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Abstract

Even though a number of infrastructures are available to count the number of vehicles, they require a high amount of
costs to deploy. One promising way to reduce the deployment cost is to leverage a computer vision-based vehicle
detection on emerging small computing devices such as Raspberry Pi. In this project, our system exploits a network
of Raspberry Pi’s with cameras equipped on each floor and counts the number of cars based on OpenCV library.
The output is sent to a server over TCP/IP protocols and users can access the information through a website. In our
evaluation conducted on a field testing, we show that our systems can report the available parking spots to users on a
website by efficient video processing on Raspberry Pi.

1. Introduction

We are creating system that provides live parking availability. This will allow for individuals looking for parking
to spend less time searching for spots. This is especially relevant today since most commuter students, faculty and
UCSD employees do not have the time to circle around campus hunting for parking. In addition, the solution should
display the parking count in a user-friendly way, such as live displaying on a website.

In this project, we developed Triton Eye, which utilizes multiple camera-equipped Raspberry Pi’s and a web server
that assimilate the information received from the Raspberry Pi’s to server the information to users via their web
browsers. The system uses a network of cameras (one per floor) to count the number of cars arriving and leaving.
There are many detailed strategies that have been published but we will design an algorithm that is optimized for
UCSD and Raspberry Pi to guarantee reasonable local processing time. The cameras would be run on a Raspberry
Pi and send only the processed data. In other words, the camera will capture the video and the Raspberry Pi will
process data locally and send an output (ie, car came or left). We would be using OpenCV and other open source
libraries to create an algorithm to count cars and determine what types of spots are open (A, B, S, etc). With this
output sent to a server (using a TCP/IP protocol with some sort of encryption), a website will display the live count
of cars per parking lot/structure. The server first performs a parking lot counting algorithm which computes the
available number of lots of each floor by using the car counts and the directions received from the Rapsberry Pis.
The information is stored into a Sqlite database, thus we can retrieve the real-time parking spot information and
show it to the web user interface running on Ruby on Rails.

This project is split into 3 main technical parts. The backend car counting algorithm run on the Raspberry Pi, the
frontend and network communication between the Pis and the website and finally the open spot algorithm that takes
the output of the car counting algorithm and converts it into something the user wants. Yeseong, the backend
engineer, focused on creating a lightweight algorithm to run locally on the Pi that accurately counted the cars
coming to and from using OpenCV libraries. Pranay, the frontend engineer, focused on the communication between
the server and the Pis and created the website that displays the information. Sameer, the team lead, focused on the
layout of how the Raspberry Pis would be placed and from their placement, developed an algorithm to determine the
number of spots open. He also made sure the team was on track with their goals and ensure the quality of each part.

We implemented the Triton Eye on Rapsberry Pi 2+ for the backend and a laptop for the frontend. For the
Raspberry Pi side, our program implemented in Python is running with OpenCV 3.0.1, and the webserver that
executes the parking spot counting algorithm and serves the web interface is running on Ruby on Rails. We also
evaluated our solution in a in-lab testing that uses custom videos with moving toys and stocked videos found in
Internet. Then, we conducted two field testings in Pangea and Hopkins structure. In the first testing, we found the
pracissues such as a headlight reflection, and in the second testing, we verified that our improved algorithm could
address the practical issues in most cases. Our future plan is to improve our algorithm to minimize the false positive
countings and to eventually create an i0OS/Android app or integrate it with the current UCSD app.



2. Technical Material

2.1 Overview of Triton Eye

In this section, we describe our parking spots counting solution for UCSD parking structures, named Triton Eye.
There are two key goals in designing our approach. First, the actual deployment cost of systems should be minimal
compared to the existing sensor-based solution which requires lots of sensors for every parking spot. Second, the
number of available parking spots should be easily accessible by users, and the information needs to be updated on
time. In order to achieve the first goal, we designed our systems running on a Raspberry Pi with a camera which is
required to be deployed on each floor. Thus, the technical challenge for this is how to process the real-time video
stream in a performance effective way. For the second goal, we have developed a web server-based system, which
provides user interfaces in a webpage to show the aggregated information for Raspberry Pi’s in a parking structure.
The webpage has been designed so that it can retrieve the information from the video processing results of
Raspberry Pi’s over the network communication.

