . ..
is more promising.
Integrate thermal Report of how Dropped Decided to reallocate the time
.. . End of
analysis into our search | thermal images WK 8 on classification instead, which
area helps is more promising.
Classify using NIR Testing t.he N;R images with
. . . our classification method, gave
New: Classify NIR images for easier End of .
. .. Aborted us inaccurate results due to
images combining process | WK 8 lower resolution of NIR
with NIR result .
images.

http://e4e.ucsd.edu/eric/san_elijo.tar.gz
http://e4e.ucsd.edu/eric/san_elijo.tar.gz
https://github.com/shl202/BirdNest/blob/master/doc/Classification%20Report.pdf
https://github.com/shl202/BirdNest/blob/master/doc/Classification%20Report.pdf
https://github.com/shl202/BirdNest/blob/master/doc/Classification%20Report.pdf
https://github.com/shl202/BirdNest/wiki/Weekly-Updates
https://github.com/shl202/BirdNest/wiki/Weekly-Updates
https://github.com/shl202/BirdNest/wiki/Weekly-Updates
https://github.com/shl202/BirdNest/wiki/Weekly-Updates
https://github.com/shl202/BirdNest/wiki/Weekly-Updates
https://github.com/shl202/BirdNest/wiki/Weekly-Updates

Found some guidelines for the

Acoustic impact End of acoustic level we should aim
Acoustic impact analysis | analysis, see WK 9 (Late) | measurements from Eric for
: WK 8 ..
Section 2.3 the acoustic impact of our

quad-copters.

See Demo Video
from 5:34 — 8:25

New: Neural-Network (https://www.voutu This method is more promising

End of | End of WK with accurate as we can

Appr(?ach f:or be.com/watch? WK 10 | 10 improve it more with more
Classification feature=player det training data
ailpage&v=JfbsgYlt
WcQ#t=334)
Training images Collected training images for
https://github.com/s 1000 leaves,

hl1202/BirdNest/tre | End of

New: Collect Train Dat WK 10 500 rock
ew: Loflect Hrai Hata e/master/classified | WK 10 500 roeKs,

%20samples/250x2 grass,
50 200 soil.
Video Demo

Project Video https://www.youtub | End of WK 11 (late) | See Video Demo!
e.com/watch? WK 10
v=JfbsgYItWeQ

4 Future Work

The results from this work contributes to the initial steps of finding birds' nests. For the future,
there are many more steps to come before helping ecologists to efficiently find the birds' nests. Thermal
images can be processed to find the animals in the landscape. The difference in the animal's body
temperature and their surrounding can be quite noticeable, so processing the thermal images can give us
another layer of information that further narrows down the possible area where the birds' nests might be.
An important future work is to bring all the pieces of information together. To do that, we need the
geographic coordinates of the images so that for any near infrared image we process, we can find the
corresponding visible light and thermal image and vice versa. Finally, generating a shortest path to guide
the ecologists to all the potential areas would increase the usability of this project for the ecologists to find
the birds nest efficiently.

5 Conclusion

This work provide the initial steps to find birds' nests using image processing. Two types of images,
near infrared and visible light, were processed and the results show they can climate up to 50% and 89% of
the search search area respectively. This work also provided some insight on the noise level (65 dB) the
quad-copter should operate under so the animals are not disturb by the acoustic impact. These
foundational steps will be useful for helping ecologists find birds' nests more efficiently.

https://www.youtube.com/watch?v=JfbsgYltWcQ
https://www.youtube.com/watch?v=JfbsgYltWcQ
https://www.youtube.com/watch?v=JfbsgYltWcQ
https://github.com/shl202/BirdNest/tree/master/classified%20samples/250x250
https://github.com/shl202/BirdNest/tree/master/classified%20samples/250x250
https://github.com/shl202/BirdNest/tree/master/classified%20samples/250x250
https://www.youtube.com/watch?feature=player_detailpage&v=JfbsgYltWcQ#t=334
https://www.youtube.com/watch?feature=player_detailpage&v=JfbsgYltWcQ#t=334
https://www.youtube.com/watch?feature=player_detailpage&v=JfbsgYltWcQ#t=334
https://www.youtube.com/watch?feature=player_detailpage&v=JfbsgYltWcQ#t=334

(1]

(2]

[3]
[4]
[5]

[6]
[7]

(8]

(9]

Reference

“Ecological Roles of Birds” Endangered Species International, 2011. Retrieved 10 June 2015.
<http://www.endangeredspeciesinternational.org/birds4.html>

Gill, Frank (2006). Birds of the World: Recommended English Names. Princeton: Princeton University
Press.

Engineers For Exploration, 2015. Retrieved 10 June 2015. <http:/e4e.ucsd.edu/wordpress/?page id=2>
Liz. “NDVI and NRG” Public Lab, 2013. Retrieved 10 June 2015. <http://publiclab.org/wiki/ndvi>

Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton “ImageNet Classification with Deep

Convolutional Neural Networks”, Advances in Neural Information Processing Systems 25 Year:
2012 Pages:

Online Stanford Deep Learning Tutorial UFLDL Tutorial Website: http://ufldl.stanford.edu/tutorial/

Yimo Guo , Guoying Zhao , Matti Pietikainen, “Discriminative features for texture description”
Pattern Recognition 45 (2012) 38343843

Zhenhua Guo, Lei Zhang and David Zhang, A Completed Modeling of Local Binary Pattern Operator
for Texture Classification”,IEEE Transactions on Image Processing

“Visual Flight Rules (VFR) Flight Near Noise-sensitive Areas” Federal Aviation Administration,
17 September 2004. Retrieved 10 June 2015.
<http:/rgl.faa.gov/Regulatory and Guidance Library/rgAdvisoryCircular.nsf/list/AC%2091-36D/

$FILE/AC91-36d.pdf>

[10] “What Can I Do With My Model Aircraft?” Federal Aviation Administration, 12 August 2014.

Retrieved 11 June 2015. <http:/www.faa.gov/uas/publications/model aircraft operators/>

[11] “Noise Monitoring”. Massport. Retrieved 10 June 2015.

<http://www.massport.com/environment/environmental-reporting/noise-abatement/noise-
monitoring/>

[12] Beason, C., Robert. “What Can Birds Hear?”. USDA National Wildlife Research Center - Staff

Publications. Retrieved 10 June 2015.
<http://digitalcommons.unl.edu/cgi/viewcontent.cgiarticle=1076&context=icwdm usdanwrc>

http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1076&context=icwdm_usdanwrc
http://digitalcommons.unl.edu/cgi/viewcontent.cgi
http://www.massport.com/environment/environmental-reporting/noise-abatement/noise-monitoring/
http://www.massport.com/environment/environmental-reporting/noise-abatement/noise-monitoring/
http://www.massport.com/environment/environmental-reporting/noise-abatement/noise-
http://www.faa.gov/uas/publications/model_aircraft_operators/
http://rgl.faa.gov/Regulatory_and_Guidance_Library/rgAdvisoryCircular.nsf/list/AC%2091-36D/$FILE/AC91-36d.pdf
http://rgl.faa.gov/Regulatory_and_Guidance_Library/rgAdvisoryCircular.nsf/list/AC%2091-36D/$FILE/AC91-36d.pdf
http://rgl.faa.gov/Regulatory_and_Guidance_Library/rgAdvisoryCircular.nsf/list/AC%2091-36D/
http://publiclab.org/wiki/ndvi
http://e4e.ucsd.edu/wordpress/?page_id=2
http://www.endangeredspeciesinternational.org/birds4.html