Figure 1 shows an architectural overview of the developed Triton Eye and Table 1 also shows the development
environment used in our implementation. Triton Eye systems consist of two parts: i) multiple backends running on
Raspberry Pi to process real-time video and count the number of cars arriving and leaving; ii) a frontend running on
a web server running using Rails which aggregates the information of car counts for a parking structure, performs a
parking spot counting algorithm, and eventually shows the information to the user via a web page. In the following
subsection, we describe the technical details of Triton Eye, the video processing methodology of the backend side in
Section 2.2, the parking spot counting algorithm in Section 2.3, and the web server development in Section 2.4.

o Q@“
One/Floor

Video Processing on
Raspberry Pi (Backend)

&
& 3
¢ >
e

Webpage

Web server on Rails (Frontend)

Figure 1. An architectural overview of Triton Eye

Table 1. Development environment and requirement

Hardware Software Note
Backend Raspberry Pi 2+ OpenCV 3.0.1 - TCP/IP communication
Camera Implemented on Python to the frontend
- Developed traffic log
reproducer to simulate a
backend
Frontend Any web server. Ruby on Rails - Include an admin page
Implemented on a laptop. | Sqlite for database to configure the floor




2.2 Vehicle Counting on Raspberry Pi

The backend program running on Raspberry Pi counts the number of cars with the direction of each car so that it
can report the related information for each floor to the web server in a realtime manner. The vehicle tracking
procedure of the video processing algorithm performs two steps, an object identification and an object tracking. We
have used OpenCV 3.0.1 library to process the real time video, and all the source code are developed in Python 2.7.
On the top of that, since we only have a single Raspberry Pi, in order to simulate multiple Raspberry Pis which
communicate to the frontend web server at the same time, we develop a backend traffic log reproducer which
generates network packets based on recorded car counting logs in the same way that the original Raspberry Pi does.

2.2.1 Object Identification

The first part of video processing algorithm is to identify moving objects in a video. Unlike other high-performance
computing devices, the Raspberry has limited capability of the processing power. Even though there are several
algorithms developed to track the number of moving objects by capturing their distinguished features such as Haar
Cascade algorithm [1], in our testing, we found that the algorithms can not process the real time video due to the
limited performance of the Raspberry Pi. Thus, we developed our own procedures to find moving objects in a video.

The object identification step first applies a background subtraction algorithm. As the OpenCV library provided,
there are three popular algorithms, called MOG [2], MOG2[3], and GMG [4], where all identify changed pixels by
considering consecutive frames to subtract the background in a video stream. We found that the three algorithms
provide sufficient performance to process the video. According to each algorithm, we can process more than 10
frames for a real time video taken by camera, which is enough to identify moving objects in a frame. In addition, an
advantage of the MOG and MOG?2 algorithm is that they can distinguish the shadow from the actual objects. We
developed our procedure so that the selection of each algorithm is configurable. However, since we also empirically
found that, in general, the MOG2 provides the best accuracy in finding the moving objects including vehicles, we
use the MOG?2 algorithm in our field testing.

After the background subtraction procedure, the processed frame contains white pixels which represents the
moving pixels, while others shows black pixels which are identifies as the background. However, the frame
processed by the background subtraction algorithm is often too sensitive, so containing lots of noisy pixels scattered
in a small arare. Thus, to remove the pixel noise from the frame, we further applied two filters sequentially: opening
and median filter. The first opening filter dilates every pixel so removing small pixels from the frame. Then, the
median filter is also used to merge disconnected parts, which are close enough, since they are likely to be included
in a single object.

The last procedure of the object identification is to find contours of objects in a frame. Since a frame may include
multiple moving objects, it distinguishes different objects in a frame, where an object is assumed to have one
contour. Then, for each identified contour, the algorithm processes two post-processing work to execute the
algorithm more robustly. The first one is to eliminate either too small contours or too large contours which can not
be a vehicle, and the thresholds are also configurable depending on the camera position. The second step is called as
sudden frame change identification which checks how many pixels are changed in a entire frame. Once it occurs, we
ignore the frame and reset the background subtraction algorithm since the camera sometimes produces such images
when either intensive light changes or physical camera movements happen.

Figure 2 shows the result of the object identification procedure for a stocked video found in Internet. The first
frame shows the original image from the video where the green color lines show contours of each identified vehicle
and the red color box shows its minimum area. The second and third frames present its internal procedure to
recognize the moving objects. As shown in the second frame, the background subtraction can find the moving pixels
with small noise pixels, and it is successfully filtered out in the third frame.



Figure 2. Object identification procedure (original, background subtraction, and filtering)

2.2.2 Object Tracking algorithm

To compute the number of cars with their directions, we developed two algorithms that exploit different criteria.
The main reason why we need different methodologies is that we need to handle videos taken on different camera
angles and different subsequent environments. For example, if the camera is installed in the top-bottom view, the
camera takes videos that contain the headlights which unlikely happens in a horizontal camera view. Thus, we used
a line-based tracking algorithm for the horizontal view, while an area-based tracking algorithm is used for the
top-bottom view.

The line-based tracking algorithm utilizes a given reference line to count the number of cars which cross the line.
The line is configured by clicking the video screen in the Raspberry Pi program. Figure 3(a) shows an example how
we count the number of cars with their directions in the line. For each identified contour for two consecutive frames,
we first compute which one is the same object over the frames. To this end, we compute the center of mass of each
object and the distance between two pairs of objects which are separately in the two frames. Then, the closest object
pair, which are both recognized in two frames, creates a single car that have the same ID (denoted as blue color
text.) Then, we can compute their paths of each car as denoted by red color lines. The path of each car is compared
against the given reference line, the yellow color line to check if the center of mass of each object crosses the line. In
actual computations, the line splits the 2D space of the frame into two parts, and we check where the center of mass
belongs, so estimating the correct direction of each car.

The area-based tracking algorithm utilizes an area of interest which is also configurable in the same way of the
reference line case, as shown in Figure 3(b). The area of interest is divided by three subarea, and we compute
whether each subarea is occupied by the recognized objects. Then, by considering the occupancy of the three area
over subsequent frames, we can recognize the direction of cars as well as the number of cars. Since we estimate the
direction of the car without knowing actual paths of the moving objects, we could handle the car headlights and their
reflection on ground, which is hard to distinguish in the line-based tracking algorithm.

(a) Line-based tracking (b) Area-based tracking
Figure 3. Examples of two vehicle tracking algorithms



2.2.3 Network Communication and Traffic Log Simulator

The computed information for the number of cars and their direction at a moment is sent to the web server over
TCP/IP communication. The transmitted packets are also logged, i.e., while the actual backend program processes
either a recorded video or a live camera stream, it can also save the network packets, which will be transferred over
TCP/IP communication, into a text file with each of timestamps. It is because we need to evaluate our entire system
in the situation when more than one Raspberry Pi are connected. In order to reproduce the network packets, we also
developed a traffic log simulator which generates packets at the same time actually processed in the real Raspberry
Pi. The simulator was also useful to test our systems since we can speed up the simulation time.

2.3 Parking Spot Counting Algorithm

The algorithm used to count the number of parking spots utilizes the output of the Raspberry Pi and exploits the
location at which the Pis are set up. Algorithm 1 shows a pseudocode of the algorithm. Each Pi is located on the hills
between the floors and one on the entrance, which means it tracks two subsequent floors. This ensures that we know
exactly what floor each car is moving to and from. The floor also includes a virtual entrance floor, which means
outside to correctly the count number of cars coming into the first floor. The Pi sends a 1 or 0 dictating come or go
along with its tag, as denoted CAR_ENTER and CAR_LEAVE in Algorithm 1. For example, if the Pi on the hill
between the first and second floor, facing downhill towards the first floor sends a 1 it means that a car came towards
the Pi aka going from the first floor to the second.

We use an array stored in a database that keeps the number of cars per floor and one to store the total number of
spots available. Index 0 corresponds to the total number of cars in the parking lot and each index holds the number
of cars on that floor. The admin defines the spots available array when inputting their data into the form we provide
on the website. After getting the signal from the Pi, the algorithm maintained two variables for each floor to track
the number of the car, cars variable, and the total open spots, open_spots variable. We update the total number of
cars in the parking lot array, find spots() in Algorithm 1, and then take the difference from the capacity and 0 to
properly predict how many spots are open while it doesn’t give a negative number or a wrong number greater than
the total capacity, store_adjusted_openspots() in Algorithm 1. That is, since the number of cars of a floor can exceed
the number of open spots when a car is entering when the plot is full, we consider this case to show the correct
number in the website. We also utilize the total car count to do sanity checks and to account for driver lag. For
example, if there is only one spot left on the third floor and a car enters the structure, it takes time for it to reach the
third floor and count the car as being there. If another car come in after, the third floor is now full but since the car
has not hit the sensor yet, the algorithm would not count it. To account for this, we look at the total number of cars
in the structure, which is being stored at index 0 and is updated everytime a car enter/leaving the structure. From
there, we look at the open spots on each floor and make a guess about where the will park to account for the lag time

it takes to drive up the structure.
Algorithm 1. A pseudo code of parking spot counting algorithm

function find_spots (f1, 2, direction) function store adjusted_openspots (floor f)
if (direction == CAR_ENTER) cur_spots = f.capacity - f.cars
fl.cars = fl.cars - 1 if (cur_spots > f.capacity)
f2.cars = f2.cars + 1 cur_spots = f.capacity
end end
if (direction == CAR_LEAVE) if (cur_spots < 0)
fl.cars = fl.cars + 1 cur_spots =0
f2.cars = f2.cars - 1 end
end
f.open_spots = cur_spots
store_adjusted_openspots(fl) save to_db(f)
store_adjusted_openspots(f2)




2.4 Dynamic Web-based User Interface

The web server program has two main parts: the algorithm that takes data from the Pi and calculates the number of
spots available, described in Section 2.3, and the actual website that displays the information to the user. The
website itself is built using Ruby on Rails. The website has two components - the Rails app framework, which create

the website, and an server file written in Ruby, run within Rails environment but separately from the app. The server

code is what allows the data to be collected from the Pi. Since the server code is run from within Rails, it has access

to the same libraries that website code does. Thus, it can call the parking spot algorithm, passing in the parameters

necessary. This is important, since the only place we have the data from the Pi is within the server code. This makes

it easy to use data from the Pi, and stores/transfers the retrieved parking spot information in the same database

deployed in Sqlite.
TritonEye
Time last updated: 17:37:31
Floor Capacity Open Spots
1 20 20
2 25 16
3 20 1"
4 25 25

Figure 4. User interface in the main web page

Once we have collected data from Pi and passed it to the algorithm, all
that is left is displaying it. This is done utilizing Rails’s MVC
architecture - the root or home page is the index page of the parking lot,
where all the cars for each floor are shown. The actual user interface of
the main page is shown in Figure 5. There is an option to navigate to a
special page, shown in Figure 6, if you are an admin and input data for
a new parking lot, then redirect back to this home page. Lastly, all of
this is styled using twitter-bootstrap for user appeal. In this way, we
see how the data collected from the Raspberry Pi about cars
entering/exiting can be used to calculate how many available spots a
parking lot has and show that info to the user in a clean manner. It also
provides the time information when the page is updated, so that the user
can update using the button on the top of the page.

TritonEye

Name

Capacity

Open spots

0

Cars

| Create Floor

Figure 5. User interface for the admin page



3. In-lab and Field Testing and Deployment

3.1 Testing Methodology and Results

We tested our methodology in two ways. Before going to the actual field test, we evaluated and optimized our
program using videos of balls and toys as well as stocked videos to make robust algorithms. Figure 6(a) presents the
result of this in-lab testing. In the in-lab testing, we found that the auto adjustment feature of the camera, e.g.,
exposure, makes instable video in that a large amount of pixels keep changes for some cases, e.g., according to the
time of day changes. Thus, we added an additional feature that fixes the adjusted features on the our backend
program.

Figure 6(b) presents a picture of the field testing. For the field testing, we prepared a Raspberry Pi which
communicates over tethering via a smartphone and is powered by a laptop USB. To control the Raspberry Pi without
actual monitor, the Raspberry Pi is also connected in the smartphone using the VNC protocol. In the first field
testing conducted in Pangea parking structure, we found that our algorithm could successfully recognize and track
the moving vehicles in most cases. However, the most challenging part which we didn’t think is that the car has
headlights and it can be reflected, as discussed in Section 2.2.2. In order to handle this issue, we recorded the field
videos that makes the program, and implemented the area-based counting algorithm. Then, we conducted the second
field testing in Hopkins parking structure, and verified that the improved algorithm can address many practical
issues. The evaluated results of the backend program can be found in the youtube links below:

- Line-based tracking
https://www.youtube.com/watch?v=LINHSeP4T3M

- Area-based tracking
https://www.youtube.com/watch? v=K-KsFMKGvdQ

Figure 6. Left: in-lab testing (a), Right: field testing (b)


https://www.youtube.com/watch?v=LINH5eP4T3M
https://www.youtube.com/watch?v=K-KsFMKGvdQ

3.2 Triton Eye Deployment
All the developed source code are available in the github with a description, and it includes following
implementation:

Table 2. Triton Eye repository, description, and usage

https://github.com/yeseongk/tritoneye

Component Directory Description
Frontend / - Requirement: Ruby on Rails
- Usage:

(server) $ rails runner server.rb
(web app server) $ rails s -b [IP_ ADDRESS or 0.0.0.0 for
generic] -p [PORT NUMBER]

Backend (Raspberry Pi 2+) | /src - Requirement: OpenCV 3.0.1

- Usage:

(Actual) $ python triton_eye.py [-v VIDEO_FILENAME]
(Simulation) $ python simulation_triton_eye.py -sl
LOG_FILENAME -ss SIMULATION_SPEED

Test code for OpenCV /test_src - Usable to check the valid setup of Raspberry Pi

Sample video /sample_video | - Include stocked videos and field testing video recorded in
UCSD

Sample log /sample log - Input files for the traffic simulator

- Recorded from the field testing sample video

In order to change the configuration in the deployment, the backend provides multiple options in the
“src/recognition/recognition_conf.py”:

Table 3. Triton Eye backend program configurations

Processing procedure Option name Description
Object identification BG SUBTRACTOR Background subtraction algorithm
(MOG, MOG2, GMG)
FILTER NOISE SIZE Noise pixel sizes to ignore
MIN OBJECT AREA Size of area to be determined as a single object
MAX OBIJECT AREA
Object tracking DETECTION_METHOD Selection between line-based and area-based
algorithm

MIN_DISTANCE ON_LINE Pixels that determines if an object is on the
reference line (for line-based algorithm)

OCCUPIED_RATIO Ratio that determines if an area is occupied (for
area-based algorithm)



https://github.com/yeseongk/tritoneye

4. Milestones

Milestones

DONE?
(Explained
section)

Description

Milestone 1: Project setup and initial in-lab development (04/15~04/28)

Object tracking algorithm DONE (2.2.1) | Implemented the object identification algorithm
Application counting moving toys DONE (3.1) Tested with toys

Initial web interface with runtime update DONE (2.4) Created Interface was

In-lab testing with sample videos DONE (3.1) Tested with stocked video

Milestone 2: Field development (04/29~05/13)

(Optional)

Field data recording DONE (3.1) Found the headlight reflection issue

Object tracking library improvement to DONE (2.2.2) | Solved by line-based counting

handle overlapped objects

Backend communication application DONE (2.2.3) | Developed the traffic simulator as well

Web interface for single device DONE (2.4) Checked with communication methodology
Integration and testing using field video DONE (3.1) Found the headlight reflection issue

Parking spot identification algorithm NOT DONE Supposed to be optional, and time didn’t permit

Milestone 3: Tuning and Application integration (05/16~05/2

7

application (Optional)

Image processing library tuning DONE (2.2.2) | Implemented the area-based algorithm

Parking spot counting algorithm DONE (2.3) Implemented and ported into the web server
Field data recording 2 DONE (3.1) Did the field testing twice to handle light issue
Web interface for multiple devices DONE (2.4) Add admin pages as well

Encryption for interface NOT DONE Time didn’t permit

Parking spot algorithm integration to backend | NOT DONE Supposed to be optional, and time didn’t permit

We achieved most of milestones as we planned, but there are several things, either what we couldn't cover or what

needs to be improved. Initially, we planned to implement an algorithm to identify parking spot types such as A, B

and V in the UCSD parking structure case if time permits. However, since we required to handle the problems found

in the first field testing as a higher priority, we implemented area-based algorithm instead. In the frontend side, we

didn’t cover encryption and admin authentication development due to the limited time, but they are not the core




implementation and would be easily added in the further implementation. Even though we showed the prototype of
Triton Eye and working demo, there are some feasibility to improve the systems. For example, some false counting
issue are still remained in tracking vehicles, and it may need to provide some solutions to solve practical issues such
as battery.

5. Conclusion

In this project, we developed a way, called Triton Eye, to save people time and stress when it came to parking. This
solution will help everyone on campus more efficiently park which in turn will increase the productivity in things
that actually matter. Our goal was to display a live count of open spots for different parking structures on campus.
We have designed a working proof of concept and achieved the goal. We successfully developed algorithms to count
the cars, determine the available spots and display them to our user. Future work on this project would be to improve
the quality of the car counting algorithm to better deal with some corner cases, add more intelligence to the open
spot algorithm to account for false positive/negatives and finally to make the website more user friendly and get it
onto the UCSD app.
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